TAILORING THE PREPARATION OF PALM OIL BASED ALKYD/EPOXY RESIN COMPOSITE THROUGH COPPER OXIDE NANOPARTICLE

ONG HUEI RUEY

DOCTOR OF PHILOSOPHY (CHEMICAL ENGINEERING) UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author's full name	: Ong Huei Ruey
Date of birth	: 8 th July 1986
Title	: Tailoring the preparation of palm oil based alkyd/epoxy resin
	composite through copper oxide nanoparticle.
Academic Session	: SEMESTER II 2015/2016

I declare that this thesis is classified as:

CONFIDENTIAL	(contains confidential information under the Official Secret
	Act 1972)
RESTICTED	(contains restricted information as specified by the
	organization where research was done)
OPEN ACCESS	I agree that my thesis to be published as online open access
	(Full text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

- 1. The Thesis is the Property of Universiti Malaysia Pahang.
- 2. The Library of Universiti Malaysia Pahang has the right to make copies for the purpose of research only.
- 3. The Library has the right to make copies of the thesis for academic exchange.

Certified By:

(Student's Signature)

(Signature of Supervisor)

860708-23-5463

New IC/ Passport Number Date: Md. Maksudur Rahman Khan Name of the Supervisor Date:

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for award of the degree of Doctor of Philosophy (Chemical Engineering).

(Supervisor's Signature)
Full Name : MD. MAKSUDUR RAHMAN KHAN, PHD
Position : ASSOCIATE PROFESSOR
Date :

(Field-supervisor's Signature)

Full Name: RIDZUAN RAMLI, PHDPosition: PRINCIPAL RESEARCH OFFICER, MALAYSIAN PALM OIL BOARDDate:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Author's Signature)

Full Name: ONG HUEI RUEYID Number: PKC 13001Date:

_.

TAILORING THE PREPARATION OF PALM OIL BASED ALKYD/EPOXY RESIN COMPOSITE THROUGH COPPER OXIDE NANOPARTICLE

ONG HUEI RUEY

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical and Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

AUGUST 2016

TABLE OF CONTENTS

DECLARATION	
TITLE PAGE	i
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF SCHEMES	xvi
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	xviii
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Problem statements	3
1.3 Objectives	4
1.4 Scopes of study	4
1.5 Novelty	6
CHAPTER 2 LITERATURE REVIEW	7
2.1 Background of alkyd resin	7
2.2 Classification of alkyd resins	9
2.3 Major components for alkyd resin preparation	13
2.3.1 Oils or fatty acids	13
2.3.2 Polyols	18
2.3.3 Polybasic acids and their anhydrides	19
2.3.4 Monobasic acid	21

2.4 Preparation of alkyd resin	21
2.4.1 Single step process	22
2.4.1.1 Reaction conditions	22
2.4.1.2 Progress in technology	24
2.4.2 Two step process	27
2.4.2.1 Reaction conditions	27
2.4.2.2 Progress in technology	29
2.4.3 Fusion method	36
2.4.4 Solvent method	41
2.5 State-of-the-art technology	52
2.5.1 Blending	52
2.5.2 Catalyst used for alkyd preparation	53
2.5.3 Addition of nanoparticles	54
2.6 Mathamatical modelling	57
2.7 Optimization of the preparation condition of polymer composite by respo	onse surface
methodology	60
2.8 Application	61
2.9 Conclusion	64
CHAPTER 3 METHODOLOGY	66
3.1 Materials	68
3.2 Nanoparticle synthesis and characterization	69
3.3 Alkyd resin synthesis	70
3.3.1 Alcoholysis	71
3.3.1.1 Synthesis of MG using CuO nanoparticle	71
3.3.1.2 Synthesis of MG using hetero-homo- catalyst system	71
3.3.1.3 NMR studies	72
3.3.1.4 High performance liquid chromatography (HPLC)	72
3.3.2 Polyesterification	74
3.3.2.1 Preparation of alkyd resin	74

3.3.2.2 Determination of average degree of polymerization	75
3.3.2.3 Fourier transform infrared spectroscopy (FTIR)	75
3.3.2.4 Raman spectroscopy	75
3.3.2.5 Gel permeation chromatography (GPC)	75
3.3.2.6 NMR studies	76
3.3.2.7 Antimicrobial test	76
3.4 Preparation and characterization of alkyd/epoxy blend	76
3.4.1 Preparation of alkyd/epoxy blend	77
3.4.1.1 Mechanical properties	77
3.4.2 Characterization of alkyd/epoxy blend	78
3.4.2.1 Fourier transform infrared spectroscopy (FTIR)	78
3.4.2.2 Thermogravimetric analysis (TGA)	78
3.4.2.3 Contact angle measurement	78
3.4.3 Antimicrobial test	79
3.5 Perspectives of micromechanical models	80
3.5.1 Rule of mixtures equation	80
3.5.2 Inverse rule of mixtures equation	81
3.5.3 Takayanagi equation	81
3.5.4 Halpin–Tsai equation	81
3.6 Finite element modeling	82
3.7 Optimization of alkyd/epoxy blend using response surface methodology (RSM)	84

CHAPTER 4 PREPARATION AND CHARACTERIZATION OF ALKYD RESIN 86

4.1 Nanoparticle synthesis and characterization	86
4.1.1 Nanoparticle formation	87
4.1.2 Size and morphology determination	96
4.1.3 Determination of elemental composition: XPS	98
4.1.4 Conclusion	100
4.2 Alcoholysis of palm oil and characterization	
4.2.1 Alcoholysis of palm oil	100

4.2.1.1 Qualitative characterization by NMR	101
4.2.2 Effect of different catalysts on the alcoholysis of oil	105
4.2.3 Mechanism of alcoholysis of oil	111
4.2.4 Stability of CuO nanoparticle	114
4.2.5 Conclusion	116
4.3 Polyesterification	116
4.3.1 Preparation of alkyd resin	116
4.3.2 Characterization of alkyd resin	121
4.3.2.1 FTIR analysis	121
4.3.2.2 Raman analysis	122
4.3.2.3 NMR analysis	124
4.3.3 Molecular weight characterization	126
4.3.4 Stability of CuO nanoparticle	127
4.3.5 Antimicrobial study	128
4.3.6 Conclusion	130
4.4 Discussion	130

CHAPTER 5 PREPARATION AND CHARACTERIZATION OF ALKYD/EPOXY BLEND 135

135
135
140
143
144
147
151
152
153
158

CHAPTER 6 MATHEMATICAL MODELING AND OPTIMIZATION	159
6.1 Theoretical modeling of blend	159
6.2 Finite element model	162
6.3 Response surface methodology	163
6.3.1 Effects of model parameters on tensile strength	171
6.3.2 Effects of model parameters on flexural strength	174
6.3.3 Effects of model parameters on impact strength	178
6.3.4 Process optimization	182
6.4 Discussion	183
6.5 Conclusion	184
CHAPTER 7 CONCLUSION AND RECOMMENDATIONS	185
7.1 Conclusion	185
7.2 Recommendation	186
REFERENCES	188
APPENDIX A	212
APPENDIX B	214

LIST OF TABLES

Table	Title	Page
2.1	Alkyd resin based on oil length	10
2.2	Alkyd properties with respect to oil length	11
2.3	Common fatty acids, their formulas and type of saturation	16
2.4	Common vegetables and their fatty acid compositions	17
2.5	Melting and boiling points of some polyols	18
2.6	Melting and boiling points of some polybasic acids	20
2.7	Optimization of various parameters of alkyd preparation from availabl resources by alcoholysis-polyesterification process through fusion metho for the maximum yield	
2.8	Optimization of various parameters of alkyd preparation from vegetable oil	
2.0	by alcoholysis-polyesterification process through solvent method	44
2.9	Physico-chemical and mechanical properties of vegetable oil based alkyd	
>	and oil modified alkyds	47
2.10	Drying schedule of alkyds based on vegetable oils and chemical treated oil	
	monitored both outdoor and indoor	50
3.1	List of chemicals used in this work	68
3.2	Samples prepared for the study of the effect of CuO nanoparticle	2,
	alkyd/epoxy weight ratio and molecular weight of alkyd	77
3.3	Variables for model	85
4.1	The results of deconvolution of XPS Cu $2p_{3/2}$ peaks	98
4.2	Chemical shifts and assignment of main resonances in ¹ H–NMR spectra of palm oil and products of alcoholysis reaction (see Figure 4.7)	of 104
4.3	Composition of copper obtained from the linear fitting with sample CuO nano before and after the reaction and reference spectra for Cu and CuO)- 115
4.4	Molecular weights and molecular weight distributions of palm oil alky resin with CuO (C) and without CuO nanoparticles (A) at various stage of	d
	the reaction	127
4.5	Composition of Cu/O obtained from the linear fitting with the sample CuO	С
	nanoparticle before and after the reaction	128
4.6	Antimicrobial activity of alkyd resin (A) and (C)	129
4.7	Comparison current work with literature	133
5.1	Thermal data obtained from TGA thermograms of alkyd/epoxy blend wit	h
	and without CuO nanoparticle	147
5.2	Antimicrobial efficiency of the CuO incorporated blend	152
5.3	Photographs of survival bacteria colonies in diluted solutions correspond t	0
	the cell suspensions obtained after incubation at 37 $$ $^{\circ}$ C	153
5.4	Comparison current work with literature for tensile strength	156
5.5	Comparison current work with literature for flexural strength	156
5.6	Comparison current work with literature for impact strength	157
5.7	Comparison current work with literature for mechanical properties	157
6.1	Standard deviation of the models respected to experiment data	161
6.2	Design matrix of three level factorial	164

6.3	Model equation for each response	165
6.4	Analysis of variance (ANOVA) for quadratic model of tensile strength	167
6.5	Analysis of variance (ANOVA) for quadratic model of flexural strength	167
6.6	Analysis of variance (ANOVA) for quadratic model of impact strength	168
6.7	Optimum conditions derived by RSM design	182
6.8	Model validation	183

LIST OF FIGURES

Figure	e Title	Page
2.1	The properties to be expected from an alkyd of different oil length an iodine value	.d 12
2.2	Block diagram of alkyd preparation in various methods	22
2.3	Reaction pathway of single step reaction [R correspond to alkyl radicals of	
2.0	vegetable oils vary from C_8 - C_{20}]	23
2.4	Preparation of waterborne alkyds	25
2.5	Reaction pathway of two step method i.e., alcoholysis followed b	
2.00	polyesterification $[R_1, R_2]$ and R_3 correspond to alkyl radicals of vegetable	•
	oils vary from C_8-C_{20}]	27
2.6	Linear and cross-linked alkyd prepared by the chemo-enzymatic route	31
2.7	Synthesis of liquid crystalline pentalkyds	32
2.8	Process diagram of alkyd resin preparation by fusion method	37
2.9	Process diagram of alkyd resin preparation by solvent method	42
4.1	(a) UV-Vis spectra of $CuCl_2$ in aqueous solution (i), $CuCl_2$ in glycero	ol
	before (ii), after (iii) addition of hydrazine solution. ($[CuCl_2] = 28.6$ ppm	
	(b) XANES spectra of CuO standard, CuCl ₂ •2H ₂ O in glycerol medium	
	(precursor), 0 min sample (after addition of hydrazine solution). ([CuCl ₂]	
	200 ppm)	90
4.2	(a) UV-vis spectra of Cu sol formation, $[CuCl_2] = 200$ ppm (insert graph	
	$[CuCl_2] = 28.6 \text{ ppm}$; (b) Normalized absorbance of peak at \blacksquare 310 nm and	
1.0	560 nm	92
4.3	(a) XANES spectra of copper sol formation ($[CuCl_2] = 200$ ppm); (b)	
	XANES spectra of peak B shift of sol formation with respect to time; (a)	
	Normalized concentration of Cu(II) complex (\blacksquare), Cu ⁰ (\bullet), Cu ₂ O (\blacktriangle) and CuO (\blacksquare) during calls formation	
4 4	CuO (∇) during sols formation	96
4.4 4.5	TEM micrograph of CuO at low magnification (i), high magnification (ii) Typical deconvolution of Cu $2p_{3/2}$ (a) and O 1s (b) main peak of 6 h sample	97 99
4.5 4.6	¹³ C-NMR spectra of alcoholysis reaction of palm oil with chemical shifts of	
4.0	the products: (a) before reaction; (b) after reaction with NaOH catalysed an	
	(c) after reaction with CuO-nano+NaOH catalysed. A break is shown in th	
	figure from 75 to 172.5 ppm	102
4.7	¹ H–NMR spectra of alcoholysis reaction of palm oil with chemical shifts of	
1.7	the products: (a) before reaction; (b) after reaction with NaOH and (c) after	
	reaction with CuO-nano+NaOH	103
4.8	Effect of CuO-nano loading on oil conversion, X_{TG} , MG yield, Y_{MG} and D	
	yield, Y _{DG} [Concentration of CuO-nano, ppm: ■ 0.00002 wt%; ● 0.0000	
	wt%; \blacktriangle 0.00004 wt%; red line = oil conversion; black line = MG yield	
	blue line = DG yield]	106
4.9	Effect of different catalyst system on (a) oil conversion, X_{TG} , (b) selectively	
	$S_{MG/DG}$ and (c) MG yield, Y_{MG} [Concentration of CuO-nano = 0.00004 wt%]	
	catalyst system: ■ CuO-nano+0.4 wt% NaOH; • CuO-nano+0.3 wt%	

	NaOH; ▲ CuO-nano+0.1 wt% NaOH; ▼ CuO-nano+0.01 wt% NaOH; ◄	
	0.3 wt% NaOH; ► CuO-nano]	110
4.10	Effect of molar ratio of oil to glycerol on oil conversion, X_{TG} , MG yield,	
	Y_{MG} , and DG yield, Y_{DG} [catalyst system = 0.00004 wt% CuO-nano+0.3 wt% NaOH; reaction time = 40 min]	111
4.11	XANES spectra at the Cu K edge of Cu standard, CuO standard,	111
	$CuCl_2 \bullet 2H_2O$, CuO-nano before and after the reaction	115
4.12	Effect of different catalyst system on the completion of first step	119
4.13	Plot of acid value and DP against reaction time for different catalysis	
	systems during polyesterification process ($\blacksquare A$, $\bullet B$, $\blacktriangle C$ and $\triangledown D$). Table of	110
4.14	initial reaction rates is shown inside the figure Plot of acid value and DP against reaction time for different temperature	119
4.14	during C catalysed polyesterification process ($\blacksquare 220$ °C, $\bullet 230$ °C, $\blacktriangle 240$ °C	
	and $\nabla 250$ °C). Table of initial reaction rates is shown inside the figure	120
4.15	Infrared spectra of (i) oil, (ii) alkyd resin (A) and (iii) alkyd resin (C)	122
4.16	Raman spectra of alkyd resin (A, C) and CuO standard–alkyd	124
4.17	¹ H–NMR (a) and ¹³ C–NMR (b) of palm oil–based alkyd resin	125
4.18	¹ H-NMR (a) and ¹³ C-NMR (b) of palm oil	126
4.19	XANES spectra at the Cu K edge of Cu standard, CuO standard, CuCl ₂ \bullet 2H ₂ O, CuO nanoparticle before reaction and CuO nanoparticle after	
	reaction	128
5.1	Tensile (a), flexural (b) and impact strength (c) of alkyd/epoxy blend with	
	and without CuO nanoparticle (sample at 180 min)	139
5.2	Effect of polymerization reaction time of alkyd resin on tensile (a), flexural	
	(b) and impact strength (c) of alkyd/epoxy blend (30:70) with and without	142
5.3	CuO nanoparticle The DSC curves of the alkyd/epoxy blend during cure and after cured, (a)	142
5.5	with CuO and (b) without CuO [(i) A/E 50:50, (ii) A/E 30:70 and (iii) A/E	
	10:90]	143
5.4	TGA thermograph of alkyd/epoxy blends resin (a) and effect of CuO	
	nanoparticle on A/E 30:70 blend (b)	146
5.5	FTIR spectra of alkyd (i), epoxy (ii), alkyd/epoxy blend (A/E 30:70) without CuO (iii) and with CuO (iv)	149
5.6	Contact angle images of A/E blend without CuO nanoparticle 30:70 (a), A/E	149
0.0	blend with CuO nanoparticle 50:50 (b), 30:70 (c) and 10:90	151
6.1	Comparison of experimental tensile strength and theoretical predictions for	
	blends, (a) without CuO incorporation (b) with CuO incorporation	161
6.2	Experimental and numerical results of alkyd/epoxy blend. [Dot = $\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} $	
	experimental data; line = FEM data; \bullet = alkyd/epoxy 50:50; \bullet = alkyd/epoxy 40:60; \blacktriangle = alkyd/epoxy 30:70; \blacktriangledown = alkyd/epoxy 20:80; \blacklozenge =	
	alkyd/epoxy 10:90; \blacktriangleleft = neat epoxy]	162
6.3	Experimental and numerical results of CuO incorporated alkyd/epoxy blend.	-
	[Dot = experimental data; line = FEM data; \blacksquare = alkyd/epoxy 50:50; \bullet =	
	alkyd/epoxy 40:60; \blacktriangle = alkyd/epoxy 30:70; \blacktriangledown = alkyd/epoxy 20:80; \blacklozenge =	1.50
61	alkyd/epoxy 10:90; \blacktriangleleft = neat epoxy]	163
6.4	Predicted vs. experimental values (a) tensile, (b) flexural and (c) impact strength	170
	su ngu	1/0

6.5	Single factor plot of tensile strength on effect of (a) alkyd proportion, (b) polymerization time and (c) modification	172
6.6	Three-dimensional response surface plot of tensile strength for x_1x_2 (a) without and (b) with CuO nanoparticle	174
6.7	Single factor plot of flexural strength on effect of (a) alkyd proportion, (b) polymerization time and (c) modification	176
6.8	Three-dimensional response surface plot of flexural strength for x_1x_2 (a) without and (b) with CuO nanoparticle	177
6.9	Single factor plot of impact strength on effect of (a) alkyd proportion, (b) polymerization time and (c) modification	180
6.10	Three-dimensional response surface plot of impact strength for x_1x_2 (a) without and (b) with CuO nanoparticle	181

LIST OF SCHEMES

Schem	ne Title	Page
3.1	Flowchart of the alkyd/epoxy blend preparation process	67
3.2	Synthetic pathway of palm oil-based alkyd resin (alcoholysis-	_
	polyesterification process)	70
3.3	Schematic picture of antimicrobial efficiency test	79
3.4	Stress-strain curve of plastic material	84
4.1	Proposed mechanism of copper nanoparticles formation	96
4.2	Alcoholysis reaction of palm oil with glycerol	101
4.3	Mechanism of alcoholysis of oil using homogeneous catalysis system	112
4.4	Mechanism of alcoholysis of oil over CuO-nano catalyst	114
5.1	Schematic diagram of the phenomenon occurring during the crosslinking of	f
	the blend	150

LIST OF SYMBOLS

x ₁	Alkyd proportion
x ₂	Alkyd polymerization time
X3	Modification (with and without CuO nanoparticle)
Y1	Tensile strength
Y ₂	Flexural strength
Y ₃	Impact strength

LIST OF ABBREVIATIONS

Heat of fusion (J/g)
Degree Celsius
Microliter
Micrometer
Analysis of variance
Amide tertiary butane sulfonic acid
Attenuated total reflectance
Acid value
Binding energy
Butylated melamine formaldehyde
Calcium
Calcium hydroxide
Calcium carbonate
Calcium oxide
Cerium(IV) oxide
Sodium methoxide
Centimeter
Carbon nanofillers
Copper
Copper oxide
Coefficient of variation
Dicyclohexyl carbodiimide

DD	Deodorizer distillate
DG	Diglyceride
DMTA	Dimethyl ester of TPA
DSC	Differential scanning calorimetry
Ε	Strength fractions
EG	Expanded graphite
EJO	Epoxidized jatropha oil
Fe ₃ O ₄	Iron(II,III) oxide
FID	Free induction decays
F _n	Average number of methylene groups adjacent to double bond per oil molecule
FT	Fourier transformation
FTIR	Fourier transform infrared spectroscopy
FWHM	Full width at half maximum
g	Gram
GC	Gas chromatography
GO	Graphene oxide
Gol	Glycerol
GPC	Gel permeation chromatography
h	Hour
HBUA	Hyperbranched urethane alkydresin
HPLC	High performance liquid chromatography
HRSO	Heated rubber seed oil
Hz	Hertz

IPA	Isophtalic acid
IPN	Interpenetrating polymer network
IROM	Inverse rule of mixture
J	Joule
JSO	Jatropha curcas seed oil
КОН	Potassium hydroxide
kV	Kilo-volt
L	Liter
LB	Luria Bertani
Li	Lithium
LiOH	Lithium hydroxide
LMCT	Ligand-to-metal charge transfer
m	meter
m mA	meter Milli-ampere
mA	Milli-ampere
mA MERSO	Milli-ampere Methyl ester of rubber seed oil
mA MERSO MF	Milli-ampere Methyl ester of rubber seed oil Melamine-formaldehyde
mA MERSO MF mg	Milli-ampere Methyl ester of rubber seed oil Melamine-formaldehyde Milligram
mA MERSO MF mg MG	Milli-ampere Methyl ester of rubber seed oil Melamine-formaldehyde Milligram Monoglyceride
mA MERSO MF mg MG MgO	Milli-ampere Methyl ester of rubber seed oil Melamine-formaldehyde Milligram Monoglyceride Magnesium oxide
mA MERSO MF mg MG MgO min	Milli-ampere Methyl ester of rubber seed oil Melamine-formaldehyde Milligram Monoglyceride Magnesium oxide Minute
mA MERSO MF mg MG MgO min mL	Milli-ampere Methyl ester of rubber seed oil Melamine-formaldehyde Milligram Monoglyceride Magnesium oxide Minute

$M_{\rm w}$	Weight-average molar mass
MWD	Molecular weight distributions
NaOH	Sodium hydroxide
Ni(OH) ₂	Nickel(II) hydroxide
NiO	Nickel oxide
nm	nanometer
NMR	Nuclear magnetic resonance spectrophotometer
Р	Extent of the reaction
PA	Phthalic anhydride
PANI	Polyaniline
PbO	Lead(II) oxide
PDI	Polydispersity index
PMDS	Polydimethylsiloxane
ppm	Parts-per-million (10^{-6})
PVA	Polyvinyl alcohol
ROM	Rule of mixture
RSM	Response surface methodology
RSO	Rubber seed oil
S	second
Т	Temperature
TEM	Transmission electron microscopy
TG	Triglyceride
TGA	Thermogravimetric analysis
THF	Tetrahydrofuran

T _i	Initial degradation temperature
TiO ₂	Titanium dioxide
TLC	Thin layer chromatography
TMP	Trimethylolpropane
TPA	Terephthalic acid
UTM	Universal Testing Machine
UV-Vis	UV-visible spectrophotometer
v	Volume
V	Volume fractions
VOC	Volatile organic compounds
W	Walt
wt%	Weight percentage
XANES	X-ray absorption near edge structure spectrophotometer
XPS	X-ray photoelectron spectroscopy
X _{TG}	Conversion of TG
Y_{DG}	Yield of DG
Y _{MG}	Yield of MG
ZnO	Zinc oxide

TAILORING THE PREPARATION OF PALM OIL BASED ALKYD/EPOXY RESIN COMPOSITE THROUGH COPPER OXIDE NANOPARTICLE

ONG HUEI RUEY

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical and Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

AUGUST 2016

ABSTRACT

Intensive research on the development of polymers from renewable resources has been triggered due to the environmental concerns. Alkyd resin is a green polymer derived from vegetable oil with low cost and higher biodegradability mainly used for organic coating, paint or varnish. On the other hand, epoxy resin is considered as highly reactive polymer may form structural materials for indoor and outdoor applications while blended with fillers in the form of nanocomposites. The alkyd/epoxy blend can overcome the drawbacks of the individual polymers and resulted in improved mechanical properties. Conventional nanocomposites usually require 1-5 wt% filler; most commonly clay, carbon materials or metal/oxide nanoparticles. The present work is an attempt to produce alkyd/epoxy blend containing CuO nanoparticles with its homogeneous distribution to achieve higher mechanical and antimicrobial properties. In the present work palm oil and glycerol were used as starting material to produce alkyd resin. Colloidal CuO nanoparticle was prepared in glycerol and subsequently used alcoholysis-polyesterification process to produce alkyd resin. The nanoparticle formation was monitored by X-ray absorption near edge structure spectroscopy (XANES) and its particle size was confirmed by TEM in the range of ~5 nm. The formation of the alkyd resin was confirmed by FTIR, Raman, ¹H–NMR and ¹³C–NMR analyses and its molecular weight were determined by gel permeation chromatograph (GPC). The antimicrobial activity of the resin was determined via Kirby-Bauer Method and the CuO stability was determined by XANES. The addition of CuO nano-sol to the conventional homogeneous base catalyzed system explored a new catalytic route for the preparation of vegetable oil based alkyd resin that reduced the reaction time from 120 min to 60 min as well as added the antimicrobial properties to the resin. Moreover, alkyd was blended with epoxy resin in order to prepare composite of desired properties and the effect of weight ratio of alkyd/epoxy blend was investigated. The formation of blend and its chemical and mechanical properties were elucidated by standard methods (ASTM). It was found that, the presence of CuO nanoparticle enhanced the mechanical properties of the blend. The CuO incorporated alkyd/epoxy blend at ratio of 30:70 was found to be optimum and its tensile (47 MPa), flexural (138 MPa) and impact strengths (101 J/m^2) were higher than the blend without CuO nanoparticle. Moreover, standard micromechanical models (rule of mixture, inverse rule of mixture, takayanagi and halpin-tsai model) and finite element modeling were used to predict the data. The effect of alkyd to epoxy ratio, alkyd polymerization time and CuO nanoparticle modification concerning the tensile, flexural and impact strength was optimized by using response surface methodology (RSM). The composite comprising of alkyd, epoxy and CuO nanoparticle exhibited better mechanical properties, thermal stability and biodegradable, can be considered for both indoor-outdoor applications.

ABSTRAK

Penyelidikan yang intensif terhadap pembangunan polimer dari sumber yang boleh diperbaharui telah dicetuskan akibat kebimbangan terhadap alam sekitar. Alkyd adalah polimer hijau yang berkos rendah dan mempunyai keboleh biodigradasi yang tinggi, dihasilkan dari minyak sayur-sayuran dan telah digunakan untuk lapisan organik, cat atau varnish manakala resin epoksi dianggap sebagai polimer yang sangat reaktif dan boleh membentuk bahan berstruktur dalam bentuk nano komposit untuk aplikasi dalaman dan luaran apabila dicampur dengan pengisi. Gabungan alkyd/epoksi dapat mengatasi kelemahan polimer individu dan menghasilkan polimer yang mempunyai sifat-sifat mekanikal yang lebih baik. Nano komposit konvensional biasanya memerlukan 1-5% berat pengisi seperti tanah liat, bahan-bahan karbon atau nano partikel logam/oksida. Kajian ini adalah satu percubaan untuk menghasilkan gabungan alkyd/epoksi yang mengandungi nano partikel CuO bertaburan sekata supaya dapat mencapai sifat-sifat mekanik dan anti-mikrob yang lebih tinggi. Dalam kajian ini, minyak sawit dan gliserol telah digunakan sebagai bahan asas untuk menghasilkan resin alkyd. Nano partikel koloid CuO telah disediakan di dalam gliserol, seterusnya menggunakan proses alkoholisis-polyesterification untuk menghasilkan resin alkyd. Pembentukan nano partikel dipantau menggunakan alat penyerapan X-ray berhampiran struktur tepi spektroskopi (XANES) dan saiz partikel dalam lingkungan ~ 5 nm diperoleh melalui alat TEM. Pembentukan resin alkyd pula telah disahkan daripada analisis FTIR, Raman, ¹H-NMR dan ¹³C-NMR manakala berat molekul ditentukan dengan menggunakan gel penyerapan kromatografi (GPC). Aktiviti anti mikrob resin ditentukan melalui Kaedah Kirby-Bauer dan kestabilan CuO telah ditentukan melalui XANES. Penambahan CuO nano sol terhadap sistem pemangkin konvensional homogen telah meneroka satu laluan baru dalam penyediaan alkyd resin berasaskan minyak sayuran yang dapat mengurangkan masa tindak balas daripada 120 min ke 60 min serta menambah ciri-ciri anti mikrob untuk resin. Selain itu, alkyd telah dicampur dengan resin epoksi untuk menghasilkan komposit yang mempunyai ciri-ciri yang dikehendaki dan kesan nisbah berat gabungan alkyd / epoksi dikaji. Pembentukan serta sifat kimia dan mekanikal gabungan telah dijelaskan dengan kaedah piawai (ASTM). Kajian mendapati kehadiran nano partikel CuO dapat meningkatkan sifat-sifat mekanikal campuran. Kecekapan antibakteria campuran itu juga dikaji. CuO diperbadankan alkyd / campuran epoxy pada nisbah 30:70 didapati optimum dan tegangan (47 MPa), lenturan (138 MPa) dan kesan kekuatan (101 J/m²) adalah lebih tinggi daripada gabungan tanpa CuO nano partikel. Selain itu, model mikro mekanikal piawai (Prinsip Campuran, Prinsip Campuran Songsang, Model Takayanagi dan Model Halpin-Tsai) dan finite element modeling telah digunakan untuk meramalkan data kajian. Kesan alkyd kepada nisbah epoxy, masa pempolimeran alkyd dan pengubahsuaian nano partikel CuO berkaitan tegangan, lenturan dan kesan kekuatan telah dioptimumkan dengan kaedah gerak balas permukaan (RSM). The komposit terdiri daripada alkyd, epoxy dan CuO nano partikel mempamerkan sifat-sifat mekanikal yang lebih baik, kestabilan haba dan mesra alam, boleh dipertimbangkan untuk kedua-dua aplikasi dalaman dan luaran.