DEVELOPMENT OF MATHEMATICAL MODELS FOR QUANTITATIVE RISK AND SAFETY ASSESSMENT IN OIL AND GAS REFINERIES

RACHID OUACHE

DOCTOR OF PHILOSOPHY

UNIVERSITY OF MALAYSIA PAHANG

THESIS CONFIDENTIAL STATUS

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT		
Author's full name	: RACHID OUACHE	
Date of birth	: <u>10 AUGUST 1987</u>	
Title	: DEVELOPMENT OF MATHEMA	TICAL MODELS FOR
	QUANTITATIVE RISK AND SAI	FETY ASSESSMENT IN
	OIL AND GAS REFINERIES	
Academic session	: 2013/2016	
I declared that this the	esis is classified as:	
CONFIDEN	FIAL (Contains confidential information	n under the Official Secret
	Act 1972)	
RESTRICTE	CD (Contains restricted information	n as specified by the
	organization where research wa	as done)
✓ OPEN ACCE	ESS I agree that my thesis to be publis	shed as online open access
	(Full text)	
I acknowledge that U	nivesiti Malaysia Pahang reserves the rig	ht as follows:
1. The thesis is th	e property of Universiti Malaysia Pahang	5
2. The library of Universiti Malaysia Pahang has the right to make copies for the		
purpose of the research only.		
3. The library has	the right to make copies of the thesis for	academic exchange.
Certified by:		
(Student's signature)		(Signature of supervisor)
146074419		<u>Abdullah Ibrahim</u>
New IC / Passport nu	mber	Name of supervisor
Date:		Date:

SUPERVISORS' DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor's Signature)
Name : PROF. DR. ABDULLAH BIN IBRAHIM
Position : PROFESSOR, FACULTY OF ENGINEERING TECHNOLOGY,
UMP
Date :

(Co-supervisor's Signature)

:

Name : DR. MUHAMMED NOMANI KABIR

Position : SENIOR LECTURER, FACULTY OF COMPUTER SYSTEMS AND SOFTWARE ENGINEERING, UMP

Date

:

Name : ASSOC. PROF. DR. IR. SAID NURDIN

Date

⁽Co-supervisor's Signature)

Position : ASSOCIATE PROFESSOR, FACULTY OF CHEMICAL AND NATURAL RESOURCES ENGINEERING, UMP

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Author's Signature)

Name: RACHID OUACHEPosition: PHD STUDENTDate:

DEVELOPMENT OF MATHEMATICAL MODELS FOR QUANTITATIVE RISK AND SAFETY ASSESSMENT IN OIL AND GAS REFINERIES

RACHID OUACHE

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Engineering Technology UNIVERSITY OF MALAYSIA PAHANG

August 2016

TABLE OF CONTENT

	Page
THESIS CONFIDENTIAL STATUS	
SUPERVISORS' DECLARATION	
STUDENT'S DECLARATION	
TITLE PAGE	i
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENT	vi
LIST OF TABLES	xi
LIST OF FIGURES	xvi
LIST OF SYMBOLS	xxi
LIST OF ABBREVIATIONS	xxii

CHAPTER 1 INTRODUCTION

1.1 Background	1
1.2 Problem Statement	5
1.3 Research Objectives	6
1.4 Scope of the Study	7
1.5 Significance of the Study	8
1.6 Organization Thesis	10

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction	12
2.2 Regulators and Legislators of Risk Assessment in the World	15
2.3 Risk Assessment and Application Areas	16
2.3.1 Process Industry	16
2.3.2 Offshore Oil and Gas Industry	16

2.3.3 Environmental Risk	17
2.4 Risk Definitions	17
2.5 Process Safety Management	18
2.6 Risk Assessment	19
2.6.1 Risk Assessment Process	19
2.6.2 Risk Assessment and Project Life-Cycle	21
2.6.3 Risk Assessment Pitfalls	25
2.7 Risk Analysis	25
2.7.1 Qualitative and Quantitative Risk Analysis Development Steps	26
2.7.2 Risk Analysis Methods	29
2.7.3 Characteristics of Qualitative and Quantitative Risk Analysis Approaches	\$52
2.7.4 Quantitative Risk Analysis and Uncertainty	52
2.7.5 Source of Uncertainty	55
2.8 Analysis of Case Studies	58
2.8.1 Analysis the Consequences of Accidents in USA Which Relate to	
Human being	71
2.8.2 Analysis the Consequences of Accidents in Malaysia Which are Relate to)
Human being and Financial Losses	71
2.9 Summary	74

CHAPTER 3 METHODOLOGY

3.1 Introduction	75
3.2 Reliability of Guidance Analysis	77
3.2.1 Definition	77
3.2.2 Principle of REGUIA Method	78
3.2.3 REGUIA Method Table	78
3.2.4 Comparing REGUIA with other PHAs	80
3.2.5 Deductive and Inductive of REGUIA	80
3.2.6 Considering Physical Factors	80
3.2.7 Considering Human Factors	81
3.2.8 Benefits of REGUIA	81
3.3 The Development of KHALFI Model	82

3.3.1 Atmospheric Corrosion Analysis	83
3.3.2 Development of Intermediate Factors Equations	87
3.3.3 KHALFI Equation	88
3.4 Least Squares Method	89
3.4.1 The Development of Linear and Nonlinear Models	90
3.4.2 Benefits of KHALFI, Linear and Nonlinear Models	94
3.5 The Development of Human Reliability Model	94
3.5.1 Human Reliability Analysis Background	94
3.5.2 Definition of Human Reliability Model	97
3.5.3 Factors of Human Reliability Model	98
3.5.4 Template of Human Reliability Matrix	100
3.5.5 Benefits of Human Reliability Model	107
3.6 Probability Binary State	107
3.6.1 Definition	107
3.6.2 Quantitative Methods and PROBIST	108
3.7 The Development of Probability Determination Model	111
3.7.1 First Model: Probability Determination Based on Lower Probability	112
3.7.2 Second Model: Probability Determination Based on Lower and Upper	
Probabilities	112
3.7.3 Benefits of Probability Determination	113
3.8 The Development of Occurrence Time Model	113
3.9 Bowtie Method in Quantitative Risk Analysis	114
3.9.1 Fundamentals of Bowtie Analysis	116
3.9.2 Features of Bowtie Method	118
3.10 Bayesian Networks	118
3.10.1 Definition	118
3.10.2 Features of Bayesian Network	120
3.11 Risk and Safety Analysis Models	121
3.11.1 Description	121
3.11.2 Risk Analysis	121
3.11.3 Safety Analysis	122
3.11.4 Diagrams of Risk and Safety Analysis	126

3.11.5 The Features of the Developed Risk and Safety Analysis Models	128
3.12 Risk Matrix Assessment	129
3.12.1 Traditional Risk Matrix	129
3.12.2 Development of Risk Matrix Model	129
3.12.3 Benefits of Risk Matrix Model	136
3.13 Simulation	137
3.13.1 Probability Distribution	137
3.13.2 Developed Simulink Model	139
3.13.3 Benefits of the Developed Simulink Model	142
3.14 Summary	143

CHAPTER 4 VALIDATION OF THE DEVELOPED MODELS AND RESULTS

4.1 Introduction	145
4.2 Results and Validation of Khalfi, Linear and Nonlilear Models	146
4.2.1 Validation of KHALFI Equation	146
4.2.2 Validation of Linear and Nonlinear Models	159
4.2.3 Comparison Between Linear and Nonlinear Models	162
4.2.4 Comparison Between KHALFI, Linear and Nonlinear Models	162
4.3 Results and Validation of Human Reliability Model	166
4.4 Results and Validation of Probability Determination Model	169
4.4.1 Model-1	169
4.4.2 Model-2	171
4.5 Results and Validation of Occurrence Time Model	176
4.6 Results and Validation of Risk Matrix Model	177
4.7 Summary	180

CHAPTER 5 APPLICATION OF MODELS

5.1 Introduction	181
5.2 System Description	182
5.3 Risk Identification Using REGUIA Method	184

5.4 KHALFI Model Application	191
5.4.1 Identification of the Intermediate Factors	191
5.4.2 Application of KHALFI Equation	196
5.5 Risk Analysis	197
5.6 Safety Analysis	203
5.7 Bayesian Network Analysis	207
5.7.1 Risk Analysis Using Bayesian Networks	207
5.7.2 Safety Analysis Using Bayesian Networks	211
5.8 Simulink Model	213
5.8.1 Simulink Model for Risk Analysis	213
5.8.2 Simulink Model for Safety Analysis	217
5.8.3 Safety Integrity Level	223
5.9 Occurrence Time Model Application	224
5.10 Simulink Model for Risk Matrix Model	226
5.11 Summary	230

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Contributions of the Study	231
6.2 Recommendations for Future Work	233
REFERENCES	234
JOURNALS PUBLISHED	256
JOURNALS UNDER PROCESS	256
CONFERENCES	257
AWARDS	257
APPENDIX	258

LIST OF TABLES

Table No.Title		Page
2.1	Regulators and legislators of different countries around the world to protect the workers, people, environment and properties in oil and gas industries	15
2.2	Risk definitions	17
2.3	Abbreviations used in this section	22
2.4	Qualitative and quantitative risk analysis with the main steps to develop the approaches	
2.5	Methods used for process safety	29
2.6	What-If template	34
2.7	Hazard and Operability study template	35
2.8	Failure modes, effects and criticality analysis template	36
2.9	Human Error Analysis	36
2.10	Job Hazard Analysis template	37
2.11	Hazard/ Risk Register	38
2.12	Preliminary hazard analysis template	39
2.13	Layer of protection analysis	40
2.14	Risk Matrix template	41
2.15	Characteristics of qualitative and quantitative risk analysis approaches	52
2.16	Sources of uncertainty	56
2.17	Sources of uncertainty in process safety analysis	57
2.18	Analysis of case studies	58
3.1	Identification of REGUIA elements	78
3.2	Reliability of guide analysis (REGUIA) template	79
3.3	Percentages of human error in accidents in various sectors	96

3.4	Percentages of the causes of chemical process industries accidents	96	
3.5	Statistics show human error in different industries		
3.6	Human reliability matrix	100	
3.7	Experience matrix	102	
3.8	Safety matrix	103	
3.9	Work pressure matrix	104	
3.10	Physical working environment matrix	105	
3.11	Classification of basic and intermediate human factors	106	
3.12	Classification of human reliability level	107	
3.13	Mathematical equations for both AND and OR gates	117	
3.14	Selected Rules of Boolean Algebra	117	
3.15	Ten levels of safety integrity level	126	
3.16	6 Abbreviation used in the proposed model		
3.17	Frequency of risk consequence matrix	131	
3.18	Classification of PFD and Fr of risk event	132	
3.19	Classification of frequency of consequences	132	
3.20	Impact of consequence matrix	133	
3.21	The developed risk matrix model	134	
3.22	Classification of frequency of consequences	135	
3.23	Classification of impact of consequences	136	
3.24	Classification of the risk levels	136	
3.25	Statistical distributions functions for both discrete and continuous	138	
4.1	Address of each reference state	146	
4.2	Identification of intermediate factors levels for four references	151	
4.3	Test 1, Comparison of IEEE-500 data with the result of KHALFI equation using OREDA data for air-operated valve	152	

4.4	Test 2, Comparison of IEEE-500 data with the result of KHALFI equation using IPRD data for air-operated valve	153
4.5	Test 3, Comparison of OREDA data with the result of KHALFI equation using IEEE data for air-operated valve	154
4.6	Test 4, Comparison of OREDA data with the result of KHALFI equation using OCONEE data for air-operated valve	155
4.7	Test 5, Comparison of IPRD data with the result of KHALFI equation using IEEE data for air-operated valve	156
4.8	Test 6, Comparison of OREDA data with the result of KHALFI equation using IPRD data for air-operated valve	157
4.9	Error Analysis using Root Mean Square Error	158
4.10	Three values lower (L), median (M) and upper (U) for temperature (T), humidity (H) and wind speed (W) in the locations of references	159
4.11	Failure probability for valve equipment from four references	159
4.12	Values of linear model for valve equipment	160
4.13	Values of nonlinear model for valve equipment	161
4.14	Test 1, Comparison of IEEE data with the result of KHALFI, Linear and Nonlinear model using OREDA data for air-operated valve	163
4.15	Test 2, Comparison of IEEE data with the result of KHALFI, Linear and Nonlinear model using IPRD data for air-operated valve	164
4.16	Test 3, Comparison of OREDA data with the result of KHALFI, Linear and Nonlinear model using OCONEE data for air-operated valve	165
4.17	Level of the basic events using the developed human reliability model	166
4.18	Probabilities of the events of the actual company comparing with the original company	167
4.19	Failure probability for valve equipment from four references	170
4.20	Failure probability for valve equipment from two references	171
4.21	Failure probability of pressure sensor from OREDA	173
4.22	Failure probability of pressure control from OREDA	174
4.23	Failure probability of actuator from OREDA	175

4.24	Failure probability of pump from CCPS	175
4.25	Failure probability of actuator from OREDA	176
4.26	Comparison between new RMM and classical model for eight risk scenarios in petrochemical industry	178
5.1	Application of REGUIA method, scenario A	186
5.2	Application of REGUIA method, scenarios B and C	187
5.3	Application of REGUIA method, scenarios D and E	188
5.4	Application of REGUIA method, scenarios F and G	189
5.5	Identification of atmospheric elements values with the intermediate factors levels for OREDA, IChemE references and for Hassi R'Mel state.	196
5.6	Identification of new likelihood for the basic events using KHALFI model	196
5.7	Probability of the basic, intermediate and top event of human error	200
5.8	Likelihood of the intermediate factors and the top event	201
5.9	Probability of the events in the event tree analysis	202
5.10	Probabilities of the undesirable consequences	202
5.11	Probability of basic events from OREDA and using KHALFI	203
5.12	Probability of intermediate events and top event	204
5.13	Probability of failure on demand for the event which involved in event tree analysis	205
5.14	Probability of failure on demand of the undesirable consequences	206
5.15	Probability of failure on demand from safety analysis with probability from risk analysis for the same scenarios	207
5.16	Prior and posterior probability of the basic events for risk analysis	209
5.17	Prior and posterior probability of the basic events for human error	209
5.18	Prior and posterior probability of human error events	210
5.19	Prior and posterior probability of leakage events	210
5.20	Prior and posterior probability of the events used in event tree analysis	211

5.21	Prior and posterior probability of basic and intermediate events in safety analysis model	212
5.22	Prior and posterior probability of the events of event tree analysis for safety analysis	213
5.23	The min, median and max values of the consequences with risk analysis	215
5.24	The min, median and max values of the consequences with safety analysis	219
5.25	The min, median and max values of the consequences with probability and PFD	220
5.26	Probability of two events with time needed for occurrence	224
5.27	The min, median and max values of risk level for eight scenarios	228

LIST OF FIGURES

Figu	Figure No. Title	
1.1	The developed models for quantitative risk assessment in this study	9
1.2	Diagram of the thesis organization	11
2.1	Process safety management	19
2.2	Publications related to risk assessment in engineering systems between 1997 and 2014	20
2.3	Risk assessment process	21
2.4	Risk assessment in life cycle of project	22
2.5	Qualitative and quantitative risk analysis process	26
2.6	Frequency Number (FN) Curve	41
2.7	Generic framework for risk analysis under uncertainty	43
2.8	Bow-tie accident scenario model in LOPA	44
2.9	Safety barriers analysis using fuzzy event tree analysis	45
2.10	Overall procedure of fuzzy layers of protection analysis	46
2.11	Transforming the event tree into a Petri net	47
2.12	Fault Tree Analysis Template	48
2.13	Event Tree Analysis Template	49
2.14	Bowtie analysis method	50
2.15	Markov Chain Analysis	50
2.16	Bayesian network analysis	51
2.17	Methodology for fuzzy risk analysis	55
2.18	Number of Injuries and deaths in USA between 1995 and 2010	71
2.19	Number of accident in Malaysia between 2001 and 2012	72
2.20	Number of deaths and financial losses in Malaysia between 2008 and 2013	72

2.21	The main causes of the accidents based on Table 2.15 which analyzed 93 case studies	73
3.1	Corrosion of iron in marine atmosphere	
3.2	Reaction of iron(Fe), and $oxygen(O_2)$ in the presence of moisture (H ₂ O) that creates a red oxide or rust	85
3.3	Relation of temperature (T) and corrosion rate (C_r) in chemical plant measurement of corrosion under insulation	86
3.4	Factors of human reliability	99
3.5	Diagram of Bowtie analysis method	116
3.6	6 A typical Bayesian network with conditional probability tables	
3.7	Components of safety instrumented system with PFD	124
3.8	Risk (a) and safety (b) analysis with occurrence time and number of times using Bowtie method	128
3.9	Process of risk level	130
3.10	The effects of probability and severity on risk level	135
3.11	Types of probability distributions	139
3.12	Simulink model implementing the proposed model	140
4.1	Identification of temperature factor for IEEE reference	147
4.2	Identification of humidity factor for IEEE reference	147
4.3	Identification of wind speed factor for IEEE reference	148
4.4	Identification of atmospheric elements for OREDA reference	148
4.5	Identification of atmospheric elements for Oconee reference	149
4.6	Identification of atmospheric elements for IPRD reference	150
4.7	Test 1: IEEE-500 and OREDA data and the result of KHALFI equation using OREDA data for air-operated valve	152
4.8	Test 2: IPRD and IEEE data and the result of KHALFI equation using IPRD data for air-operated valve	153

4.9	Test 3: IEEE and OREDA data and the result of KHALFI equation using IEEE data for air-operated valve	154
4.10	Test 4: OCONEE and OREDA data and the result of KHALFI equation using OCONEE data for air-operated valve	155
4.11	Test 5: IEEE and IPRD data and the result of KHALFI equation using IEEE data for air-operated valve	156
4.12	Test 6: IPRD and OREDA data and the result of KHALFI equation using IPRD data for air-operated valve	157
4.13	Comparison between reference data and output of model-1	160
4.14	Comparison between reference data and output of model-2	161
4.15	Comparison between Model-1 (linear) and Model-2 (nonlinear)	162
4.16	Comparison of IEEE data with the result of KHALFI, Linear and Nonlinear model using OREDA data for air-operated valve	163
4.17	Comparison of IEEE data with the result of KHALFI, Linear and Nonlinear model using IPRD data for air-operated valve	164
4.18	Comparison of OREDA data with the result of KHALFI, Linear and Nonlinear model using OCONEE data for air-operated valve	165
4.19	The updated probability of the causes of human error using human reliability model	168
4.20	Failure probability between lower and upper values with years	170
4.21	Failure probability of valve equipment from four references	171
4.22	Variation probability of valve equipment with its time of operation using OREDA reference	172
4.23	Variation probability of valve equipment with its time of operation using OCONEE reference	173
4.24	Variation probability of pressure sensor with its time of operation using OREDA reference	174
4.25	Variation probability of pressure control with its time of operation using OREDA reference	174
4.26	Variation probability of actuator with its time of operation using OREDA reference	175

4.27	Variation probability of pump with its time of operation using CCPS reference	175
4.28	Occurrence time of three events with AND Gate with logarithm format	176
4.29	Variation of risk level using RMM and classical model	179
5.1	Oil and Gas deposits in Algeria	182
5.2	Real system of reboiler oven H101 in SONATRACH HASSI R'MEL	183
5.3	Process flow chart of reboiler oven H101	185
5.4	Variation of the temperature in Rugby, UK	191
5.5	Variation of the humidity in Rugby, UK	192
5.6	Variation of the wind speed in Rugby, UK	192
5.7	Variation of the temperature in HOVIK, Norway	193
5.8	Variation of the humidity in HOVIK, Norway	193
5.9	Variation of the wind speed in HOVIK, Norway	194
5.10	Variation of temperature in Hassi R'Mel, Algeria.	194
5.11	Variation of humidity in Hassi R'Mel, Algeria.	195
5.12	Variation of wind speed in Hassi R'Mel, Algeria.	195
5.13	Risk analysis model applying the fault tree analysis for leakage of flammable product	198
5.14	Fault tree analysis for human error	199
5.15	Event tree analysis for leakage of flammable product	201
5.16	Safety analysis using fault tree analysis for prevent system failure	204
5.17	Safety analysis using event tree analysis for prevent system failure	205
5.18	Bayesian network for risk analysis	208
5.19	Bayesian network for safety analysis	212
5.20	Simulink model for risk analysis using Bowtie analysis and Bayesian networks with random number	214
5.21	Possible probabilities of the scenario 1	215

5.22	Probability of three consequences using degree membership	216
5.23	Simulink model for safety analysis using Bowtie analysis and Bayesian networks with random number	218
5.24	Possible probabilities of failure on demand of the scenario 1	219
5.25	Probability of three consequences (1,4 and 8) using degree membership	220
5.26	Values of Pr x PFD for three consequences (1,5 and 6) using degree membership	221
5.27	Values of Pr x PFD for three consequences (1,4 and 8) using degree membership	222
5.28	Safety integrity level for eight scenarios	223
5.29	Variation of probability of pressure sensor with time needed for occurrence	225
5.30	Variation of probability of operator error with time needed for occurrence	225
5.31	Simulink-MATLAB model to determine level of risk for eight scenarios	227
5.32	Level of risk for eight scenarios using RMM	229
5.33	Level of risk for eight scenarios using RMM and OT	229

LIST OF SYMBOLS

$Pr(HE)_A$	Probability of human error in actual company
$Pr(HE)_0$	Probability of human error from original company
S _K	Skills and knowledge
Y _W	Years of work
A _{ac}	Adequate Atmospheric condition
A_s	Appropriate safety equipment
A _t	Available Time
A _{tc}	Adequate Thermal Condition
A_w	Adequate Working Environment
F_n	Formation before starting new task
H_R	Human reliability level
P_w	Physical Working Environment
S _a	Safety
S _t	Stress
W_p	Work Pressure
W_p	Work Pressure
Wi	Weights

LIST OF ABBREVIATIONS

AHP	Analytic Hierarchy Process
AIChE	American Institute of Chemical Engineers
ALARP	As Low As Reasonably Practicable
AMDEC	Analysis of Failure Modes, Effects and Criticality
BE	Basic Event
BHF	Basic Human Factor
BLEVE	A boiling liquid expanding vapor explosion
BSBN	Bayesian Statistics and Bayes Nets
С	Consequences
CCPS	Center of Chemical Process Safety
CE	Critical Event
CHAIR	Construction Hazard Assessment Implication Review
CSB	Chemical Safety Board
D	Darkness
Е	Event
E_{x}	Experience
ETA	Event Tree Analysis
F	Formation
FARADIP	Failure Rate Data In Perspective
fLOPA	Fuzzy Layer Of Protection Analysis
FMEA	Failure Mode and Effects Analysis
FMECA	Failure Modes, Effects and Criticality Analysis
FN	Frequency Number

FP	Failure Probability
FTA	Fault Tree Analysis
FUV	Fuzzy Utility Value
Н	Humidity
HAZAN	Hazard analysis
HAZOP	Hazard and operability study
HEA	Human error analysis
HEP	Human Error Probability
HF	Human Factors
Ι	Instructions
IE	Initiating Event
IEEE	Institute of Electrical and Electronics Engineers standard
IF	Intermediate Factor
IFL	Intermediate Factor Level
IFLA	Intermediate Factor Level Actual
IFLO	Intermediate Factor Level Origin
IHF	Intermediate Human Factor
IHF	Intermediate Human Factor
IPL	Independent Protection Layer
JHA	Job Hazard Analysis
JSA	Job Safety Analysis
KHALFI	Characteristic of Hazard Analysis based on Logic Factors Identification
LOPA	Layer Of Protection Analysis
MCS	Minimal Cut Set
Ν	Noisiness

OE	Output (Outcome) event
OREDA	Offshore Reliability Data
ОТ	Occurrence Time
PFD	Probability of Failure on Demand
pfLOPA	Piping Fuzzy Layer Of Protection
РНА	Process Hazard Analysis
РНА	Preliminary Hazard Analysis
PL	Probability Lower
PM	Probability Median
Pr	Probability
Pr(EA)	Probability of Event Actual
Pr(EO)	Probability of Event Origin
PROBIST	Probability Binary State
PRODET	Probability Determination
PU	Probability Upper
QRA	Quantitative Risk Analysis
RAS	Representive Accident Scenario
RDB	Reliability Block Diagram
REGUIA	Reliability Guide Analysis
RM	Risk Matrix
SIL	Safety Integrity Level
SIS	Safety Instrumented System
SQRA	Semi-Quantitative Risk Analysis
T _r	Training
Т	Temperature

TE	Top Event
THF	Top Human Factor
UVCE	Unconfined Vapour Cloud Explosion
V	Verification
WRAC	Workplace Risk Assessment and Control
WS	Wind speed
HRL _{A/O}	Human Reliability Level Actual /Original

DEVELOPMENT OF MATHEMATICAL MODELS FOR QUANTITATIVE RISK AND SAFETY ASSESSMENT IN OIL AND GAS REFINERIES

RACHID OUACHE

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Engineering Technology UNIVERSITY OF MALAYSIA PAHANG

August 2016

ABSTRACT

Risk assessment is a systematic process to identify hazards, analyze and evaluate the risks associated with hazards that can harm the workers, people, environment or properties using qualitative, semi-quantitative or quantitative approach to determine the appropriate ways to eliminate or control the hazards. Quantitative risk assessment (QRA) is an effective approach used in petrochemical industries to estimate the likelihood of an accident and the severity of its consequence. However, uncertainty is still the main problem faces quantitative risk assessment in spite of its significant progress. Therefore, this thesis proposes mathematical models to address the uncertainties of quantitative risk assessment as follows: i) reliability guide analysis (REGUIA) is developed to identify the main components of accident scenarios and to determine the factors which can affect the failure probabilities, ii) human reliability model based on five matrices with mathematical equations is developed to determine the level of human reliability and to precise probability of human error, iii) characteristics of hazard analysis based on logic factors intermediates (KHALFI), linear and nonlinear models are three models developed to determine the failure probability of the events at any geographical location, considering the factors: temperature, humidity and wind speed where root mean square error (RMSE) of the three developed models are 2.38E-5, 2.10 and 1.94, respectively, iv) risk and safety models to analyze the accident scenarios based on Bowtie method and Bayesian network with new classification of safety integrity level with mathematical equation are developed, v) probability binary state is employed to define the range of failure probability, vi) probability determination (PRODET) is a mathematical model developed in this study to determine the exact probability of the equipment at the specific operation time, vii) occurrence time (OT) is also developed to find the required time for the event to occur, viii) risk matrix model with mathematical equations are developed to compute the level of risk. Finally, Simulink model is developed to implement the developed models to automate the calculation and to facilitate the analysis of the results with graphical representation of the inputs and the outputs. The results show plausible and reliability of the models and demonstrate that the developed models are more reliable and precise than the classical models. The results of risk and safety analyses revealed that 86% of the basic events on average gained 180% increased reliability.

ABSTRAK

Penilaian risiko adalah satu proses yang sistematik untuk mengenal pasti bahaya, menganalisis dan menilai risiko yang berkaitan dengan bahaya yang boleh menjejaskan pekerja, alam sekitar atau harta dengan menggunakan pendekatan kualitatif, semikuantitatif atau kuantitatif untuk menentukan cara-cara yang sesuai bagi menghapuskan atau mengawal bahaya. Pendekatan kuantitatif adalah yang terbaik untuk penilaian keselamatan risiko dan memperolehi kebarangkalian serta potensi risiko yang lebih tepat menggunakan model matematik. Penilaian risiko kuantitatif telah terbukti penting untuk mengelakkan dari terdedah kepada bahan-bahan berbahaya dalam industri minyak dan gas. Walau bagaimanapun, ketidaktentuan data dan model masih menjadi masalah utama dalam menghadapi penilaian risiko secara kuantitatif. Oleh itu, tesis ini mencadangkan model matematik untuk menangani ketidaktentuan penilaian risiko kuantitatif seperti berikut: i) analisis panduan kebolehpercayaan (REGUIA) dibangunkan untuk mengenal pasti komponen utama senario kemalangan dan untuk menentukan faktor-faktor yang boleh memberi kesan kepada kebarangkalian kegagalan, ii) model kebolehpercayaan terhadap manusia berdasarkan lima matriks dengan persamaan matematik dibangunkan untuk menentukan tahap kebolehpercayaan terhadap manusia dan juga kebarangkalian lebih tepat terhadap kesilapan manusia, iii) ciri-ciri analisis bahaya berdasarkan logik faktor perantaraan (KHALFI), model lelurus dan model tak lelurus merupakan tiga model yang dibangunkan untuk menentukan kebarangkalian kegagalan peristiwa-peristiwa di mana-mana lokasi geografi, dengan mengambil kira faktor: suhu, kelembapan dan kelajuan angin di mana punca-min-ralat persegi (RMSE) daripada tiga model yang dibangunkan ialah 2.38E-5, 2.10 dan 1.94, iv) membangunkan model risiko dan keselamatan kelembapan dan kelajuan angin untuk menganalisis senario kemalangan berdasarkan kaedah Bowtie dan rangkaian Bayesian dengan klasifikasi baru tahap integriti keselamatan dengan persamaan matematik, v) digunakan untuk menentukan pelbagai kegagalan kebarangkalian, binari vi) kebarangkalian penentuan (PRODET) adalah model matematik yang dibangunkan dalam kajian ini untuk menentukan kebarangkalian yang tepat semasa operasi tertentu, vii) kejadian masa (OT) juga dibangunkan untuk mencari masa yang diperlukan untuk sesuatu process, viii) model matriks risiko dengan persamaan matematik yang dibangunkan untuk mengira tahap risiko. Akhir sekali, model Simulink dibangunkan untuk melaksanakan model yang dibangunkan untuk mengautomasikan pengiraan dan untuk memudahkan analisis keputusan dengan perwakilan grafik input dan output. Keputusan menunjukkan munasabah dan kebolehpercayaan model dan menunjukkan bahawa model yang dibangunkan adalah lebih dipercayai dan tepat daripada model klasik. Keputusan analisis risiko dan keselamatan menunjukkan bahawa 86% daripada aktiviti asas secara purata mendapat 180% peningkatan kebolehpercayaan.