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Abstract - Cryptography makes taking a cipher and duplicating the original plain content difficult without the comparing key. 

With all-around outlined cryptography, messages are scrambled in a manner that savage power assaults against the calculation 

or the key are everything except unthinkable. A solid cryptography obtains its security from the utilization of staggeringly 

long keys and encryption calculations that are impervious to different types of assault. Neural net application represents the 

following advancement in great cryptography. This study manages the utilization of a neural system in cryptography, 

particularly, the configuration of a neural system that can be commonsense use in cryptography. This focus also incorporates 

an experimental demonstration. 
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1. INTRODUCTION  

 
Cloud computing is a primitive change happening in the field of information technology (IT) [1]. Cloud computing is an 

Internet-construct innovation that serves the IT infrastructure, which comprises programming, equipment, and client 

applications. This innovation gives its consumers ease in utilizing cloud-based applications and low gear prerequisites on the 

customer side. Information can be stored or obtained by clients over the cloud at any time and any place via the Internet [2]. 

This service has asset pooling, universal system access, on-interest self-administration, metered administration (measured 

assets utilization), pay-as-you-devour plans of action, and fast versatility (assets can be scaled here and there effortlessly). 

 

2. LITERATURE REVIEW 

 
Cloud suppliers offer purchasers cloud computing administrations as IT assets. Three normal cloud computing 

administrations are depicted below [1-2]. Infrastructure as a Service (IaaS): IaaS gives cloud buyers an irregular condition of 

control and commitment in the course of action and utilization of IT resources. Examples include virtual server events and 

limits, Application Programming Interface (APIs) hardware, composes, and operating systems [3]. Platform as a Service 

(PaaS): PaaS gives cloud customers an instant domain currently contained and designed IT assets. Consumers have a lower 

level of control over the conveyed applications than in IaaS [4]. Software as a Service (SaaS): SaaS provides cloud consumers 

cloud benefits that they can utilize and arrange. A cloud purchaser has exceptionally constrained regulatory control over SaaS 

execution. The support, administration, and usage of cloud administrations are completed by the cloud administration supplier 

(CSP) [5]. Figure 1 illustrates the three types of cloud services. 
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Figure 1: Cloud computing services 

 

The deployment models of distributed computing depend on the foundation or environment made accessible to associations 

with regard to their needs. Four organization models are depicted below: 

 
 Public cloud: A public cloud is a base or environment that is freely available and is claimed by a third-party CSP. The 

CSP gives the same base assets over the Internet to every one of the clients of the general population cloud but with 

restricted setups, security assurance, and element availability [6]. 

 Private cloud: A private cloud is a base or environment that is implied for a specific association. Information in a private 

cloud is more secured and controlled than that in a public cloud. A private cloud can be facilitated on-premises or by a 

remotely trusted third party [7].  

 Community cloud: A community cloud is a base or environment that is implied for more than one association with 

particular communities. That is, it offers basic and particular needs, for example, policy compliance, security, and 

protection. A community cloud may be overseen by a CSP or by associations and may be facilitated on-premises or off-

premises [7].  

 Hybrid cloud: A hybrid cloud is shaped by the coordination of two or more clouds (private, community, or public). It 

meets the exceptional necessities of an association by performing diverse functions [8]. 

 

 
2.1 Elliptic curve cryptography  

 
An elliptic bend cryptosystem (ECC) depends on elliptic curve theory [9]. To plan public key cryptographic frameworks, 

Koblitz and Miller proposed the idea of elliptic curve cryptography. A brief presentation on the ECC is given as follows. The 

general type of elliptic curve E over a prime finite field Fp is 

 
y

2
 = x

3 
+ ax + b                                                                 (1) 

 
where a, b, Fp, and the discriminate D = 4a

3 
+ 27b

2
 0. The points on elliptic curve E are over a prime finite field Fp together 

with an extra point O called the point at infinity or zero point, which is denoted as  

 

A = {(x, y): x, y Fp, E(x, y) = 0} {O}                                      (2) 

 

Let n be the order of A, so that n g mod q = 0, where g is the generator of A. Let A be a cyclic additive group under the point 

addition “+,” which is defined as P + 0 = P, where P A [11]. The scalar point multiplication over A can be defined as  

 

       kP = P + P +…….. +P (k times)     (3) 

 

If P, Q, and A, then the addition P + Q is a point R. The line passing through P and Q intercepts the curve at a point called –R. 

The reflection of –R is R with respect to the x-axis, and this is known as point addition as shown in Figure 2. 
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Figure 2: Point addition  

 

If two points overlap, i.e., P = Q, then R= P + P and it becomes a tangent at P, which intersects the curve at -2P. The image of 

2P on the changed sign of the y coordinate is the result of the addition of P+P, which lies on the curve E/FP. This situation is 

known as point doubling as shown in Figure 2. 

 
Figure 3: Point doubling 

 

 

 

 
2.2 Elliptic curve Diffie–Hellman (ECDH) key exchange  

 
To encrypt/decrypt the majority of information, symmetric-key (otherwise called secret key) cryptosystems are utilized 

because of their faster calculation in contrast to public key cryptosystems [10]. To create a secret key between two clients for 

a solitary session, the ECDH key trade method can be connected to an elliptic curve as depicted below.  

Assume that clients A and B need to concur on a secret key, which will be utilized for secret key cryptography. “A” produces 

a private key dA and a public key PA = dAG, where G is the generator of the elliptic curve. “A” sends PA to “B.” Similarly, 

“B” produces a private key dB and a public key PB = dBG. “B” sends PB to “A.” Upon the receipt of A's message, B 

processes dB (PA) = dAdBG. Upon the receipt of B's message, A determines dA (PB) = dAdBG. Both A and B can utilize 

dAdBG, which is a point on the given elliptic curve, as a typical secret key as shown in Figure 3. 

 

https://www.google.com/imgres?imgurl=http://www.purplealienplanet.com/sites/default/files/image/point_addition.png&imgrefurl=http://www.purplealienplanet.com/node/27&h=359&w=300&tbnid=SbTd5d6OGvJRLM:&docid=4PVoYlQHQCydvM&ei=BenGVuLlGdidugTHz5eACQ&tbm=isch&ved=0ahUKEwii_PuIyoPLAhXYjo4KHcfnBZAQMwgiKAYwBg
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjjxdH0zIPLAhVWB44KHfmfC0cQjRwIBQ&url=http://cs.ucsb.edu/~koc/cren/docs/w03/09-ecc.pdf&psig=AFQjCNFYxVBfwfDMfk8imEpZT71T3tOsxA&ust=1455963474207695
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Figure 4: ECDH 

 
2.3 Back propagation neural networks  

 
An artificial neural network (ANN) is a data preparation paradigm that is implemented through organic sensory systems, for 

example, the mind and information processing [11]. The key component of this paradigm is the structure of the data 

preparation framework, which consists of an extensive number of interconnected handling components (neurons) working as 

one to address particular issues. ANNs, similar to people, learn by illustration. An ANN is arranged for a particular 

application, for example, design acknowledgment or information order, through a learning process. Learning in natural 

frameworks includes acclimations to the synaptic associations that exist among neurons. This situation is also valid in ANNs.  

 

 
Figure 5: General neural network 

The backpropagation system is a standout among the most complex neural systems for regulated learning [12]. With regard to 

topology, the system is included in a multilayer feedforward neural system. As shown in Fig. 1, a completely associated 

variation is generally utilized so that every neuron from the n-th layer is associated with all neurons in the (n+1)- th layer. 

However, this situation may be exaggerated. A few associations may also be lost. In any case, no associations exist among 

neurons in the same layer. A subset of data units has no information associations from different units as the states of the data 

units are settled by the issue. Another subset of units is assigned as yield units, the states of which are considered in the 

calculation results. Units that are neither data nor yield are known as hidden units. 
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Figure 6: Simple artificial neuron 

 
An essential computational component is called a neuron (Figure. 4), hub, or unit (Fausett 1994). It obtains information from 

different units or from an outside source. Every datum has a related weight w, which can be adjusted to demonstrate synaptic 

learning. The unit registers some capacity f of the weighted entirety of its inputs. Therefore, its yield can serve as information 

to different units. The weighted whole is known as the net information to unit i. Note that wij indicates the weight from unit j 

to unit i (not the other way around). The capacity f is the initiation capacity of the unit. Backpropagation calculation typically 

utilizes a logistic sigmoid actuation capacity (4) for estimations of t in the scope of genuine numbers from −∞ to +∞. 

A backpropagation algorithm fits with a gathering called "gradient descent methods." An instinctive definition is a calculation 

that scans worldwide for the least weight scene by slipping downhill in the most abrupt bearing. The introductory position is 

set to arbitrarily select the weights of the system to some extent (usually from - 1 to 1 or from 0 to 1). Given the distinctive 

focus, backpropagation utilizing a fully connected neural network is clearly not a deterministic algorithm. 

 

3. PROPOSED APPROACH 

 
Neural cryptography depends on the effect of two neural systems that are fit for synchronization through common learning. In 

every progression of this online strategy, neural systems obtain a typical data design and ascertain their output.  

At this point, both systems utilize the outputs presented by their accomplice to change their own weights. This process leads 

to fully synchronized weight vectors. The synchronization of neural networks is, in fact, a complex dynamic process. The 

weights of the networks perform random walks, which are driven by a competition between attractive and repulsive stochastic 

forces.  

Two neural networks can increase the attractive effect of their moves by cooperating with each other. However, a third 

network, which is only trained by the other two, has a clear disadvantage because it cannot skip some repulsive steps. 

Therefore, two bidirectional neural systems can expand the cooperation to communicate the effect of their moves with one 

another. In any case, a third system, which is trained by the other two, has a clear disadvantage because it cannot avoid some 

appalling steps. Therefore, bidirectional synchronization is much faster than unidirectional learning. 

Two partners, A and B, need to trade a secret message over a public channel. To ensure security against an aggressor T, who 

is listening in on the correspondence A, encrypts the message. However, B must obtain A's secret key over the general 

population channel. This goal can be accomplished by synchronizing two three-equality machines, one for A and one for B, 

separately. After synchronization, the framework creates a pseudorandom bit arrangement that passes through a test on 

arbitrary numbers. When another system is prepared on this bit succession, removing some data on the measurable properties 

of the grouping becomes unusual. The Current Trusted Platform Modules (TPMs) produce a mystery key and further encrypt 

and decrypt a secret message. Consequently, we utilize a multi-layer topology as our application is a calculation issue. In this 

paper, the backpropagation system is proposed for the encryption-and-decoding process. Neural systems offer a capable and 

general structure for speaking to a nonlinear mapping from a few information variables to a few yield variables. The 

procedure for deciding on the estimations of these parameters on the premise of an information set is referred to as learning or 

preparing. In this manner, the information set is referred to as a preparation set. A neural system can be considered a suitable 

decision because of its useful structures for encryption and unscrambling operations. Figure 5 illustrates this system. 
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Figure 7: ANN architecture 

 

4. EXPERIMENT AND RESULTS 

 

We used MATLAB version 2015a to perform the experiment through an I7 processor. The starting run of MATLAB initiated 

the ANN to generate the balanced keys for the ECDH as shown in Figure 6. 

 

 
Figure 8: ANN-based ECDH 

 
However, we ran our experiment through MATLAB and used the ECDH keys along with an ANN. An ANN replicates the 

randomness of nature. Populations of individuals adapt to their surroundings through natural selection processes and the 

behavior of natural systems. An ANN produces a population that has a higher fitness value, and this population is the 

intermediate cipher text that will be used in encryption. This intermediate cipher is then used by the ANN to encrypt the 

original message. The ANN uses the error backpropogation algorithm, which uses its own key in the form of its weights and 

biases. 

We ran the two text file scenarios: before ECDH + NN and after ECDH + NN. Table 1 presents the operation of ECDH+NN 

before encryption in terms of a time metric and, table 2 shows the decryption process. 

 

 
Table 1: Encryption before (With ECDH+NN) 

Performance Time Error % 
2183.4681 28 -0.0588 

1842.9474 23 -0.0026 

406.8916 22 -0.0588 

404.1541 20 0.0026 

2635.2167 21 0.0052 

9026.2943 20 -0.0466 

16725.6721 20 0.0060 

638.7912 20 -0.1502 

939.3597 20 0.01705 

40592.6835 20 1.0181 

 

Table 2: presents the operation after decryption. 

Decryption  Before (With ECDH+NN) 

Performance Time Error % 
404.9120 33 -9.17984 

617.5989 36 -9.17984 

419.9209 44 -2.1280 

436.9801 43 -0.1235 

2776.0304 44 -0.4433 

9109.7314 45 -1.6682 

17505.2216 56 -1.4325 

677.8595 59 -0.3477 

886.09285 45 -0.4516 

41167.5365 59 0.28506 

 



The National Conference for Postgraduate Research 2016, Universiti Malaysia Pahang 

540 

 

  
 

Figure 9: ECDH NN after encryption

 

5. CONCLUSION 

This study aimed to achieve secure communication across unsecure networks and to secure secret and 

sensitive data from unauthorized access over public networks. We implemented symmetric cryptography, 

which generates both public and private keys, using ECDH with an ANN (error back propogation NN) for 

encryption and decryption processes. Using ECDH with an ANN and GA, we achieved confidentiality of 

data, data integrity that prevents any manipulations, authentication of both sender and recipient, and 

prevention of both recipient and sender from denying the messages. Nevertheless, we presented an 

encryption system based on an ANN. The ANN was used to construct an efficient encryption system 

through a permanently changing key. The ANN topology is an important issue because it has various uses 

depending on the application of the system it is designed for. 
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