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ABSTRACT 

 

Supercapacitors (SCs) store electrochemical energy at an electrode – electrolyte 

interface with high power density (PD), fast recharge capability and long cycle life. The 

SCs are two types according to the charge storage mechanisms: electric double layer 

capacitors (EDLCs) and pseudocapacitors (PCs). Allotropes and polymorphs of carbon 

are choice to build EDLCs electrodes whereas PCs are built from nanostructured metal 

oxides, hydroxides, chalcogenides and conducting polymers. Broad objective of this 

doctoral research is to develop a SC device with PC as anode and EDLC as cathode – 

this type of devices are called asymmetric supercapacitors (ASCs). Popular PC 

electrodes such as MnO2 and Co3O4 have poor electrical conductivity – making their 

composite with conducting polymers such as polyaniline (PANI) is proposed to be a 

superior PC electrode. In this research, MnO2 and Co3O4 were synthesized by 

hydrothermal reaction and molten salt methods and their polymeric composite were 

developed by in situ polymerization. The materials were characterized by thermal 

analyses, X-ray and electron diffraction, FTIR spectroscopy, gas adsorption studies, 

scanning and transmission electron microscopy, and cyclic voltammetry. The 

electrochemical properties of the electrodes were evaluated systematically using cyclic 

voltammetry, galvanostatic charge–discharge cycling, and electrochemical impedance 

spectroscopy. The relationship between the pores in the electrodes and the size of the 

solvated ions in the electrolyte on the final capacitance in various aqueous electrolytes 

were investigated – the pores smaller than the size of the solvated ions do not contribute 

to the capacitance of the electrode. Aqueous KOH shown the best diffusion coefficient 

(6.8 × 10-10 cm2 s-1) and capacitive properties in this study; therefore, it was chosen as 

the electrolyte of choice. The PANI provided faster ion channeling to the surface of 

metal oxides and showed improved charge storage capacity than their bare analogues. 

Highest specific capacitance (CS) obtained in this study was in a PANI composite of 

Co3O4 synthesized by the molten salt method (CS ~985 F g-1 at 2 mV s-1), recording an 

increase of ~253% compared to its bare analogue. Three choice of EDLC electrodes 

were considered in this study, viz. (i) activated carbon from palm kernel shells (PKS) as 

it form a local abundant natural resource, (ii) commercial activated carbon (AC), and 

(iii) ordered mesoporous carbon (OMC). The  PKS were pyrolyzed and activated using 

physical and chemical activation methods whereas the other two were obtained from 

commercial sources. Structural, thermal, morphological, surface, and electrochemical 

properties of the carbon electrodes were also systematically studied as done for the PC 

electrodes. The PKS activated carbon showed high areal capacitance (~45 F cm-2), 

which is one of the highest reported so far in literature, besides showing high cycle 

stability (95–97%). The ASCs were fabricated using the PC electrodes as anodes and 

carbons as cathodes. For MnO2 series, PANI-MnO2 (hydrothermal)//OMC recorded the 

highest energy density (ED) ~27 Wh kg-1 at PD ~400 W kg-1 whereas for Co3O4 series, 

PANI-Co3O4 (hydrothermal)//OMC gives ED of ~23 Wh kg-1 at similar PD. Despite its 

nominally smaller ED, the Co3O4 based device showed superior cycling stability than the 

other.  
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ABSTRAK 

 

Superkapasitor (SCs) menyimpan tenaga elektrokimia pada antara muka elektrod – 

elektrolit dan mempunyai ketumpatan kuasa  (PD) yang tinggi, pantas untuk pengecasan 

semula dan jangka hayat yang panjang. Menurut mekanisma simpanan cas, SC terdiri 

dari dua jenis: superkapasitor elektrik dua lapisan (EDLCs) dan pseudokapasitor (PCs). 

Alotrop dan polimorf karbon adalah pilihan untuk membangunkan elektrod EDLCs 

sementara PCs dibangunkan dari logam oksida berstruktur nano, hidroksida, 

chalcogenida dan polimer berkonduksi. Objektif luas kajian kedoktoran ini ialah 

membangunkan peranti SC dengan PC sebagai anod dan EDLC sebagai katod – peranti 

jenis ini dikenali sebagai superkapasitor asimetrik (ASCs). Elektrod PC yang popular 

seperti MnO2 dan Co3O4 mempunyai konduksi elektrik yang lemah – di mana komposit 

dengan polimer berkonduksi seperti polianilin (PANI) dicadangakan untuk penghasilan 

elektrod PC yang lebih baik. Dalam kajian ini, MnO2 dan Co3O4 disintesis dengan 

tindakbalas hidroterma dan kaedah garam lebur dan komposit polimer pula dibangunkan 

menggunakan kaedah pempolimeran in-situ. Bahan-bahan yang telah disintesis dicirikan 

menggunakan analisis terma, pembelauan electron dan sinar-X, spektroskopi FTIR, 

kajian penjerapan gas, mikroskopi imbasan dan transmisi elektron, dan voltametri 

berkitar. Sifat elektrokimia elektrod dinilai secara sistematik menggunakan voltammetry 

berkitar, kitaran cas–discas galvanostatik, dan spektroskopi impedans elektrokimia. 

Hubungkait antara liang elektrod dan saiz ion tersolvat dalam elekrolit terhadap 

kapasitan akhir dalam pelbagai elektrolit telah dikaji – liang bersaiz lebih kecil dari saiz 

ion tersolvat tidak menyumbang kepada kapasitan elektrod. KOH akuas menunjukkan 

koeffisi  difusi  (6.8 × 10-10 cm2 s-1) dan sifat kapasitan terbaik dalam kajian ini; oleh itu, 

ia dipilih sebagi elektrolit. PANI menghasilkan penyaliran ion yang cepat kepada 

permukaan logam oksida dan menunjukkan peningkatan kapasiti storan cas berbanding 

analog asal. Kapasitan spesifik (CS) tertinggi yang direkodkan dalam kajian ini ialah 

komposit PANI dengan Co3O4 yang disintesis mengan kaedah logam lebur (CS ~985 F 

g-1 at 2 mV s-1), peningkatan ~253% berbanding analog asal. Tiga jenis elektrod EDLC 

diperincikan dalam kajian ini, iaitu (i) karbon taraktif dari tempurung kelapa sawit 

(PKS) memndangkan ia merupakan sumber semulajadi yang banyak didapati, (ii) 

karbon teraktif (AC) komersil dan (iii) karbon berliang meso tersusun (OMC). PKS 

dipirolisis dan diaktifkan menggunakan kaedah pengaktifan kimia dan fizik sementara 

dua lagi karbon diperolehi dari sumber komersil. Sifat struktur, terma, morfologi, 

permukaan dan elektrokimia elektrod karbon dikaji secara sistematik seperti yang 

dilakukan kepada elektrod PC. Karbon teraktif PKS menunjukkan kapasitan area yang 

tinggi (45 F cm-2), merupakan salah satu nilai tertinggi berbanding literatur, selain 

menunjukkan stabiliti kitaran yang tinggi (95 – 97%). Peranti ASCs yang difabrikasi 

menggunakan elektrod PC sebagai anod dan karbon sebagai katod. Untuk siri MnO2, 

PANI-MnO2(hidroterma)//OMC mencatatkan ketumpatan tenaga (ED) tertinggi ~27 Wh 

kg-1 pada PD ~400 W kg-1 sementara untuk siri Co3O4, PANI-Co3O4(hidroterma)//OMC 

memberikan ED ~23 Wh kg-1 pada PD yang sama. Walaupun mempunyai ED yang kecil, 

peranti berasaskan Co3O4 menunjukkan stabiliti kitaran yang lebih baik berbanding 

elektrod lain. 

 

  


