STUDY ON SEDIMENT SIZE AND DISCHARGE AT LEBIR RIVER DUE TO 2014 FLOOD

RAJA IRNI FATINI BINTI RAJA IDNAN

BACHELOR OF CIVIL ENGINEERING (HONS) UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

JA IDNAN		
AND DISCHARGE AT LEBIR		
Academic Session : 2015/2016		
CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*		
ormation as specified by the ere research was done)*		
be published as online open		
I acknowledge that Universiti Malaysia Pahang reserve the right as follows:		
 The Thesis is the Property of University Malaysia Pahang The Library of University Malaysia Pahang has the right to make copies for the purpose of research only. The Library has the right to make copies of the thesis for academic exchange. 		
(Signature of Supervisor)		
NADIATUL ADILAH BT		
AHMAD ABDUL GHANI Name of Supervisor Date: 23 rd JUNE 2016		

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction

STUDY ON SEDIMENT SIZE AND DISCHARGE AT LEBIR RIVER DUE TO 2014 FLOOD

RAJA IRNI FATINI BINTI RAJA IDNAN

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor in Civil Engineering (Hons.)

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering (Hons)

:
: PUAN NADIATUL ADILAH BT AHMAD ABDUL
GHANI
: LECTURER
: 23 rd JUNE 2016

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature:Name:RAJA IRNI FATINI BT RAJA IDNANID Number:AA12160Date:23rd JUNE 2016

TABLE OF CONTENTS

2.1	Introduction to Sediment	5
2.2	Classification of Sediment	6
2.3	Sediment Grain Size Analysis	7
	2.3.1 Sieve Analysis2.3.2 Laser Diffraction Analysis	7 8
2.4	Sediment Grade Scale and Classification	9

Page

2.4.1 Udden-Wentworth Classification	9
2.4.2 Standard USDA Soil Texture Triangle	11
2.5 Sediment Transport Formula	12
2.5.1 Colby	13
2.5.2 Engelund-Hansen	14
2.5.3 Inglis-Lacey	14
2.5.4 Ackers-White	15
2.5.5 Yang's Stream	16
2.6 Sediment Transport Problem	18
2.7 Material and Method Measurement	19
2.7.1 Laboratory Analysis	
- ·	20

CHAPTER 3 METHODOLOGY

3.1 Overview Methodology	22
3.2 Sampling Area	24
3.3 Station Description	25
 3.3.1 Station 1 3.3.2 Station 2 3.3.3 Station 3 3.3.4 Station 4 3.3.5 Station 5 	25 26 27 27 28
3.4 Collecting Sample	29
3.5 Sample Preparation	30
3.6 Laboratory Test	30
3.6.1 Sieve Analysis3.6.2 Gravimetric Method	31 32
3.7 Tabulate Data	33

CHAPTER 4 ANALYSIS AND DISCUSSION

4.1	Introduction	34
4.2	Sediment Characteristic	35
	4.2.1 Size of Sediment	35

	 4.2.2 Rainfall Event 4.2.3 Flow Rate, Q 4.2.4 Total Suspended Solid (TSS) 4.2.5 Sediment Discharge, qs 4.2.6 Relationship between Total Suspended Solid and Flow Rate 4.2.7 Relationship between Sediment Discharge and Flow Rate 4.2.8 Relationship between Mean Grain Size and Flow Rate 4.2.9 Relationship between Mean Grain Size 	43 44 46 47 51 52 56 57
	and Sediment Discharge	
CHAPTER 5	CONCLUSION AND RECOMMENDATIONS	
	5.1 Conclusion	62
	5.2 Recommendations	64
REFERENCES		65
APPENDIX		
А	Result on Sediment Discharge	68
В	Result on Sieve Analysis	71
С	Result on Total Suspended Solid	74

х

LIST OF FIGURES

Figure No.	Title	Page
2.1	Standard USDA Soil Texture Triangle (USDA,1993	11
3.1	Flow Chart of the Research	23
3.2	Maps of Lebir River from Google Maps	24
3.3	Location of the station from Google Earth	25
3.4	View of Station 1	26
3.5	View of Station 2	26
3.6	View of Station 3	27
3.7	View of Station 4	28
3.8	View of Station 5	28
3.9	Five of Sediment Sample	29
3.10	Six Bottles Sample	29
3.11	Before Oven Dry	30
3.12	After Oven Dry	30
3.13	Sieve pan in descending order	31
3.14	Sieve in mechanical shaker	31
3.15	Cooling in Desiccator	32
3.16	Oven Dry	32
4.1	Distribution Size at Station 1	35
4.2	Sediment Grain Size at Station 1	36
4.3	Distribution Size at Station 2	37
4.4	Sediment Grain Size at Station 2	37
4.5	Distribution Size at Station 3	38
4.6	Sediment Grain Size at Station 3	39
4.7	Distribution Size at Station 4	40
4.8	Sediment Grain Size at Station 4	40
4.9	Distribution Size at Station 5	41
4.10	Sediment Grain Size at Station 5	42

4.11	Rainfall Event for 7 years near the Lebir River	43
4.12	Monthly Average Rainfall for 7 years near the Lebir	44
	River	
4.13	Flow Rate at Lebir River	45
4.14	Total Suspended Solid at Lebir River	46
4.15	Sediment Discharge (Engulend Hansen)	48
4.16	Sediment Discharge (Yang's Stream)	49
4.17	Sediment Discharge (Colby)	50
4.18	Relationship between Total Suspended Solid and Flow	51
	Rate	
4.19	Relationship between Sediment Discharge and Flow	53
	Rate (Engulend Hansen)	
4.20	Relationship between Sediment Discharge and Flow	54
	Rate (Yang's Stream)	
4.21	Relationship between Sediment Discharge and Flow	55
	Rate (Colby)	
4.22	Relationship between Mean Grain Size and Flow Rate	56
4.23	Relationship between Mean Grain Size and Sediment	58
	Discharge (Engulend Hansen)	
4.24	Relationship between Mean Grain Size and Sediment	59
	Discharge (Yang's Stream)	
4.25	Relationship between Mean Grain Size and Sediment	60
	Discharge (Colby)	

LIST OF TABLES

Table No.	Title	Page
2.1	Udden-Wenthworth Scale Udden (1898) and Wentworth	10
	(1922)	
A1	Sediment properties and river level	68
A2	Approximate Physical Properties	68
A3	Sediment Grade Scale and Approximate Properties	69
A4	Limitation for Total Load Method	70
A5	Sediment Discharge Result on Total Load Method	70
B1	Result on Sieve Analysis for Station 1	71
B2	Result on Sieve Analysis for Station 2	71
B3	Result on Sieve Analysis for Station 3	72
B4	Result on Sieve Analysis for Station 4	72
B5	Result on Sieve Analysis for Station 5	73
C1	Result on Total Suspended Solid	74

LIST OF SYMBOL

D_{50}	Particles size in m, at which 50% of the bed material by the weight is
	finer
u _s	Shear velocity (m/s): $u_s = \sqrt{\tau_0/\rho}$
v_{cr}	Average Flow Velocity (m/s) at incipient motion
υ	kinematic viscosity, (m^2/s)
S	energy slope, (m/m)
V	average velocity, (m/s)
G	Acceleration of gravity
Sg	Specific Gravity of Sediment
Q	Total water discharge
qs	Sediment discharge
γ	Unit weight of water
γ_s	Unit weight of solid particles
А	Area of cross section

LIST OF ABBREVIATIONS

TSS	Total Suspended Solid
DDM	Degrees, Decimals Minutes
UMP	Universiti Malaysia Pahang

STUDY ON SEDIMENT SIZE AND DISCHARGE AT LEBIR RIVER DUE TO 2014 FLOOD

RAJA IRNI FATINI BINTI RAJA IDNAN

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor in Civil Engineering (Hons.)

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

ABSTRACT

A study on sediment was conducted at the Lebir River. Sediment is solid material that deposited in a new location by a river. It can be in many shapes and size. The deposition of sediment process was effected depends on river flow. This study was conducted to determine type and size of sediment and sediment discharge at Lebir River. There are five station of sediment sample that was taken to get that parameter. The sediment grain size was analysing through Sieve Analysis as to get type of sediment and mean grain size while the concentration of sediment will be measured through Total Suspended Solid (TSS). Most of the sample has course sand, very course sand and fine gravel type based on Udden-Wentworth scale. There are different values for TSS starting from Station 1 until Station 5 with 520mg/l, 917mg/l, 1331mg/l, 1337mg/l and 422mg/l. By using three sediment transport function which are Engulend Hansen, Yang's Stream and Colby Formula, the value of sediment discharge for each formula are quite different because the rate is related to the size of sediment. So that, Engulend Hansen Formula was preferred because meets the requirements compare to other function. The sediment discharge value by using this method starting from Station 1 until Station 5 are 0.159kg/m-s, 0.188kg/m-s, 0.087kg/m-s, 0.044kg/m-s and 0.006kg/m-s.

ABSTRAK

Satu kajian mengenai sedimen telah dijalankan di Sungai Lebir. Sedimen adalah bahan pepejal yang bergerak di lokasi yang baru dengan melalui sungai. Ia terdapat dalam pelbagai bentuk dan saiz. Pemendapan proses sedimen telah dilaksanakan bergantung kepada aliran sungai. Kajian ini dijalankan untuk menentukan jenis dan saiz sedimen dan pelepasan sedimen di Sungai Lebir. Terdapat lima stesen sampel sedimen yang diambil untuk mendapatkan parameter yang terlibat. Saiz sedimen bijirin telah dianalisis melalui Analisis Ayak untuk mendapatkan jenis sedimen dan min saiz butiran manakala kepekatan sedimen akan diukur melalui Jumlah Pepejal Terampai (TSS). Kebanyakan sampel mempunyai pasir tentu, sangat tentu pasir dan jenis batu halus berdasarkan skala Udden-Wentworth. Terdapat nilai yang berbeza untuk TSS pada setiap stesen bermula dari Stesen 1 sehingga Stesen 5 dengan 520mg/l, 917mg/l, 1331mg/l, 1337mg/l dan 422mg/l. Dengan menggunakan tiga fungsi pengangkutan sedimen iaitu Engulend Hansen, Yang Stream dan Colby formula, nilai pelepasan sedimen bagi setiap formula adalah agak berbeza kerana kadar adalah berkaitan dengan saiz sedimen. Disebabkan itu, formula Engulend Hansen telah dipilih kerana memenuhi syarat-syarat penggunaan formula berbanding dengan fungsi lain. Nilai sedimen pelepasan dengan menggunakan kaedah ini bermula dari Stesen 1 sehingga Stesen 5 adalah 0.159kg/m-s, 0.188kg/m-s, 0.087kg/m-s, 0.044kg/m-s dan 0.006kg/m-s.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Sediment is a solid material that deposited in a new location by a flow stream. The sediment normally will be carried out from their original position by water surface movement or water runoff then will be deposited in the streams, wetlands as well as lakes. The characteristics of sediments can consist of rocks and minerals as well as the remains of plants and animals that lay on the land surface. It can be differing depends on their grain size classification either can be as small as a grain of sand and silt or as large as a boulder and gravel. Sediment is one of the largest nonpoint source pollutants and it is the primary factors that contribute to the effects for weakening of water surface quality.

One of the factors that contribute to the sediment formation is the land use activities such as civil construction and maintenance, mining, agriculture, commercial and residential development as well as timber harvesting. When there are in rainy day, all of this land disturbing activities will allows weakening of soil particles causing the sediment moves from one place to another by water surface movement through the process of erosion. Generally erosion process means the deposition and removal of rock as well as soil. In this process, the sediment will be deposited through either by water, wind as well as ice. The water surface movement then washes the sediment likes gravel, sand as well as pebbles move down from their original state which is creek deposited into the river finally to the bottom of the river or river deltas.

Sediment then will be transported along the river. Another name for sediment transport is sediment load. Sediment load can be categorized based on their grain size classification either can be suspended load, bedded as well as wash load. Suspended sediment commonly the sediment will be floating in the body of the river while bed sediment will be settled down on the bottom of a bed river. While suspended load is the amount of sediment that transport along the river to the downstream within the water column by the water flow. The size of particles for sediment that can be carried as suspended load will be depending on the flow rate. In a low water flow rate will cause a larger particles of sediment are more likely will fall through the upwards current to the bottom unless the flow rate increases then the large particles can be transport. In addition the suspended sediment will not necessary remain suspended if the flow rate slows. While for the wash load, it is a subset of the suspended load. It is the finest sediment typically it diameter less than 0.00195mm. The wash load is distinguished from suspended load because during a low water rate or there is no flow period, it will not settle to the bottom of a waterway.

Besides, bed load is the part of the sediment transport moves possible in rolls, slides as well as bounces along the bottom of a waterway. When the sediment sustains intermittent contact with the streambed, they are not truly suspended and the movement is neither uniform of continuous. Bed load will occur when there are the force of the water flow is strong enough to overcome the weight and cohesion of the sediment. While the particles are pushed along, they typically do not move as fast as the water around them as the flow rate is not great enough to fully suspend them. Bed load transport can occur during low flows for smaller particles or at high flows for larger particles. In situations where the flow rate is strong enough some of the smaller bed load particles can be pushed up into the water column and become suspended.

1.2 PROBLEM STATEMENT

Heavy rainfall that began on the 17th of December, 2014, led to flash flooding and it is the one of the serious flood issue in recent years. Later, three days of continuous torrential rain fell from the 21st to the 23rd of December, 2014, in Gua Musang. As a result, the water levels of three major rivers, the Galas River in Dabong, the Lebir River in Tualang and the Kelantan River rose drastically.

Regarding to this issue, there are many factors that contributes to this problem. In fact, when there is rainfall, the gravity allows the surface water moves from higher to the lower ground then into the stream. As the water runoff flows, the water will pick up soil, sand as well as loose material that lay on the land surface called sediment. The sediment then will be carried out by water surface movement deposited to the river stream through the process of erosion. Thus, this would result to high amount of concentration as the eroded soil moves into the river by sediment transport.

Another name for sediment transport is sediment load. The total load in sediment transport includes all particles moving comparing depending on sediment grain size characteristics either bed load, suspended load and wash load. The transportation of the sediment load will be effected by water discharges and sediment grain size. When the greater water discharge, more sediment will be transport or otherwise. Water flow must be strong enough to suspend sediment particles on the body of the river as they transport downstream or will simply push the sediment along the bed of the waterway. The slower of water rate in streams will cause the sediment to starts settle down to the bed stream. In over period of time causing the river to overflow or flooding. Larger sediments are dropped in steep areas, but smaller sediments can still be carried.