SYNTHESIS AND CHARACTERIZATION OF LAYERED ALKALINE MANGANATES, TITANATES, AND MOLYBDATES FOR SUPERCAPACITOR APPLICATIONS

RADHIYAH BINTI ABD. AZIZ

DOCTOR OF PHILOSOPHY (ADVANCED MATERIALS) UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT					
Author's full name : Radhiyah Binti Abd. Aziz					
Date of birth : 04 April 19	983				
Title : Synthesis a titanates, a	and characterization of layered alkaline manganates and molybdates for supercapacitor applications.				
Academic Session : Semester I	I 2015/2016				
I declare that this thesis is classified	ed as:				
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)				
RESTRICTED	(Contains restricted information as specified by the organization where research was done)				
OPEN ACCESS	I agree that my thesis to be published as online open access (Full text)				
I acknowledge that Universiti Mal	aysia Pahang reserve the right as follows:				
 The Thesis is the Property of Universiti Malaysia Pahang The Library of Universiti Malaysia Pahang has the right to make copies for the purpose of research only. The Library has the right to make copies of the thesis for academic exchange. 					
Certified By:					
(Student's Signature)	(Student's Signature) (Supervisor's Signature)				
Radhiyah Binti Abd. Aziz	Prof. Dr. Jose Rajan				
830404-11-5430 Date: Date:					

SUPERVISOR'S DECLARATION

We hereby declare that we have checked the thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy (Advanced Materials).

(Supervisor's Signature)
Full Name : PROF. DR. JOSE RAJAN
Position : PROFESSOR
Date :

(Co-supervisor's Signature)
Full Name : CHONG KWOK FENG
Position : SENIOR LECTURER
Date :
:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Author's Signature)

Full Name: RADHIYAH BINTI ABD AZIZID Number: PSM 11003Date: AUGUST 2016

SYNTHESIS AND CHARACTERIZATION OF LAYERED ALKALINE MANGANATES, TITANATES, AND MOLYBDATES FOR SUPERCAPACITOR APPLICATIONS

RADHIYAH BINTI ABD. AZIZ

Thesis submitted in fulfillment of the requirements for the award of the degree Doctor of Philosophy (Advanced Materials)

Faculty of Industrial Sciences & Technology UNIVERSITI MALAYSIA PAHANG

AUGUST 2016

TABLE OF CONTENTS

Page

DECLARATION	
TITLE PAGE	i
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENTS	vi
LIST OF TABLES	Х
LIST OF FIGURES	xiiii
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATIONS	xxii
LIST OF CHEMICAL COMPOUNDS	xxiv

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Research Objectives	4
1.4	Research Scope	5
1.5	Statement of Contribution	7
1.6	Thesis Outline	7

CHAPTER 2 LITERATURE REVIEW

2.1	Introductio	on	8
2.2	Capacitors		8
2.3	Electroche	mical Capacitors	11
	2.3.1	Electrochemical Double Layer Capacitors (EDLCs)	12
	2.3.2	Pseudocapacitors (PCs)	16
	2.3.3	Hybrid Capacitors (HCs)	20

2.4 Electrolytes		22	
	2.4.1	Aqueous Electrolytes	22
	2.4.2	Organic Electrolytes	23
	2.4.3	Ionic Liquid (ILs) Electrolytes	24
2.5	Electrode N	Aaterials	25
	2.5.1	Electrode Materials for EDLCs	26
	2.5.2	Electrode Materials for Pseudocapacitor	28
2.6	Conclusion		46

CHAPTER 3 MATERIALS AND METHOD

3.1	Introduction		
3.2	Research Methodology		
3.3	Synthesis I	Method	49
	3.3.1	Hydrothermal Method	49
	3.3.2	Colloidal Method	51
3.4	Details of	Material Synthesis	52
	3.4.1	Synthesis of Manganate-based Material	52
	3.4.2	Synthesis of Titanate-based Material	53
	3.4.3	Synthesis of Molybdate-based Material	55
3.5	Characteri	zation Methods	57
	3.5.1	Powder X-ray Diffraction (XRD) Technique	57
	3.5.2	Transmission Electron Microscopy (TEM) with Selected Area	
		Electron Diffraction (SAED)	58
	3.5.3	X-Ray Photoelectron Spectroscopy (XPS)	60
	3.5.4	Field Emission Scanning Electron Microscopy (FESEM)	63
	3.5.5	Brunauer-Emmett-Teller (BET) Measurement	64
3.6	Procedure	of Electrode Fabrication	66
	3.6.1	Cleaning Steps of Nickel Foam as Current Collector	66
	3.6.2	Fabrication of Working Electrode	66
	3.6.3	Fabrication of Coin Cell for Two Electrode Configuration	67
3.7	Electroche	mical Characterization	69
	3.7.1	Cyclic Voltammetry	71
	3.7.2	Galvanostatic Charge-Discharge Cycling	74

CHAPTER 4 STRUCTUREL, CHEMICAL, MORPHOLOGICAL AND SURFACE CHARACTERISTICS OF MANGANATES, TITANATES, AND MOLYBDATES

4.1	Introductio	n 80	
4.2	Crystal Structure Analysis		80
	4.2.1	α -MnO ₂ and Na-MnO ₂	80
	4.2.2	TiO ₂ and Na ₂ Ti ₂ O ₄ (OH) ₂	85
	4.2.3	Mo ₉ Se ₁₁ and Na-Mo ₉ Se ₁₁	91
4.3	Chemical A	Analysis	95
	4.3.1	α -MnO ₂ and Na-MnO ₂	95
	4.3.2	TiO ₂ and Na ₂ Ti ₂ O ₄ (OH) ₂	98
	4.3.3	Mo ₉ Se ₁₁ and Na-Mo ₉ Se ₁₁	101
4.4	Morpholog	gy Analysis	102
	4.4.1	α -MnO ₂ and Na-MnO ₂	102
	4.4.2	TiO ₂ and Na ₂ Ti ₂ O ₄ (OH) ₂	105
	4.4.3	Mo ₉ Se ₁₁ and Na-Mo ₉ Se ₁₁	106
4.5	Surface Ar	rea Analysis	108
	4.5.1	α -MnO ₂ and Na-MnO ₂	108
	4.5.2	TiO ₂ and Na ₂ Ti ₂ O ₄ (OH) ₂	109
	4.5.3	Mo ₉ Se ₁₁ and Na-Mo ₉ Se ₁₁	110
4.6	Conclusion	n	111

CHAPTER 5 ELECTROCHEMICAL PROPERTIES OF LAYERED ALKALINE MANGANATES, TITANATES, AND MOLYBDATES

5.1	Introductio	n	113
5.2	Cyclic Vol	tammetry	113
	5.2.1	α -MnO ₂	114
	5.2.2	TiO ₂	117
	5.2.3	Mo ₉ Se ₁₁	121

5.3 Comparison of Electrochemical Properties of Layered and Non-layered Materials125

	5.3.1	Cyclic Voltammetry	125
	5.3.2	Electrochemical Process Description	133
5.4	Galvanosta	atic Charge-discharge Cycling	137
5.5	Stability T	est and Coulombic Efficiency	143
5.6	Electroche	mical Impedance Spectroscopy	145
5.7	Electroche	mical Characterization of Commercial Activated Carbon	149
5.8	Conclusion	1	150

CHAPTER 6 ENERGY STORAGE CAPABILITIES OF PRACTICAL SUPERCAPACITORS EMPLOYING LAYERED MATERIALS

6.1	Introduction	1	152
6.2	Asymmetric	c Configuration	153
	6.2.1	Fabrication of Devices	153
	6.2.2	Cyclic Voltammetry	154
	6.2.3	Galvanostatic Charge-Discharge (GCD) Cycling	158
	6.2.4	Stability and Coulombic Efficiency	162
	6.2.5	Electrochemical Impedance Spectroscopy	164
	6.2.6	Energy Density (E_S) and Power Density (P_S) of the Device	167
6.3	Conclusion		170

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

7.1	Conclusion	171
7.2	Recommendations	173
REF	ERENCES	174
APP	APPENDIX I	
APPENDIX II		208
APP	APPENDIX III	
APP	ENDIX IV	212
APP	ENDIX V	214
APP	ENDIX VI	215

LIST OF TABLES

Table	Title	Page
Table 2.1	Summary of research on current performance of carbon-based materials EDLCs.	28
Table 2.2	Summary of research on the use of CPs as a supercapacitor electrode.	30
Table 2.3	Summary of research on the use of RuO_2 and its modifications as a supercapacitor electrode.	32
Table 2.4	Summary of research on the use MnO_2 and its modification as a supercapacitor electrode.	36
Table 2.5	Summary of research on the use of TiO_2 and its modifications as a supercapacitor electrode.	41
Table 2.6	Summary of research on the use of metal chalcogenides and its modifications as a supercapacitor electrode.	45
Table 3.1	Chemical composition for synthesizing manganate-based materials	52
Table 3.2	Chemical composition for synthesizing titanate-based materials.	54
Table 4.1	Comparison of lattice spacing or (001) crystal plane of all samples.	83
Table 4.2	Lattice spacing determined from XRD, HRTEM and SAED analysis of α -MnO ₂ .	84
Table 4.3	Lattice spacing determined from XRD, HRTEM and SAED analysis of Na-MnO $_2$	85
Table 4.4	Comparison of d-spacing of (200) plane	88
Table 4.5	Lattice spacing determined from XRD, HRTEM and SAED analysis of TiO_2	89
Table 4.6	Lattice spacing determined from XRD, HRTEM and SAED analysis of $Na_2Ti_2O_4(OH)_2$	91
Table 4.7	Lattice spacing determined from XRD, HRTEM and SAED analysis of Mo ₉ Se ₁₁ .	93
Table 4.8	Lattice spacing determined from XRD, HRTEM and SAED analysis of Na-Mo ₉ Se ₁₁ .	94

Table 4.9	Summary of BET surface area, mean pore volume and mean pore size of manganate-based samples.	109
Table 4.10	Summary of BET surface area, mean pore volume and mean pore size of titanate-based samples	110
Table 4.11	Summary of BET surface area, mean pore volume and mean pore size of molybdate-based samples.	111
Table 5.1	η and C_S for α -MnO ₂ in different electrolytes.	115
Table 5.2	η and C_s for α -MnO ₂ in different concentration of LiOH electrolyte.	117
Table 5.3	η , ΔV_{ac} and C_S for TiO ₂ in different electrolytes.	119
Table 5.4	η , ΔV_{ac} and C_S for TiO ₂ in different concentration of KOH electrolyte.	120
Table 5.5	η , ΔV_{ac} and C_S for Mo ₉ Se ₁₁ in different electrolytes.	122
Table 5.6	η , ΔV_{ac} and C_S for Mo ₉ Se ₁₁ in different concentration of LiOH electrolyte.	124
Table 5.7	η , ΔV_{ac} and C_S for all materials.	130
Table 5.8	Summary of slope i_p vs. \sqrt{v} and D_{ions}	132
Table 5.9	Designated charging voltage for all materials.	137
Table 5.10	Summary of R_{Ω} , R_{ct} and σ for all samples	147
Table 5.11	Summary of f_0 and τ .	149
Table 6.1	Optimization on mass loading of anode and cathode for the fabrication of ASC cell.	153
Table 6.2	Summary of R_{Ω} , R_{ct} and σ for the device.	166
Table 6.3	Summary of f_0 and τ .	167
Table 6.4	Summary of device performance.	167
Table 6.5	Summary of current research on the use of carbon materials for symmetric devices.	169
Table 6.6	Summary of research on the use of commercial AC and different metal oxide nanostructures for the fabrication of ASCs device.	169

LIST OF FIGURES

Figure	Title	Page
Figure 2.1	Schematic presentation of electrostatic, electrolytic and electrochemical capacitor.	9
Figure 2.2	Taxonomy of supercapacitors.	12
Figure 2.3	Schematic diagram describing the EDLC's model; (a) Helmholtz, (b) Gouy-Chapman, and (c) Gouy Chapman-Stern.	13
Figure 2.4	Charge storage mechanism.	15
Figure 2.5	Typical CV shape of carbon-based ECs representing EDLC mechanism.	16
Figure 2.6	Different types of reversible redox mechanisms that give rise to pseudocapacitance.	17
Figure 2.7	Current <i>vs</i> . Potential relation for a pseudocapacitor with under potential deposition.	18
Figure 2.8	Cyclic voltammogram showing the pseudocapacitive behavior of hydrous RuO_2 .	19
Figure 2.9	Desirable property of electrode materials to enhance electrochemical performance.	26
Figure 2.10	Crystal structure of α , β , γ , δ , and λ MnO ₂ .	33
Figure 2.11	Current attainable C_S for MnO ₂ for several allotropes.	37
Figure 2.12	Crystal structure of TiO_2 ; (a) anatase, (b) rutile, (c) brookite and (d) $TiO_2(B)$.	39
Figure 2.13	Current achievement of C_S obtained by TiO ₂ and its modification.	43
Figure 2.14	Current C_s obtained by metal chalcogenides and its modification.	46
Figure 3.1	Summary of the methodology adopted in this study.	49
Figure 3.2	(a) Hydrothermal reactor set and (b) schematic diagram of the autoclave used in hydrothermal synthesis.	50
Figure 3.3	Flow diagram of synthesis manganate-based materials.	53

Figure 3.4	Flow diagram of synthesis titanate-based materials.	54
Figure 3.5	Flow diagram of synthesis molybdate-based materials.	56
Figure 3.6	(a) Block diagram and (b) basic theory of XRD.	58
Figure 3.7	(a) Photograph, (b) schematic view and (c) schematic principle of TEM.	59
Figure 3.8	(a) Schematic principle and (b) schematic diagram of XPS.	62
Figure 3.9	(a) Photograph, (b) schematic view and (c) schematic principle of FESEM.	64
Figure 3.10	BET surface area analyzer.	65
Figure 3.11	Fabrication of electrode.	67
Figure 3.12	Assembly sequence of coin cell.	69
Figure 3.13	(a) Photograph of potentiostat and (b) principle of analysis.	70
Figure 3.14	Theoretical CV profile for a reversible case.	72
Figure 3.15	Simplified Randles cell schematic diagram	78
Figure 4.1	(a) XRD profiles of α -MnO ₂ , XRD profiles of manganate- based sample with different concentration of NaOH; (b) NM- 0.5M, (c) NM-1.0M, (d) NM-1.25M, and (e) NM-3.75M.	82
Figure 4.2	(A, B & C) HRTEM images, (D) SAED of α -MnO ₂ .	84
Figure 4.3	(A, B & C) HRTEM images (D) SAED of Na-MnO ₂ .	85
Figure 4.4	XRD profiles of titanate-based sample before calcination with different concentration of NaOH; (a) SFT, (b) ST-0.05M (c) ST-0.1M, (d) ST-0.2M, (e) ST-0.3M and (f) ST-0.5M.	86
Figure 4.5	XRD profiles of titanate-based sample with different concentration of NaOH after calcination; (a) SFT, (b) ST-0.05M (c) ST-0.1M, (d) ST-0.2M, (e) ST-0.3M and (f) ST-0.5M.	87
Figure 4.6	(A) TEM image; (B & C) HRTEM images, and (D) SAED image of TiO ₂ .	89
Figure 4.7	(A, B & C) HRTEM images and (D) SAED image of $Na_2Ti_2O_4(OH)_2$.	90
Figure 4.8	XRD pattern of Mo ₉ Se ₁₁ .	92

Figure 4.9	(A & B) TEM images; (C) HRTEM image, (D) SAED pattern of Mo9Se11.	93
Figure 4.10	XRD pattern of Na-Mo ₉ Se ₁₁ .	94
Figure 4.11	(A) TEM image; (B & C) HRTEM images. (D) SAED pattern of Na-Mo ₉ Se ₁₁ .	95
Figure 4.12	XPS spectra of α -MnO ₂ nanorods; (A) survey scan, (B) Mn 2p and (C) O 1s and K 2p spectrum, (D) C 1s spectrum (from the substrate).	96
Figure 4.13	XPS spectra of Na-MnO ₂ nanosheets; (A) survey scan of XPS, (B) Mn 2p, (C) O 1s, (D) Na 1s and (E) C 1s spectrum (from the substrate).	97
Figure 4.14	XPS spectra of TiO_2 ; (A) the survey scan, (B) Ti 2p, (C) O 1s, (D) C 1s spectrum.	98
Figure 4.15	XPS spectra of $Na_2Ti_2O_4(OH)_2$; (A) the survey scan, (B) Ti 2p, (C) O 1s, (D) Na 1s and (E) C 1s spectrum (from the substrate).	100
Figure 4.16	(A) XPS spectra of Mo ₉ Se ₁₁ , High resolution XPS spectra of (B) Mo 3d and (C) Se 3d.	101
Figure 4.17	(A) XPS spectra of Na-Mo ₉ Se11, High resolution XPS spectra of (B) Na 1s, (C) Mo 3d, and (D) Se 3d.	102
Figure 4.18	(A&B) FESEM images and (C&D) Bright field TEM images of α -MnO ₂ with different magnification.	103
Figure 4.19	(A&B) FESEM images and (C&D) Bright field TEM images of Na-MnO ₂ with different magnification.	104
Figure 4.20	(A&B) FESEM images and (C&D) Bright field TEM images of TiO_2 with different magnification.	105
Figure 4.21	(A&B) FESEM images and (C&D) Bright field TEM images of $Na_2Ti_2O_4(OH)_2$ with different magnification.	106
Figure 4.22	(A&B) FESEM images and (C&D) Bright field TEM images of Mo ₉ Se ₁₁ with different magnification.	107
Figure 4.23	(A&B) FESEM images and (C&D) Bright field TEM images of Na-Mo ₉ Se ₁₁ with different magnification.	108
Figure 4.24	(A) N_2 adsorption-desorption isotherm and (B) pore distribution curve of α -MnO ₂ and Na-MnO ₂ .	109

Figure 4.25	(A)N ₂ adsorption-desorption isotherm and (B) pore distribution curve of TiO_2 and $Na_2Ti_2O_4(OH)_2$.	110
Figure 4.26	(A)N ₂ adsorption-desorption isotherm and (B) pore distribution curve of Mo_9Se_{11} and $Na-Mo_9Se_{11}$.	111
Figure 5.1	(A) Comparison of CV of the electrodes at 100 mV/s; CVs of the electrodes in (B) 1 M LiOH, (C) 1 M NaOH, (D) 1 M KOH as a function of scan rate; and (E) C_S versus scan rates of α -MnO ₂ in different alkaline electrolytes.	115
Figure 5.2	(A) Comparison of CV at 100 mV/s in 1 M, 2 M, and 3 M LiOH. The CV of the electrodes in (B) 1 M LiOH, (C) 2 M LiOH, (D) 3 M LiOH as a function of scan rate; and (E) C_S versus scan rates of α -MnO ₂ in different concentration of LiOH.	116
Figure 5.3	(A) CV of the TiO ₂ electrodes at 100 mV/s in the three electrolytes. The CV of the electrodes (B) 1 M KOH, (C) 1 M NaOH, (D) 1 M LiOH as a function of electrolyte; and (E) C_S versus scan rates of TiO ₂ in different alkaline electrolytes.	118
Figure 5.4	(A) Comparison of CV of the TiO ₂ electrode at 100 mV/s in the KOH electrolyte at varying concentrations. The CV of the electrodes in (B) 1 M KOH, (C) 3 M KOH, (D) 6 M KOH; and (E) C_S versus scan rates of TiO ₂ in different concentration of KOH.	120
Figure 5.5	(A) Comparison of CV of the Mo ₉ Se ₁₁ electrodes at 50 mV/s for each electrolyte. The CV of the electrodes in (B) 1 M KOH, (C) 1 M NaOH, (D) 1 M LiOH as a function of scan rate; and (E) C_S versus scan rates of Mo ₉ Se ₁₁ in different alkaline electrolytes.	122
Figure 5.6	(A) The CVs of the Mo ₉ Se ₁₁ electrodes at 50 mV/s for the three LiOH concentrations. The CV of the electrodes in (B) 1 M LiOH, (C) 2 M LiOH, (D) 3 M LiOH as a function of scan rate; and (E) C_S versus scan rates of Mo ₉ Se ₁₁ in different concentration of LiOH.	124
Figure 5.7	CV profiles at various scan rates for (A & B) MnO_2 and $Na-MnO_2$ in 1 M LiOH, (C & D) TiO_2 and $Na_2Ti_2O_4(OH)_2$ in 1 M KOH, (E & F) Mo_9Se_{11} and $Na-Mo_9Se_{11}$ in 3 M LiOH.	128
Figure 5.8	Comparison of cyclic voltammetry at high and low scan rate for each material; (A & B) MnO_2 and $Na-MnO_2$ in 1 M LiOH, (C & D) TiO ₂ and $Na_2Ti_2O_4(OH)_2$ in 1 M KOH, and (E & F) Mo_9Se_{11} and $Na-Mo_9Se_{11}$ in 3 M LiOH.	129

Figure 5.9	C_S versus scan rates (A) MnO ₂ and Na-MnO ₂ in 1 M LiOH, (B) TiO ₂ and Na ₂ Ti ₂ O ₄ (OH) ₂ in 1 M KOH, and (C) Mo ₉ Se ₁₁ and Na-Mo ₉ Se ₁₁ in 3 M LiOH.	130
Figure 5.10	Anodic peak current as a function of square root of scan rate; (A) MnO_2 and $Na-MnO_2$, (B) TiO_2 and $Na_2Ti_2O_4(OH)_2$ and (C) Mo_9Se_{11} and $Na-Mo_9Se_{11}$.	132
Figure 5.11	Schematic process of charging/discharging for (A) Tunnel α -MnO ₂ , (B) layered MnO ₂ , and (C) Pre-intercalation of Na ⁺ in δ -MnO ₂ .	134
Figure 5.12	Galvanostatic charge-discharge profiles for sample (A) MnO_2 , (B) Na-MnO ₂ , (C) TiO ₂ , (D) Na ₂ Ti ₂ O ₄ (OH) ₂ , (E) Mo ₉ Se ₁₁ and (F) Na- Mo ₉ Se ₁₁ .	139
Figure 5.13	Comparison of galvanostatic charge-discharge profiles at similar current density of (A) MnO_2 and $Na-MnO_2$, (B) TiO_2 and $Na_2Ti_2O_4(OH)_2$, (C) Mo_9Se_{11} and $Na-Mo_9Se_{11}$.	140
Figure 5.14	ESR versus various current densities.	141
Figure 5.15	Variation of C_S as a function of current density for samples; (A) MnO ₂ and Na-MnO ₂ in 1 M LiOH, (B) TiO ₂ and Na ₂ Ti ₂ O ₄ (OH) ₂ in 1 M KOH, and (C) Mo ₉ Se ₁₁ and Na- Mo ₉ Se ₁₁ in 3 M LiOH.	142
Figure 5.16	Stability of samples; (A) MnO_2 and (B) $Na-MnO_2$ in 1 M LiOH, (C) TiO_2 and (D) $Na_2Ti_2O_4(OH)_2$ in 1 M KOH, and (E) Mo_9Se_{11} and (F) $Na-Mo_9Se_{11}$ in 3 M LiOH.	144
Figure 5.17	Comparison of Nyquist plot of the samples (inset: expanded high-frequency region of the plot), (A) MnO_2 and $Na-MnO_2$ in 1 M LiOH, (B) TiO ₂ and $Na_2Ti_2O_4(OH)_2$ in 1 M KOH, and (C) Mo_9Se_{11} and $Na-Mo_9Se_{11}$ in 3 M LiOH.	145
Figure 5.18	The variation of the real (<i>C'</i>) and imaginary (<i>C''</i>) part of capacitance as a function of frequency at open circuit potential for (A and B) MnO_2 and $Na-MnO_2$ in 1M LiOH, (C and D) TiO ₂ and $Na_2Ti_2O_4(OH)_2$ in 1M KOH, and (E and F) Mo_9Se_{11} and $Na-Mo_9Se_{11}$ in 3M LiOH.	148
Figure 5.19	Electrochemical property of commercial AC in respective electrolyte system.	150
Figure 6.1	CV profiles of (A & B) AC//AC and Na-MnO ₂ //AC in 1 M LiOH, (C & D) AC//AC and Na ₂ Ti ₂ O ₄ (OH) ₂ //AC in 1 M KOH and (E & F) AC//AC and Mo ₉ Se ₁₁ //AC in 3 M LiOH.	156

Figure 6.2	Cs versus scan rates (A) AC//AC and Na-MnO ₂ //AC in 1 M LiOH, (B) AC//AC and Na ₂ Ti ₂ O ₄ (OH) ₂ //AC in 1 M KOH, and (C) AC//AC and Mo ₉ Se ₁₁ //AC in 3 M LiOH.	157
Figure 6.3	Galvanostatic charge-discharge curves of (A & B) AC//AC and Na-MnO ₂ //AC in 1 M LiOH, (C & D) AC//AC and Na ₂ Ti ₂ O ₄ (OH) ₂ //AC in 1 M KOH and (E & F) AC//AC and Mo ₉ Se ₁₁ //AC in 3 M LiOH.	159
Figure 6.4	C_S versus current density; (A) AC//AC and Na-MnO ₂ //AC in 1 M LiOH, (B) AC//AC and Na ₂ Ti ₂ O ₄ (OH) ₂ //AC in 1 M KOH, and (C) AC//AC and Mo ₉ Se ₁₁ //AC in 3 M LiOH.	161
Figure 6.5	ESR versus various current densities.	162
Figure 6.6	Comparison of cycling performance between symmetric AC//AC with the ASC cell of; (A) Na-MnO ₂ //AC, (B) $Na_2Ti_2O_4(OH)_2$ //AC and (C) Mo_9Se_{11} //AC.	163
Figure 6.7	Comparison of coulombic efficiency between symmetry of AC//AC with the ASC cell of; (A) Na-MnO ₂ //AC, (B) $Na_2Ti_2O_4(OH)_2$ //AC and (C) Mo_9Se_{11} //AC.	164
Figure 6.8	Comparison of Nyquist plot of the samples (inset: expanded high-frequency region of the plot), (A) AC//AC and Na-MnO ₂ //AC in 1 M LiOH, (B) AC//AC and Na ₂ Ti ₂ O ₄ (OH) ₂ //AC in 1 M KOH, and (C) AC//AC and Mo ₉ Se ₁₁ //AC in 3 M LiOH.	165
Figure 6.9	Comparison of the imaginary (C'') part of capacitance as a function of frequency at open circuit potential for, (A) AC//AC and Na-MnO ₂ //AC in 1 M LiOH, (B) AC//AC and Na ₂ Ti ₂ O ₄ (OH) ₂ //AC in 1 M KOH, and (C) AC//AC and Mo ₉ Se ₁₁ //AC in 3 M LiOH.	166
Figure 6.10	Comparative Ragone plot of the symmetric AC//AC cell with the asymmetric cell of; (A) Na-MnO ₂ //AC, (B) $Na_2Ti_2O_4(OH)_2$ //AC and (C) Mo_9Se_{11} //AC cell.	168

LIST OF SYMBOLS

n	Number of electron involved
F	Faraday's constant
$\varDelta E$	Redox potential of the material
MW	Molecular weight
С	Capacitance
V	Voltage window
η	Coulombic efficiency
\mathcal{E}_0	Space permittivity
${\mathcal E}_r$	Relative permittivity
Α	Surface area
d	Distance between the plate
Q	Charge stored
R	Resistance
C_{dl}	Double layer capacitance
C_H	Helmholtz double layer capacitance
C_{diff}	Diffuse double layer capacitance
heta	Theta
hv	X-ray photon energy
Ek	Kinetic energy of photo electron
Eb	Binding energy of photo electron
f	Work function induced by the analyzer
i_{pc}	Cathodic peak current
i_{pa}	Anodic peak current
i_p	Peak current

- T Temperature
- *R* Gas constant

D_{ions}	Diffusion coefficient of the electroactive species
С	Bulk concentration of the electroactive species
V	Scan rate of the voltammograms
Ι	Discharge current density in Ampere
Δt	Discharge time in second
т	Mass of active material in gram
ΔV	Potential range
С'	Real capacitance
С"	Imaginary capacitance
$Z'(\omega)$	Real part of complex impedance
Ζ"(ω)	Imaginary part of complex impedance
ω	Angular frequency
f	Frequency
f_0	Maxima frequency of the peak
τ	Relaxation time constant
q_+	Charge stored at the anode
$q_{\text{-}}$	Charge stored at the cathode
m_+	Mass of anode material
m.	Mass of cathode material
V_+	Voltage range of anode material
V.	Voltage range of cathode material
V_a	Anodic redox peak
V_c	Cathodic redox peak

- ΔV_{ac} Voltage difference between V_a and V_c
 - *t_c* Charging time
 - t_d Discharging time
- R_{ct} Charge transfer resistance
- R_{Ω} Bulk solution resistance
- σ Warburg's coefficient

LIST OF ABBREVIATIONS

AAO	Anodic aluminum oxide
AC	Activated carbon
ASC	Asymmetric supercapacitor
BE	Binding energy
BET	Brunauer-Emmett-Teller
CE	Counter electrode
CNF	Carbon nanofiber
CNT	Carbon nanotube
CPs	Conducting polymers
C_S	Specific capacitance
CV	Cyclic voltammetry
CVD	Chemical vapor deposition
EC	Equivalent circuit model
ECs	Electrochemical capacitors
EDL	Electrochemical double layer
EDLCs	Electrochemical double layer capacitors
EIS	Electrochemical impedance spectroscopy
E_S	Energy density
ESR	Equivalent series resistance
FESEM	Field emission scanning electron microscope
GCD	Galvanostatic charge-discharge
GO	Graphite oxide
Н	Helmholtz
HCs	Hybrid capacitors

HPC	Hydro porous carbon
HRTEM	High resolution transmission electron microscope
IHP	Inner Helmholtz plane
ILs	Ionic liquids
KE	Kinetic energy
LDHs	Layer double hydroxides
MWCNT	Multiwalled carbon nanotube
NT	Nanotube
NTA	Nanotube array
NB	Nanobelt
NP	Nanoparticle
NF	Nanofiber
NR	Nanorod
NMP	N-methyl-2-pyrrolidinone
OHP	Outer Helmholtz plane
PCs	Pseudocapacitors
PCNF	Porous carbon nanofiber
PECVD	Plasma enhanced chemical vapor deposition
PEDOT	Poly(3,4-ethylenedioxythiophene)
PFPT	poly(3-(4flurophenyl) thiophene)
PDTT	Poly(ditheno (3,4-b:3',4'd) thiophene)
PMT	Poly(3-methyl thiophene)
PVDF	Polyvinylidenefluoride
RE	Reference electrode
RGO	Reduced graphene oxide

SAED	Selected area electron diffraction
SCE	Saturated calomel electrode
SILAR	Successive ionic layer adsorption and reaction
ST	Sodium titanate
SFT	Sodium free titanate
TNT	Titania nanotube
TTIP	Titanium tetra isopropoxide
USA	United State of America
WE	Working electrode
XPS	X-ray photoelectron spectroscopy
1D	One-dimensional
2D	Two-dimensional

3D Three-dimensional

LIST OF CHEMICAL COMPOUNDS

- RuO₂ Ruthenium oxide
- TiO₂ Titanium dioxide
- MnO₂ Manganese oxide
- CuO Copper (II) oxide
- Co_3O_4 Cobalt oxide
- Ni(OH)₂ Nickel hydroxide
- Co(OH) Cobalt hydroxide
- MoS₂ Molybdenum disulfide
- CoS₂ Cobalt disulfide
- Mo₉Se₁₁ Molybdenum selenide
- WSe₂ Tungsten diselenide
- CO₂ Carbon dioxide
- NH₃ Ammonia
- O Oxygen
- N Nitrogen
- B Boron
- S Sulfur
- H Hydrogen
- Pt Platinum
- Ta Tantalum
- Al Aluminum
- Ag Silver
- TEABF₄ Tetraethyl ammonium tetrafluoroborate

SYNTHESIS AND CHARACTERIZATION OF LAYERED ALKALINE MANGANATES, TITANATES, AND MOLYBDATES FOR SUPERCAPACITOR APPLICATIONS

RADHIYAH BINTI ABD. AZIZ

Thesis submitted in fulfillment of the requirements for the award of the degree Doctor of Philosophy (Advanced Materials)

Faculty of Industrial Sciences & Technology UNIVERSITI MALAYSIA PAHANG

AUGUST 2016

ABSTRACT

Development of pseudocapacitors, in which electrical charge is stored through a redox reaction when it is brought in contact with an electrolyte, is an active area of research to achieve high energy density (E_S) and power density (P_S) in supercapacitors. Many promising materials such as RuO_2 , δ -MnO₂, Co_3O_4 are proposed as desirable pseudocapacitor electrodes; however, they are either poorly abundant and toxic or resistive and difficult to be synthesized. On the other hand, there are several highly abundant transition metal oxides exhibiting poor and/or non-capacitive behavior such as titanium dioxide (TiO₂) and some polymorphs of manganese oxide (α -MnO₂). It is hypothesized that making a layered structure of the above metal oxides could enhance their electrochemical performance because the lamellar space between the layers could easily intercalate/de-intercalate of ions. Consequently, this thesis aims to synthesize layered analogues of TiO₂, α -MnO₂ by incorporating hydrated alkaline ions and study their electrochemical properties. Effect of incorporating hydrated alkaline ions in an intrinsically layered material, i.e., Mo₉Se₁₁, on its electrochemical properties has also been undertaken to make a contrast. The physicochemical characterization was analyzed using X-ray diffraction (XRD), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), transmission electron microscope (HRTEM) and Brunauer-Emmett-Teller (BET) surface analyzer. The electrochemical properties of the samples were studied by cyclic voltammetry (CV), galvanostatic charge-discharge cycling (GCD) and electrochemical impedance spectroscopy (EIS) in a three-electrode system configuration. A comprehensive investigation on the structure and properties of the materials before and after incorporation has been undertaken and the results are discussed deeply. It showed that alkaline layered structure of manganate and titanate material exhibits ~2.5 and ~16 times higher specific capacitance ($C_{\rm s}$) than that of the non-layered ones in optimized electrolytes. However, alkaline layered molybdate material shows 6 times lower C_S value than non-alkaline layered structure. The capacitive performance was correlated with the characteristic resistance and time of the electrodes employing EIS. The energy storage capability of the layered structure materials is evaluated by assembling asymmetric supercapacitors (ASC) using the layered materials as anode and commercial activated carbon as cathode. The electrochemical performance of ASCs were compared with the symmetric device fabricated using the commercial activated carbon (AC). The best performing ASCs delivered E_S of ~63, ~17, and ~42 Wh/kg at P_S of ~962, ~600, and ~960 W/kg for Na-MnO₂//AC, Na₂Ti₂O₄(OH)₂//AC, and Mo₉Se₁₁//AC cells in the optimized electrolytes of 1M LiOH, 1M KOH and 3M LiOH, respectively, which are an order of magnitude higher than that achieved by the AC//AC device. Among them, Na-MnO₂//AC showed ~98% retention of charge storage, which is much superior to the other devices; therefore, this device is promising to further develop for commercial applications.

ABSTRAK

Pembangunan pseudokapasitor, di mana cas elektrik disimpan melalui tindak balas redoks apabila ia dihubungkan dengan elektrolit, adalah penyelidikan yang aktif untuk mencapai kepadatan tenaga yang tinggi (E_S) dan kepadatan kuasa (P_S) dalam superkapasitor. Banyak bahan berpotensi seperti RuO₂, δ-MnO₂, Co₃O₄ dicadangkan sebagai elektrod pseudokapasitor; Walau bagaimanapun, bahan tersebut sukar didapati dan bertoksik atau berintangan dan ia adalah sukar untuk disintesis. Sebaliknya, terdapat banyak oksida logam peralihan yang menunjukkan perilaku bukan kapasitif dan / atau kapasitif yang lemah seperti titanium dioksida (TiO₂) dan beberapa polimorf oksida mangan (α -MnO₂). Berdasarkan hipotesis, pembinaan struktur berlapis daripada oksida logam di atas boleh meningkatkan prestasi elektrokimia mereka kerana ruang lamela antara lapisan dengan mudah dapat menampung ion dengan proses interkalasi caj / deinterkalasi yang sangat mudah. Oleh yang demikian, tesis kajian ini bertujuan untuk mensintesis analog lapis TiO₂, α-MnO₂ dengan menggabungkan ion alkali terhidrat dan mengkaji sifat elektrokimia bahan. Kesan penggabungan ion alkali terhidrat ke dalam bahan asasnya berlapis, iaitu, Mo₉Se₁₁, ke atas sifat elektrokimia telah juga dikaji untuk dijadikan satu perbandingan. Pencirian secara fizikal dan kimia bahan dianalisis menggunakan pembelauan sinar-X (XRD) dan pembelauan elektron kawasan terpilih (SAED), X-ray fotoelektron spektroskopi (XPS), mikroskop elektron imbasan (SEM), mikroskop transmisi elektron (TEM) dan Brunauer-Emmett-Teller (BET) analisis permukaan. Sifat-sifat elektrokimia sampel telah dikaji menggunakan voltametri berkitar (CV), galvanostatik cas-nyahcas (GCD) dan spektroskopi elektrokimia impedans (EIS) dalam konfigurasi sistem tiga elektrod. Penvelidikan ke atas struktur dan sifat bahan sebelum dan selepas penggabungan telah dilaksanakan dan keputusan dibincangkan secara mendalam. Ia menunjukkan bahawa bahan berstruktur berlapis alkali manganat dan titanat mempamerkan nilai C_s yang 2.5 dan 16 kali lebih tinggi berbanding dengan bahan berstruktur tidak berlapis dalam elektrolit yang optimum. Akan tetapi, bahan berstruktur berlapis alkali molibdat menunjukkan nilai $C_{\rm S}$ yang 6 kali lebih rendah berbanding bahan berstruktur berlapis molibdat. Prestasi kapasitif telah dikaitkan dengan rintangan ciri dan masa elektrod menggunakan EIS. Keupayaan penyimpanan tenaga daripada bahan-bahan struktur berlapis dinilai dengan memasang supercapacitors simetri (ASC) menggunakan bahan berlapis sebagai anod dan karbon komersial diaktifkan sebagai katod. Prestasi elektrokimia ASC dibandingkan dengan peranti simetri direka menggunakan karbon komersial diaktifkan (AC). Prestasi terbaik ASC melaksanakan dihantar $E_s \sim 63$, ~ 17, dan ~ 42 Wh/kg pada $P_s \sim 962$, ~ 600, dan ~ 960 W/kg untuk Na-MnO₂//AC, Na₂Ti₂O₄(OH)₂//AC sel-sel, dan Mo₉Se₁₁//AC dalam elektrolit dioptimumkan iaitu 1M LiOH, 1M KOH and 3M LiOH, masing-masing, yang mempunyai magnitud lebih tinggi daripada yang dicapai oleh peranti AC//AC. Na- $MnO_2//AC$ menunjukkan pengekalan ~ 98% penyimpanan caj, lebih baik daripada peranti yang satu lagi; oleh itu, peranti ini sesuai untuk aplikasi komersial.