UNDRAINED SHEAR STRENGTH OF SOFT CLAY REINFORCE WITH SINGLE 16MM DIAMETER ENCAPSULATED BOTTOM ASH COLUMN

NABILAH BINTI MD MASHOD FAKEH

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT		
Author's full name : <u>NABI</u>	LAH BINTI MD MAS	<u>HOD FAKEH</u>
Date of birth : 07 JA	<u>NUARY 1993</u>	
Title : UNDI	RAINED SHEAR STR	ENGTH OF SOFT CLAY
<u>KEIN</u> ENCA	APSULATED BOTTO	M ASH COLUMN
Academic Session : 2015/2	2016	
I declare that this Final Year	r Project Report is class	ified as:
CONFIDENTIAL	(Contains confidential i 1972)*	nformation under the Official Secret Act
RESTRICTED	(Contains restricted inf	ormation as specified by the organization
	where research was don	ne)
V OPEN ACCESS	I agree that my thesis to	b be published as online open access (full text)
I acknowledged that Univers	iti Malaysia Pahang reser	rves the right as follows:
1. The Final Year F	roject Report is the prop	perty of Universiti Malaysia Pahang.
2. The Library of Universiti Malaysia Pahang has the right to make copies for the purpose		
of research only.		
3. The Library has th	e right to make copies of	the thesis for academic exchange.
Certified by:		
(STUDENT'S SIGNATU	RE)	(SIGNATURE OF SUPERVISOR)
930107-06-5500		DR. MUZAMIR BIN HASAN
(NEW IC NO. / PASSPOI	RT NO.)	NAME OF SUPERVISOR
Date: 30 JUNE 2016		Date: 30 JUNE 2016

NOTES * If the Final Year Project Report is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for condentially or restriction

UNDRAINED SHEAR STRENGTH OF SOFT CLAY REINFORCED WITH SINGLE 16MM DIAMETER ENCAPSULATED BOTTOM ASH COLUMN

NABILAH BINTI MD MASHOD FAKEH

A thesis submitted in fulfillment of the requirement for award of the degree of B.ENG (HONS.) CIVIL ENGINEERING

> Faculty of Civil Engineering & Earth Resources UNIVERSITI MALAYSIA PAHANG

> > **JUNE 2016**

SUPERVISOR'S DECLARATION

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of degree of Bachelor of Civil Engineering"

Signature	:
Name of Supervisor	: DR. MUZAMIR BIN HASAN
Position	: SENIOR LECTURER
Date	: 30 JUNE 2016

STUDENT'S DECLARATION

"I declare that this thesis entitle "Undrained Shear Strength of Soft Clay Reinforced with Single 16mm Encapsulated Bottom Ash Column" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not currently submitted in candidature of any other degree." "

Signature:Name of Supervisor: NABILAH BT. MD MASHOD FAKEHDate: 30 JUNE 2016

TABLE OF CONTENT

	Page
DECLARATION	ii
DEDICATION	iv
ACKNOWLEGMENT	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENT	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATION	xvi

CHAPTER 1	INTRODUCTION	
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objective	4
1.4	Scope of Study	4
1.5	Significant of Study	6

CHAPTER 2	LITERATURE REVIEW	
2.1	Introduction	7
2.2	Soft Soil	7
	2.2.1 Properties of Soft Soil	9
	2.2.2 Compressibility and Consolidation	10
	2.2.3 Undrained Shear Strength	11
2.3	Bottom Ash	12
	2.3.1 Properties of Bottom Ash	14

CHAPTER 3	METHODOLOGY	
2.6	Critical Column Length	32
2.5	Small Scale Modelling on Granular Column	31
	2.4.4 Grouting and Injection	29
	2.4.3.1 Types of Vertical Drains	28
	2.4.3 Vertical Drains	27
	2.4.2 Vibro-Stone Column	26
	2.4.1 Stone Column	25
2.4	Ground Improvement	24
	2.3.1.3 Chemical Properties of Bottom Ash	22
	2.3.1.2.4 Compressibility	22
	2.3.1.2.3 Compaction	21
	2.3.1.2.2 Shear Strength	20
	2.3.1.2.1 Permeability	18
	2.3.1.2 Mechanical Properties of Bottom Ash	18
	2.3.1.1.2 Specific Gravity	17
	2.3.1.1.1 Particle Size Distribution	15
	2.3.1.1 Physical Properties of Bottom Ash	15

3.1	Introduction	34
3.2	Selection of Ground Improvement Technique	36
3.3	Selection of Material	36
3.4	Sample Collection	37
3.5	Laboratory Works	38
	3.5.1 Laboratory Work for Determination of Physical and	39
	Mechanical Properties	
	3.5.1.1 Atterberg Limit Test	40
	3.5.1.2 Relative Density Test	41
	3.5.1.3 Hydrometer Test	42
	3.5.1.4 Specific Gravity Test	43

	3.5.1.5 Permeability Test	43
	3.5.1.6 Dry Sieve Test	44
	3.5.1.7 Standard Compaction Test	45
	3.5.1.8 Direct Shear Test	46
3.6	Reinforcing Soft Clay with Single Encapsulated Bottom Ash	47
	Column	
	3.6.1 Preparation of Samples	47
	3.6.2 Installation of Bottom Ash Column	50
	3.6.3 Unconfined Compression Test	51
CHAPTER 4	RESULT AND DISCUSSION	
4.1	Introduction	53
4.2	Summary of Kaolin and Bottom Ash	54
4.3	Physical Properties	57
	4.3.1 Atterberg Limit Test	57
	4.3.2 Specific Gravity	58
	4.3.3 Particle Size Distribution	60
4.4	Mechanical Properties	61
	4.4.1 Standard Proctor Compaction Test	61
	4.4.2 Permeability	63
	4.4.3 Direct Shear Strength	64
4.5	Reinforcing Soft Clay with Bottom Ash Column	65
	4.5.1 Stress – Strain Behavior under Axial Load	65
	4.5.2 Effect of Bottom Ash Columns on Shear Strength	66
	4.5.3: Effect of Column Penetration Ratio	69
	4.5.4 Effect of Height over Diameter of Column	72
	4.5.5 Effect of Volume Replacement Ratio	75

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

Introduction

5.1

Х

79

5.2	Conclusion	79
5.3	Recommendation	82

REFERENCES

APPENDIX

А	ATTERBERG LIMIT TEST	89
В	SPECIFIC GRAVITY RESULT	90
С	HYDROMETER TEST RESULT	92
D	SIEVE ANALYSIS TEST	93
E	COMPACTION TEST RESULT	94
F	CONSTANT HEAD TEST RESULT	98
G	FALLING HEAD TEST RESULT	99

83

LIST OF TABLE

Table No.	Title	Page
2.1	Particle Size Classification	8
2.2	Characteristics of Clay Soil (Meschyan, 1995)	9
2.3	Index properties of Soft Clay (Mohd Amin et al., 1997)	10
2.4	Undrained Strength classification of clay (Craig, 1983)	12
2.5	Utilization of bottom ash in tones (ACAA, 2008)	13
2.6	Particle Classification (Head, 1992)	15
2.7	Grain size analysis from different power plant (Moulton & Lyle, 1973)	16
2.8	Classification of soil according to permeability value (Head, 1992)	19
2.9	Result of permeability of bottom ash from previous works	19
2.10	Result of direct shear test of bottom ash from previous works(Lee, 2008, Abdul Talib, 2010, and Hassan et al, 2011)	20
2.11	Chemical analysis result from different power plant in Malaysia	23
2.12	Soil Improvement Method	25
2.13	Types of vertical drains (Holtz et al, 1991)	29
3.1	Summary of Laboratory Testing Programme.	38
3.2	Density of various dimensions of bottom ash columns installed in kaolin specimens	50
4.1	Summary of Kaolin clay properties	54
4.2	Summary of Tanjung Bin Bottom Ash properties.	55
4.3	Summary of Polyster Non-woven Geotextile Needlepunched properties (MTS 130)	56
4.4	Comparison of Bottom Ash Specific Gravity Values	59
4.5	Maximum deviator stress and axial strain values at different area replacement ratio and different height penetration ratio	65
4.6	Improvement Shear Strength	67
4.7	Result of Unconfined Compression Test	68

LIST OF FIGURES

Figure No	Title	Page
2.1	Design of a Coal-Fired Power Plant (World Coal	13
	Association, 2015)	
2.2	Bottom Ash (University of Kentucky, 2006)	14
2.3	Sieve analysis of three power plant in Malaysia	17
	(Abdul Talib et al., 2010)	
2.4	Preloading with vertical drains	28
2.5	Compaction grouting implementation (Orense,	31
	2008)	
2.6	Photographs of sand columns beneath circular	33
	footing, before,	
	during and after loading (a) L/d=6, (b) L/d=10,	
	(McKelvey et al, 2004	
3.1	Flowchart of Research Methodology	35
3.2	Specific Location of Tanjung Bin Power Plant,	37
	Johor (Muhardi et al., 2010)	
3.3	Cone Penetration apparatus	40
3.4	A graph of moisture content versus volume	40
3.5	Apparatus of Hydrometer Test	42
3.6	Typical permeability ranges	44
3.7	Mechanical Sieve Shaker	45
3.8	Standard Compaction Test apparatus.	46
3.9	Direct Shear Machine	47
3.10	Customized mould set or 50mm diameter and	48
	100mm high specimen	
3.11	Hole was drilled using 16 mm diameter drill bits	49
3.12	Specimens extruded out of the mould being kept	49
	inside the case	
3.13	Detailed column arrangement for single bottom ash	50
	column installed in clay specimens	
3.14	The apparatus use for Unconfined Compression	52
	Test	
4.1	Graph of penetration versus moisture content	57
4.2	Plasticity Chart (BS 1377-Part 2: 1990 : 4.5 & 6.5)	58
4.2	Plasticity Chart (BS 1377-Part 2: 1990 : 4.5 & 6.5)	58
4.3	Particle size of distribution of kaolin clay	60
4.4	Particle size of distribution of bottom ash	61
4.5	Graph compaction test of kaolin	62
4.6	Graph compaction test of bottom ash	63

4.7	Graph of shear stress versus normal stress	64
4.8	Deviator stress versus axial strain at failure for	66
	10.24 % area replacement of bottom ash column at	
	different penetration ratio	
4.9	Shear Strength versus Height Penetration Ratio	69
4.10	Improvement Shear Strength with Height	70
	Penetration Ratio for Singular Encapsulated Bottom	
	Ash Column.	
4.11	Correlation Graph of Shear Strength with	71
	Penetration Ratio	
4.12	Correlation Graph of Improvement Shear Strength	71
	with Height Penetration Ratio.	
4.13	Shear Strength versus Height over Diameter of	73
	Column	
4.14	Improvement Shear Strength versus Height over	73
	Diameter of Column	
4.15	Correlation of Shear Strength versus Height over	74
	Diameter of Column	
4.16	Correlation of Improvement Shear Strength versus	75
	Height over Diameter of Column	
4.17	Shear Strength versus Column Volume Penetration	76
	Ratio	
4.18	Improvement Shear Strength versus Column	76
	Volume Penetration Ratio	
4.19	Correlation of Shear Strength versus Column	77
	Volume Penetration Ratio	
4.20	Correlation of Improvement Shear Strength versus	78
	Column Volume Penetration Ratio	

LIST OF SYMBOLS

Ac	Area of a column
As	Area of a sample
H _c	Height of a column
Hs	Height of a sample
Vc	Volumes of a column
Vs	Volumes of a sample
Dc	Diameter of a column
Si	Immediate settlement
Sc	Primary consolidation
τ	Shear strength of the soil
σ	Effective normal stress
ф	Cohesion
W _L	Liquid limit
W _p	Plastic limit
I_p	Plastic Index
Wopt	Optimum water content
$q_{\rm u}$	Deviator stress
Su	Undrained shear stress
Δs_u	Improvement undrained shear strength
ρ _d	Dry density
R^2	Correlation cohesion

LIST OF ABBREVIATION

ACAA	American Coal Ash Association
AASHTO	American Association of State Highway
	and Transportation Officials
ASTM	American Society of Testing Material
BS	British Standard
BSCS	British Soil Classification System
EDS	Energy Dispersive Spectrometry
EPF	Employee Provided Fund
FHWA	Federal Highway Administration
MIT	Massachusetts Institute of Technology
ML	Low Plasticity Silt
USCS	Unified Soil Classification System
USDA	US Department of Agriculture
WV	West Virginia
XRF	X-Ray Fluorescence

UNDRAINED SHEAR STRENGTH OF SOFT CLAY REINFORCED WITH SINGLE 16MM DIAMETER ENCAPSULATED BOTTOM ASH COLUMN

NABILAH BINTI MD MASHOD FAKEH

A thesis submitted in fulfillment of the requirement for award of the degree of B.ENG (HONS.) CIVIL ENGINEERING

> Faculty of Civil Engineering & Earth Resources UNIVERSITI MALAYSIA PAHANG

> > **JUNE 2016**

ABSTRACT

Soft clay soil can be categorized as problematic soil. It consists of low shear strength, low permeability and high compressibility characteristics affect the stability and settlement of the structures constructed on this type of soil. A careful design analysis could be taken for any structure built on it. However, those characteristics could be improved through many methods and the easiest method that is being used in the construction field was stone column. On the other hand, coal is one of the world's most important sources of energy. Disposal of bottom ash become environmental issues if it is not effectively reused or recycled for other application. This study is to present suitability in term of shear strength by using bottom ash to replace sand or granular material in column for ground improvement technique using laboratory scale model. Since sand is one of non-renewable material so by using by-product or waste material such bottom ash we can reduce the cost of construction as well as keep the non-renewable natural material in balance. Several experimental procedures are carried out to know the physical and mechanical properties of bottom ash and kaolin clay sample. Kaolin is being used as soil sample and bottom ash as the reinforced columns. The shear strength of the encapsulated bottom ash column measured by Unconfined Compression Test. A total 4 batches of kaolin sample had been tested and each batch consist of 5 specimens represent sample without bottom ash, partially penetration and fully penetration for singular bottom ash column. The specimen used were 50mm in diameter and 100mm in height. The diameter of bottom ash is 16mm and the height of the column are 60mm, 80mm and 100mm. The encapsulated bottom ash was installed at the centre of the specimen. The encapsulated bottom ash column with 10.24% area replacement ratio are 58.21%, 58.66% and 42.58% at sample penetration ratio, H_c/H_s of 0.6, 0.8 and 1.0 respectively. It can be concluded that the shear strength of soft clay could be improved by installation of encapsulated bottom ash column. However the value of shear strength of soft clay inserted with partially penetration column increased more significant compared to the fully penetration column.

ABSTRAK

Tanah lembut adalah tanah yang dikategorikan sebagai tanah yang bermasalah. Ia terdiri daripada kekuatan ricih yang rendah, keupayaan kebolehtelapan yang rendah dan ciri kebolehmampatan yang tinggi. Analisis reka bentuk yang teliti mesti diambil kira untuk setiap struktur yang di bina di atas tanah tersebut. Walau bagaimanapun, ciri- ciri tersebut boleh diperbaiki melalui banyak kaedah dan kaedah yang paling mudah digunakan dalam bidang pembinaan adalah tiang batu. Sebaliknya, arang batu adalah salah satu sumber yang paling penting bagi sumber tenaga. Pelupusan abu bawah menjadi isu alam sekitar jika ia tidak digunakan semula atau dikitar semula untuk aplikasi lain dengan berkesan. Kajian ini adalah untuk membentangkan kesesuaian dari segi kekuatan ricih dengan mengunakan abu bawah untuk mengantikan pasir atau batu dalam ruangan teknik pembaikan tanah mengunakan model skala makmal. Oleh kerana pasir merupakan salah satu bahan yang tidak boleh diperbaharui maka pengunaan produk sampingan atau bahan sisa sepertu abu bawah dapat mengurangkan kos pembinaan serta dapat menyimpan bahan semulajadi dengan seimbang. Beberapa prosedur eksperimen dijalankan untuk mengetahui sifat-sifat fizikal dan mekanikal abu bawah dan sampel tanah liat kaolin. Kaolin digunakan sebagai sampel tanah dan abu bawah seperti lajur bertetulang. Kekuatan ricih tiang abu bawah yang terkandung diukur oleh ujian mampatan tak terkurung. Sebanyak 4 kumpulan sampel kaolin telah diuji dan setiap kelompok terdiri daripada 5 spesimen mewakili sampel tanpa abu bawah, sebahagiannya penembusan dan penembusan sepenuhnya untuk lajur abu bawah singular. Spesimen yang digunakan ialah 50mm diameter dan 100mm tinggi. Diameter abu bawah adalah 16mm dan ketinggian tiang adalah 60mm, 80mm dan 100mm. Abu bawah diletakkan ditengah-tengah specimen. Tiang abu bawah dengan nisbah luas 10.24% adalah 58.21%, 58.66% dan 42.58% dengan nisbah penembusan H_c/H_s 0.6, 0.8 dan 1.0. Dapat disimpulkan bahawa kekuatan ricih tanah liat lembut boleh diperbaiki dengan pemasangan tiang abu bawah terkandung. Bagaimanapun, nilai kekuatan ricih tanah liat lembut dimasukkan dengan sebahagiannya ruangan penembusan meningkat lebih ketara berbanding dengan ruang penembusan sepenuhnya.

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Malaysia is a developing nation that aiming to be a fully developed country by the year 2020. In order to achieve the vision, engineer of today need to come up with more and more sophisticated technologies and brilliant idea to create products that will save people time, money as well as sustaining the environment. As a developing country, Malaysia desire to implement National Green Technology Policy which headed by the Prime Minister Najib Tun Abdul Razak himself. Malaysia is set to become the largest green construction sector in the South-east Asian region.

The mentioned initiative are as a result of the rising demand for energy. Gas is remain the main fuel source for generation industry however coal is getting favors in the electricity industry. According to Huang (1990), basically there is about 10% of total weight of coal burned produces ash annually in Malaysia. Therefore, every year the value of coal byproduct will be increased. Recently, there are four coal fired power plant in Peninsular Malaysia which are located in Port Dickson, Kapar, Manjung, and Pontian while the other three is in Sarawak and Sabah which located at Sejingkat, Mukah and Lahad Datu. Since human understood that burning coal generate electricity ,coal combustion such fly ash and bottom ash can be consider as waste material have been around and disposed coal ash become an environmental issues and need to be reused effectively.

The coal combustion produce large volume of fly ash and bottom ash. According to Huang (1990), basically 10% of the total weight of coal burner produce coal combustion by-product. Bottom Ash in the other hand has angular in shape and had rough, gritty surface texture with size ranges from gravel to fine sand based on Kim et al. (2005). Since bottom ash is a raw material and had similarity with sand and aggregate, it suitable to be use in the construction to replace that non-renewable materials. An effective utilizing of bottom ash in construction material will decrease the accumulation of by-product in landfills as well as reduce environmental pollution.

Soft clay, in particular soft soil, are found in many areas around the world as well as in Malaysia. This unstable ground according to Brand et al. (1981) is geologically young and under stable condition due to its own weight has not yet undergone significant secondary consolidation by its formation. Generally, soft soil has low shear strength and cannot bear a high imposed load by itself. Mostly the problem of soft soil is related to the stability and settlement. Thus, there are some method to improve its properties and modify the technique such as sand drill, stone column and pilling. Although, there are many methods, but it is costly and uneconomical for large project. Since all method is using non-renewable material, bottom ash which has same characteristic as granular materials can be use and offer an alternative to reduce the disposal cost and conservation of natural soils and land.

As Malaysian, we need to take up the challenge for the use of green and recycle byproduct in order to decrease the usage of non-renewable material as well as method for transform the status of 'by-product' to more recently 'product' that are sought for construction and other material.

1.2 Problem Statement

Soft clay, in particular soft soil, are found in many areas around the world as well as in Malaysia. Soft clay is a soil which has a low shear strength and generally cannot bear a high imposed load by itself. According to Huat (1969), he reported that clay deposits in coastal area of Peninsular Malaysia is between 5 to 30m. Therefore, structure such as bridge, building, dams and highway may not suitable to be construct in this area due to lack of bearing capacity of existing soil. The construction on soft soil is increasing due to lack of suitable land for infrastructures and other developments. Imported soils from cutting of hills and highlands are used for various construction purposes. Thus, soil improvement need to be done on soft soil area.

Soil improvement is a method to increase the bearing capacity and properties of the soil. There are so many method to improve its properties and modify the technique such as sand drill, stone column and pilling. Challenges are faced by geotechnical engineers if the site has soft soil and the problem may occur related to the settlement and stability. However, the usage of non-renewable materials is slightly high in cost. In order to demonstrate effort in protecting the environment against negative impact derive from human activities, we need to emphasis on sustainability.

Bottom ash is a waste material from coal fired power plant. When coal is burned, about 80-90% of unburned material is entrained in flue gas and is captured and recovered as fly ash, remaining 10-20% of the ash is dry bottom ash. The resulting coal ash generated is deposited either in landfill over a vast area of land which is not possible in urban areas or deposited in an ash pond which also has its shortcomings. Tanjung Bin power station produce 180 tonnes per day of bottom ash and 1,620 tonnes per day of fly ash from 18,000 tonnes per day of coal burning alone based on Muhardi et al. (2010).