EXPERIMENTAL INVESTIGATION AND MODELLING OF WAX DEPOSITION INHIBITION IN PIPELINE TRANSPORTATION OF CRUDE OIL

NORIDA BINTI RIDZUAN

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

EXPERIMENTAL INVESTIGATION AND MODELLING OF WAX DEPOSITION INHIBITION IN PIPELINE TRANSPORTATION OF CRUDE OIL

NORIDA BINTI RIDZUAN

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Chemical and Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

SEPTEMBER 2016

UNIVERSITI MALAYSIA PAHANG

Г

٦

DECLADATION OF THESIS AND CODY DICHT				
Author's Full Name	• NORIDA B	INTI RIDZUAN		
Date of Birth	. 22 AUGUS	Т 1979		
Title	EXPERIME	ENTAL INVESTIGATION AND)	
	MODELLIN	G OF WAX DEPOSITION INH	<u>IIBITION</u>	
	IN PIPELIN	E TRANSPORTATION OF CR	UDE OIL	
Academic Session	: 2015/2016			
I declared that this thesis	is classified as:			
CONFIDENTIAI	(Contains cont	fidential information under the C	official	
RESTRICTED	Secret Act 1972)* (Contains restriction information as specified by the organization where research was done)*			
OPEN ACCESS	I agree that my (Full text)	y thesis to be published as online	open access	
I acknowledge that Unive	rsity Malaysia I	Pahang reserve the right as follow	vs:	
1. The Thesis is the Property of University Malaysia Pahang.				
2. The Library of University Malaysia Pahang has right to make copies for the purpose of research only.				
3. The Library has the right to make copies of the thesis for academic exchange.				
Certified By:				
(Student's Signat	ure)	(Supervisor's Signature)		
New IC /Passport N Date:	umber	Name of Supervisor Date:		

NOTES : *If the thesis is CONFIDENTIAL or RESTRICTICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

SUPERVISOR'S DECLARATION

We hereby declare that We have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy

(Supervisor's Signature) Full Name : DR ZULKEFLI BIN YAACOB Position : PROFESSOR Date :

(Co-supervisor's Signature)

Full Name: DR FATMAWATI BINTI ADAMPosition: SENIOR LECTURERDate:

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Author's Signature) Full Name : NORIDA BINTI RIDZUAN ID Number : PKG12001 Date :

TABLE OF CONTENTS

Page

DECLARATION	
TITLE PAGE	i
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xvii

CHAPTER 1 INTRODUCTION

1.1	Overview	1
1.2	Background of the Study	1
1.3	Problem Statement	4
1.4	Significant of the Study	6
1.5	Objectives of the Study	7
1.6	Scope of the Study	7
1.7	Thesis Organisation	9

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	11
2.2	Crude Oil	16
2.3	Theory of Wax Formation	18
2.4	Typical Problems of Wax Deposition	19
2.5	Strategy to Handle Wax Deposition	21
2.6	Chemical Wax Prevention	22
2.7	Wax Measurement Methods	24

2.8	Computational Methods	26
	2.8.1 Molecular Mechanic	26
	2.8.1.1 Intermolecular Forces	27
	2.8.1.2 Intramolecular Forces	27
	2.8.2 Molecular Dynamics Simulation	27
	2.8.2.1 Statistical Thermodynamic Ensemble	31
	2.8.3 Radial Distribution Function	31
2.9	Experimental Design and Statistical Analysis	34
	2.9.1 Design of Experiment	34
	2.9.2 Optimisation of Experiments	37
2.10	Summary	39

CHAPTER 3 MATERIALS AND METHODS

3.1	Introduction		40
3.2	Materials		40
3.3	Preparation of Poly	mer Solvent	40
3.4	Crude Oil Analysis	and Characterisation	44
	3.4.1 Cho	emical Characterisation of Crude Oil	44
	3.4.1.1	Wax Purification	44
	3.4.1.2	Wax Content Analysis	46
	3.4.1.3	Solubility Measurement of n-Octacosane in an EVA	
		and MA Solvent Mixture	47
	3.4.1.4	Chemical Composition of Crude Oil using Column	
		Chromatography	47
	3.4.2 Phy	vsical Characterisation of Crude Oil	51
	3.4.2.1	Pour Point Measurement	51
	3.4.2.2	Cloud Point Measurement	52
	3.4.2.3	Viscosity Analysis	52
	3.4.2.4	Density-Specific Gravity (API)	53
	3.4.2.5	Water Content	53
3.5	Cold Finger Appara	tus Set Up and Methods of Analysis	54
	3.5.1 Col	d Finger Apparatus Set Up	54
3.7	Experime	ental Design and Statistical Analysis	68

3.8	Experimental Des	ign Set Up	69
	3.8.1 S	creening Method	69
3.8.2 Optimising Wax Deposit for Inhibiting Wax Formation			71
	3.8.2.	Model Development	73
	3.8.2.2	2 Model Analysis	73
3.9	Summary		74

CHAPTER 4 SCREENING OF CHEMICAL WAX INHIBITOR

4.1	Introduction	75
4.2	Characteristics of the Crude Oil Samples	75
4.3	Evaluation of the Inhibitor Selection on Wax Deposition for Malaysian	
	Crude Oil	76
	4.3.1 Effect of Chemical Inhibitors on Wax Deposit through Cold	
	Finger Analysis	77
	4.3.2 Effect of Inhibitor on the Viscosity of Crude Oil A Samples	79
	4.3.3 Effect of Pour Point Temperature on Crude Oil A Samples	84
	4.3.4 Effect of Rotation Speed of Impeller on Wax Deposition	85
	4.3.5 Effect of Cold Finger Temperature on Wax Deposition	87
4.4	Effects of Rotation Speed and Inhibitors on Wax Deposition of Malaysian	
	Crude Oil	89
	4.4.1 Characteristics of the Crude Oil Sample	89
4.5	Evaluation on the Effect of Inhibitor Ratio to the Wax Deposition of Malaysian	l
	Crude Oil	95
	4.5.1 Comparative Study on the Effects of Different Wax Inhibitor	
	Ratios	95
4.6	Summary	98

CHAPTER 5 MOLECULAR RECOGNITION OF A WAX INHIBITOR THROUGH A POUR POINT DEPRESSANT-TYPE INHIBITOR

5.1	Introduction	99
5.2	Characteristics of the Crude Oil Sample	99

5.3	N-Octacosane Wax Inhibitor	100
	5.3.1 The Intermolecular Interaction Between n-octacosane an	d the
	Inhibitors	101
	5.3.2 Experimental Study of the Performance of Different Typ	es of
	Inhibitors	106
5.4	Summary	109

CHAPTER 6 SCREENING OF FACTOR INFLUENCING WAX DEPOSITION USING FULL FACTORIAL EXPERIMENTAL DESIGN

6.1	Introduction	110
6.2	Analysis of Variance (ANOVA)	110
6.3	Main Effects Analysis on the Amount of Wax Deposit	113
	6.3.1 Effect of Rotation Speed of Impeller	114
	6.3.2 Effect of Cold Finger Temperature	115
	6.3.3 Effect of Experimental Duration	115
	6.3.4 Effect of Inhibitor Concentration	115
	6.3.5 Interactions Between Factors on Wax Deposit	116
6.4	Summary	119

CHAPTER 7 RESPONSE SURFACE APPLICATION ON WAX DEPOSIT OPTIMISATION

7.1	Introduction	120
7.2	Response Analysis and Interpretation	120
7.3	Optimisation Studies	128
7.4	Summary	129

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

8.1	Conclusions	130
8.2	Recommendations	134

REFERENCES	134
APPENDIX A	146
List of Publications	147
List of Conferences	148
List of Exhibitions	149
APPENDIX B	151
APPENDIX C	155
APPENDIX D	161
APPENDIX E	175
APPENDIX F	178

LIST OF TABLES

Table	Title	Page
Table 2.1	Crude oil categories	18
Table 2.2	Summary of crude oil models used in the previous simulation and experimental works	29
Table 2.3	Statistical ensembles used in molecular simulation	31
Table 2.4	Summary of various parameter studies in cold finger investigation	36
Table 3.1	List of chemicals used	42
Table 3.2	Details list of functional group of wax inhibitor	43
Table 3.3	Simulation and input parameters for the wax inhibition at 298 K	63
Table 3.4	The values for lower (–) and higher (+) levels of the factors investigated in factorial design	70
Table 3.5	Screening design to evaluate factors controlling wax amount	70
Table 3.6	Five-level two-factor central composite design condition variables	72
Table 3.7	Central composite design matrix for the experimental design	72
Table 4.1	Physical and chemical properties of the crude oil samples characterization	76
Table 4.2	The percentage inhibition efficiency (PIE)	78
Table 4.3	Pour point temperature of crude oil samples with different types of chemical inhibitor using Crude Oil A	84
Table 4.4	The effect of rotation speed on the percentage inhibition efficiency (PIE) to the crude oil with EVA inhibitor	, 86
Table 4.5	Physical properties of Crude Oil B	89
Table 4.6	The results of performance inhibitor efficiency	92
Table 4.7	Percentage of $n-C_{28}H_{58}$ wax compound in total wax and it inhibition percentage	98
Table 5.1	Physical characteristics of the Crude Oil B	99

Table 5.2	Experimental results of the wax deposition study	107
Table 5.3	Experimental data for the solubility of $n-C_{28}H_{58}$ in the mixture of cyclohexane and the inhibitor	108
Table 5.4	n-Octacosane data area at five different concentration	108
Table 6.1	Result for the screening design	112
Table 6.2	Analysis of Variance (ANOVA) for the response of wax deposit using FFD	113
Table 6.3	Slope value of the individual effects	114
Table 7.1	Central composite design matrix for the experimental design and corresponding results	122
Table 7.2	Analysis of variance (ANOVA) for the response of wax deposit using CCD	124
Table 7.3	Model validation experiments and predicted data	126
Table 7.4	Verification of experimental results under optimum conditions	128
Table 7.5	Summary of the optimised wax deposit condition	129

LIST OF FIGURES

Figure	Title	Page
Figure 1.1	Thesis outline	10
Figure 2.1	A typical phase diagram of wax precipitation	12
Figure 2.2	Typical wax forming molecules	15
Figure 2.3	Different wax molecule structures: (a) straight, (b) branched, (c)cyclic and (d) aromatic	2 15
Figure 2.4	SARA separation scheme	16
Figure 2.5	Plugged pipeline	21
Figure 2.6	Feature of radial distribution function	32
Figure 2.7	Typical states of matter	33
Figure 2.8	Typical pair distribution functions for (a) a gas, (b) a liquid and (c) a solid	33
Figure 3.1	Overall research flow	41
Figure 3.2	Apparatus for wax content analysis	46
Figure 3.3	SARA separation scheme	48
Figure 3.4	Asphaltenes separation set up	49
Figure 3.5	Column chromatography set up	49
Figure 3.6	Product from the maltenes separation (a) resins, (b) aromatics, and (c) saturates product	50
Figure 3.7	Illustration of procedures for pour point test	51
Figure 3.8	Cold finger apparatus set up (a) Cold finger apparatus and (b) real cold finger test apparatus set up	56
Figure 3.9	Cold finger final assembly	56
Figure 3.10	Cold finger probe	57
Figure 3.11	An example of (a)Wax deposit stick at the cold finger and (b) scrapped from the cold finger	59

Figure 3.12	Workflow for molecular dynamics simulation	60
Figure 3.13	Molecules sketch of (a) EVA (b) MA and (c) n-octacosane molecule structure in 3D	62
Figure 3.14	Box creation and corresponding enlarged images for (a) the mixture of poly(ethylene-co-vinyl acetate) (EVA) and n-octacosane, (b) poly(maleic anhydride-alt-1-octadecene) (MA) and n-octacosane and (c) pure mixture of n-octacosane	65
Figure 3.15	The structural properties that define the active atoms in (a) poly (ethylene-co-vinyl acetate) (EVA), (b) poly(maleic anhydride-alt- 1-octadecene) (MA) and (c) n-octacosane	67
Figure 3.16	Flowchart of the framework for screening and optimisation of wax formation in crude oil production	68
Figure 4.1	Comparison of wax deposit for different types of inhibitors using Crude Oil A	78
Figure 4.2	Comparison of dynamic viscosity of crude oil as a function of concentration against temperature: (a) MA, (b) EVA, (c) Cyclohexane, (d) Toluene, (e) Acetone, (f) DEA and (g) C-DEA	81
Figure 4.3	Comparison of dynamic viscosity of crude oil at 5000 ppm of inhibitor concentration	83
Figure 4.4	The effect of rotation speed on wax deposit using Crude Oil A	86
Figure 4.5	The effect of cold finger temperature on wax deposit using Crude Oil A	87
Figure 4.6	Examples of deposit changes with increasing cold finger temperatur without the addition of EVA inhibitor at (a) 5° C, (b) 10° C, (c) 15° C and (d) 20° C	re 88
Figure 4.7	Effect of rotational speed on wax deposit using different types of inhibitors using Crude Oil B	90
Figure 4.8	Example of changes of deposit thickness with increasing shear rate using EVA inhibitor at (a) 0 rpm (b) 200 rpm (c) 400 rpm and (d) 600 rpm	94
Figure 4.9	The effect of inhibitor ratio to the wax deposit and PIE at 0 rpm	96
Figure 4.10	GC-MS chromatogram of $n-C_{28}H_{58}$ wax solid deposit (example for sample Vial B)	97

Figure 5.1	Crystal lattice of n-octacosane (a) n-octacosane crystal supercell and (b) an enlarged image of the H83 and H84 atoms, showing the strong van der Waals interactions.	e 101
Figure 5.2	The rdf pattern for the H83-H84 of n-octacosane in the MA and EVA inhibitors	102
Figure 5.3	The rdf pattern for the H83 of n-octacosane in the MA inhibitor	104
Figure 5.4	The rdf pattern for the H83 of n-octacosane in the EVA inhibitor	104
Figure 5.5	The rdf pattern for the H84 of n-octacosane in the MA inhibitor	105
Figure 5.6	The rdf pattern for the H84 of n-octacosane in the EVA inhibitor	106
Figure 5.7	Calibration curve for n-octacosane	109
Figure 6.1	The comparison of predicted and experimental value for wax depo	sit 111
Figure 6.2	Interaction graphs between factors on wax deposit (a) cold finger temperature, B and experimental duration, C, (b) cold finger temperature, B and inhibitor concentration, D, and (c) rotation speed, A and inhibitor concentration, D	118
Figure 7.1	The comparison of predicted and experimental values for wax deposit amount using CCD	121
Figure 7.2	Interaction effect between experimental duration time (A) and cold finger temperature (B) toward wax deposit amount (a) 3D surface plot and (b) 2D contour plot	l 125

LIST OF SYMBOLS

$g_{xy}(r)$	probability
r	spherical radius
ρ_y	density of y atom
Ny	number of y atom
У	atoms in a shell of width Δr at distance r
Х	the reference atom
Wf	the reference amount of wax deposition without chemical treatment
m	meter
cm	centimeter
ns	nanosecond
fs	femtosecond
V	volume
Р	pressure
Т	temperature
Ν	number of molecules
ρ_{sample}	density of crude oil sample
ρ_{water}	density of water
Wt	the amount of paraffin deposition with chemical treatment
Å	amstrong meter
b _o	regression coefficients for intercept terms
b _i	regression coefficients for linear terms
b _{ii}	regression coefficients for quadratic terms
b _{ij}	regression coefficients for interaction terms
T _{oil}	temperature of crude oil
T _{wall}	pipe wall temperature
$T_{\rm diff}$	temperature different between temperature of crude oil and wall
T_{WAT}	wax appearance temperature
ΔT	temperature different between temperature of crude oil and cold finger
mPa. s	milliPascal seconds

LIST OF ABBREVIATIONS

EVA	Poly(ethylene-co-vinyl-acetate)
MA	Poly- (maleic anhydride-alt-1-octadecene)
DEA	Diethanolamine
C-DEA	Diethanolamine cocoamide
GC-FID	Gas chromatography-flame ionization detector
GC-MS	Gas chromatography-mass spectrometry
rdf	Radial distribution function
MD	Molecular dynamics
DOE	Design of experiment
RSM	Response surface methodology
CCD	Central composite design
FFD	Full factorial design
h	Hour
ppm	Part per million
rpm	Rotation per minute
DSC	Differential scanning calorimetry
FTIR	Fourier transform infrared spectroscopy
СРМ	Cross polarised microscopic
I.D	Inner diameter
g(r)	Probability
UOP	Universal oil products
WAT	Wax appearance temperature
OFAT	One factor at time
EXP	Exponential
SG	Specific gravity
PPDs	Pour point depressants
COMPASS	Condensed-phase optimized molecular potentials for atomistic simulation studies

EXPERIMENTAL INVESTIGATION AND MODELLING OF WAX DEPOSITION INHIBITION IN PIPELINE TRANSPORTATION OF CRUDE OIL

NORIDA BINTI RIDZUAN

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Chemical and Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

SEPTEMBER 2016

ABSTRACT

Wax deposition causes serious problems in crude oil flow assurance due to the long chain n-paraffin. The application of wax inhibitors is an effective method to prevent wax formation and deposition. In this thesis, seven commercial groups of wax inhibitors were introduced and their performances were evaluated through cold finger and rheological methods. From both methods, poly(ethylene-co-vinyl acetate) (EVA) showed the highest inhibition performance based on the reduction of the wax deposit amount and the decrement of the crude oil viscosity value. To substantiate even further in the wax inhibitor selected, molecular dynamics (MD) simulation was introduced to understand the interaction between wax crystals and wax inhibitor at the molecular level. The interaction of wax crystals with inhibitors were analysed through radial distribution function (rdf) value which described the structure of inhibitor in wax crystals. MD simulations confirmed the increased percentage of inhibition efficiency (PIE) of the experimental study using EVA. Thus, EVA had inhibited the formation of n-octacosane wax solid of crude oil better than poly(maleic anhydride-alt-1-octadecene) (MA). N-octacosane wax crystal is a long chain molecule of crude oil and it has a strong van der Waals (vdW) interaction between the carbonyl group in EVA and hydrogen atoms in the n-octacosane. This increases its solubility. In addition, EVA has strong vdW interaction via the oxygen atom in the vinyl acetate functional group with the hydrogen atom in n-octacosane, resulting in a higher probability value of inhibition $(g_{xy}(r))$. Design of experiment (DOE) was used to screen four possible factors that contribute to the n-paraffin wax formation. The factor of cold finger temperature (B) was identified as the most significant factor of wax problem, followed by experimental duration (C), rotational speed (A) and inhibitor concentration (D). The combination effect between factors B and C showed the highest percentage of contribution of wax deposit formation. The optimisation of wax deposit formation was achieved using response surface methodology (RSM). The optimised conditions were obtained at 1.5 h and 25°C. The minimum value of wax crystal formation achieved after the optimisation and transformation was 0.0042 g. This value shows over 150-fold decrement of wax formation expression compared to prior the optimisation process. Therefore, the model obtained from RSM is useful to provide an insight for engineers or researchers to estimate wax formation at other conditions.

ABSTRAK

Pengendapan lilin menyebabkan masalah yang serius dalam aliran minyak mentah disebabkan oleh n-parafin berantai panjang. Penggunaan perencat lilin adalah satu kaedah berkesan bagi mencegah pembentukan dan pengendapan lilin. Dalam tesis ini, tujuh kumpulan perencat lilin komersial diperkenalkan dan prestasinya dinilai melalui kaedah jari sejuk dan kaedah reologi. Dari kedua-dua kaedah tersebut, poli(etilenabersama-vinil asetat) (EVA) menunjukkan prestasi perencatan tertinggi berdasarkan pengurangan jumlah pengendapan lilin serta penyusutan nilai kelikatan minyak. Simulasi dinamik molekul (molecular dynamics, MD) diperkenalkan bagi memahami dengan lebih lanjut interaksi antara hablur lilin dengan perencat lilin pada tahap molekul. Interaksi hablur lilin dengan perencat dianalisis menggunakan nilai fungsi taburan jejarian (radial distribution function, rdf) bagi menggambarkan struktur perencat dalam hablur lilin. Simulasi MD mengesahkan peningkatan peratus kecekapan perencatan (percentage of inhibition efficiency, PIE) dalam kajian eksperimen menggunakan EVA. Ini bermakna, EVA berjaya menghalang pembentukan pepejal lilin n-oktakosana dalam minyak mentah lebih baik berbanding poli(maleik anhidridaberselang-1-oktadekena) (MA). Hablur lilin n-oktakosana adalah molekul rantai panjang minyak mentah dan ia mempunyai interaksi van der Waals (vdW) yang kuat antara kumpulan karbonilnya di dalam EVA dan atom hidrogen daripada n-oktakosana. Ini bertindak meningkatkan keterlarutan. Sebagai tambahan, EVA memiliki interaksi vdW yang kuat melalui atom oksigen dalam kumpulan berfungsi vinil asetat dengan atom hidrogen dalam n-oktakosana yang menyebabkan peningkatan nilai kebarangkalian perencatan $(g_{xy}(r))$. Reka bentuk eksperimen (*design of experiment*, DOE) juga digunakan bagi menyaring empat faktor yang mungkin menyumbang kepada pembentukan lilin n-parafin. Faktor suhu jari sejuk (B) dikenal pasti sebagai faktor utama bagi permasalahan lilin, diikuti oleh tempoh eksperimen (C), kelajuan putaran (A) dan kepekatan perencat (D). Kesan gabungan antara faktor B dan C menunjukkan peratusan tertinggi menyumbang kepada pembentukan deposit lilin. Pengoptimuman bagi pembentukan deposit lilin dicapai menggunakan kaedah gerak balas permukaan (response surface methodology, RSM), Keadaan optimum yang diperoleh adalah pada 1.5 jam dan 25 °C. Nilai minimum yang diperoleh bagi pembentukan hablur lilin selepas pengoptimuman dan transformasi adalah 0.0042 g. Nilai ini menunjukkan penyusutan pembentukan lilin sebanyak lebih 150 kali ganda berbanding sebelum proses pengoptimuman. Jadi, model yang diperoleh daripada RSM ini berguna untuk meningkatkan pemahaman jurutera atau penyelidik ketika menganggar pembentukan lilin pada keadaan yang berbeza.