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Abstract—In this study, the influence of aligned magnetic field on the steady boundary layer flow and heat transfer over a 
stretching sheet together with Newtonian heating is considered. The transformed governing nonlinear boundary layer 
equations in the form of ordinary differential equations are solved numerically by Keller-box method. The numerical 
solutions of the applied magnetic field with different values of aligned angle, 1D  on the velocity and temperature profile are 
presented graphically. It is found that, increases in aligned angle retarded the value of fluid’s velocity and increases the value 
of fluid’s temperature. 
Keywords—boundary layer; heat transfer; aligned magnetic field; stretching sheet 

 
1. INTRODUCTION 

 
The study on fluid flow fluid over a stretching sheet is important in many industrial processes and it has been discover in last 
few decades. One of them in extrusion processes. The production of sheeting material arises in a number of industrial 
manufacturing processes and it’s includes both metal and polymer sheets (Vajravelu and Mukhopadhyay [1]). The quality of 
the final product are depends on the rate of heat transfer at the stretching surface. Due to these important applications, Sakiadis 
[2] first investigated the boundary layer flow on a continuous solid surface moving at constant speed. Sakiadis’s theoretical 
predictions for Newtonian fluids were later verified experimentally by Tsou et al. [3]. Crane [4] was the first who has studied 
the forced convection boundary layer flow over a stretching sheet. The heat and concentration distribution were obtained by 
Gupta and Gupta [5] for isothermal moving plate with suction or blowing. The heat transfer for laminar boundary layer of 
linearly, continuous sheet subject to suction or blowing are studied by Chen and Char [6]. The numerical investigation has 
been done by Salleh et al. [7] and Qasim et al. [8] for laminar boundary layer flow and heat transfer over a stretching sheet 
with Newtonian heating using Keller-box method and Runge-Kutta Fehlberg fourth-fifth order method respectively. Very 
recently, the analytic solutions for Micropolar fluid flow and heat transfer is obtained by Turkyilmazoglu [9] at a permeable 
stretching sheet.  
 
The study of magnetic field has been carried out by numerous researches due to its important in engineering applications such 
as Magnetohydrodynamic (MHD) generator, nuclear reactor for liquid-metal cooling and electromagnetic casting. The exact 
similarity solution was discovered by Pavlov [10] for problem on MHD boundary layer flow of an electrically conducting fluid 
of uniform transverse magnetic field over an elastic plane surface. In conjunction of this, Chakrabarti and Gupta [11] 
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investigate the temperature distribution in the presence of uniform suction to the stretching sheet. Dutta [12] obtained the exact 
solution for temperature distribution in an electrically conducting fluid of steady boundary layer flow with uniform magnetic 
field over a stretching sheet. Meanwhile, the exact similarity transformation of steady electrically conducting fluid with 
uniform magnetic field for MHD flow past a stretching sheet were obtained by Anderson et al. [13] for inelastic power-law 
while Anderson [14] for viscoelastic fluid. A numerical analysis of unsteady magnetohydrodynamic for free convective heat 
and mass transfer in a micropolar fluid over vertical stretching sheet was proposed by Aurangzaib et al. [15]. It is worth to 
mention here, the above past studies focused only on the transverse magnetic field normal to the plate.  
 
Recently, the effect of aligned angle associated with magnetic field on the boundary layer flow problem has been attracting the 
researchers’ interest. A magnetic field is applied with an acute angle ( 0 90q� q ) to the flow region. The influence of aligned 
magnetic field and radiation are being discussed by Sandeep and Sugunamma [16] for unsteady free convective flow of 
dissipative fluid past a vertical plate while Raju et al. [17] has been focus on the problem of steady forced convection flow of 
ferrofluids that moving over a flat plate. An analytical solution was obtained by Kalaivanan et al. [18] for the steady Casson 
fluid with velocity slip boundary condition past a stretching sheet. The boundary layer flow of nanofluid over exponentially 
stretching sheet in porous medium was solved numerically by Sulochana et al. [19].  
 
The aim of the present paper is to investigate the influence of aligned magnetic field on the steady boundary layer flow and 
heat transfer past a stretching sheet with Newtonian heating.  The computation of the problem is done by numerical approach 
which is called Keller-box method.  
 

2. PROBLEM FORMULATION 
 

The steady, incompressible two dimensional forced convection boundary layer flows over a stretching sheet with Newtonian 
heating (NH) is considered. An aligned magnetic field with an acute angle 1D  is applied to the flow as in Fig. 1 and the 
boundary layer equations are 

0u v
x y
w w

�  
w w

                      (1) 

2
2 2

1 12 sinu u uu v uB
x y y

§ ·w w w V
�  Q � D¨ ¸¨ ¸w w Uw© ¹

                  (2) 

2

2
T T Tu v
x y y

§ ·w w w
�  D¨ ¸¨ ¸w w w© ¹

                    (3) 

 
Figure 1: Flow configuration. 

 
with the boundary conditions 

( ) ,   0,   (NH)w s
Tu u x ax v h T
y

w
    �

w
 at 0 y  

0,   u T Tfo o  as foy                    (4) 
where ( )wu x  is the velocity of the stretching surface with a  being a positive constant, 1D  is the inclined angle, V  is 
electrical conductivity, sh  is the heat transfer parameter, T  is the fluid temperature, Tf  is the ambient temperature,Q  is the 
kinematic viscosity, D  is the thermal diffusivity, 1/2

1 0B B x�  is the transverse magnetic field with 0B  is the magnetic-field 
strength. 
 
Introducing the similarity transformation on (1)-(3), subject to the boundary conditions (4)
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where \  is the stream function defined as u
y
\w

 
w  

and v
x
\w

 �
w

, yield 

2 2
1( ) ( ) ( ) ( ) ( )sin 0f f f f MfK K K K K Dccc c c c� � �                   (6) 

1 ( ) ( ) 0
Pr

fT K T Kcc c�                      (7) 

with boundary conditions 
(0) 0,f     (0) 1,f c     (0) [1 (0)]T J Tc  � � (NH),  
( ) 0,f Kc o  ( ) 0T K o  as K of ,                   (8) 

where 
2
0B

M
a

V
U

  is the magnetic field parameter, Pr Q
D

  is the Prandtl number and 1/2( / )sh aJ Q  is the conjugate 

parameter for Newtonian heating. 
According to Crane [4] the exact analytic solution for (6) is expressed as 

( ) 1 ,   ( ) ,f e f eK KK K� �c �   and ( )f e KK �cc  �                 (9a) 
If ( )f K  is given by exact solution (9), then the exact expression for temperature profile is 

Pr  
1( ) ,

f d
C e dK
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K
T K K

f
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f d
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The non-dimensional quantities of physical interest in this problem are the skin friction coefficient fC  and the local Nusselt 
number xNu  are defined by 

1/2Re (0)f xC f cc ,  1/2 1Re 1
(0)x xNu J

T
� § ·

 �¨ ¸
© ¹

,               (10) 

where 2Re ( / )x ax X  is the Reynolds number. 
 

3. METHODOLOGY 
 
The finite difference method is also known as Keller-box method was initiated by Keller [20] and further developed by Keller 
and Cebeci [21, 22]. This numerical approach is completely efficient, accurate and stable for nonlinear boundary layer 
problem. In this method, the nonlinear governing equations are first transformed to first order system. The first order system is 
then approximated using central difference. Since the system is nonlinear equation, the Newton’s method is applied to linearize 
the system and finally, the solutions can be solved by block elimination technique. The calculations are executed in Matlab. 
 
A. First Order System 
The partial differential equations (6) and (7) subjects to the boundary conditions (8) are reduced to a first order system. For that 
matter, the new independent variables are introduced as 

,  ,    f u u v s tc c c                      (10) 
where � �'  is derivative with respect to K . The transformed (6) and (7) can be written as 

2 2
1sin 0v fv u M uDc� � �                    (11) 

1 0
Pr

t ftc �                      (12) 

and the boundary conditions (8) become 
(0) 0,   (0) 1,   (0) [1 (0)]
( ) 0,  ( ) 0 as 

f u t s
u s

J
K K K

   � �
o o of

                 (13) 

 
B. Finite Difference Scheme 
The net rectangle in the K  plane is considered as shown in Fig. 2. The net points are denoted as  

0 10, , 1,2,..., ,

,
j j j

J

      h      j JK K K

K K
�

f

  �  

{
                 (14) 
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where jh  is the jK' -spacing and j  is the sequence of numbers that indicate the coordinate location. 

 
Figure 2: Net rectangle for difference approximations. 

 
The finite difference forms for any points are 

� � � � � �1/2 1

1 ,
2

n n n

j j j� �
ª º �¬ ¼                   (15) 
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1

1/2

,
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                  (16) 

Equations (10) – (12) are approximated by using the central difference at mid-point 
1 2j

nK
�

 of the segment 1 2P P . Thus, the 

following are obtained 
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Equations (17) - (21) are computed for 1,2,...j J  at the given n  and the boundary conditions (13) become 

0 0 0 00, 1, [1 ], 0,   � �  n n n n n
Jf   u   t s   u   J  and 0.n

Js                 (22) 
 

C. Newton’s Method 
The system of nonlinear equations (17) - (21) is linearized by considering the following iterates 

( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( ) ( ), , ,i i i i i i i i i
j j j j j j j j jf f f  u u u   v v vG G G� � � �  �  �  

( 1) ( ) ( ) ( 1) ( ) ( ), .i i i i i i
j j j j j js s s   t t tG G� � �  �                  (23) 

For simplicity, the superscript i from iterates are eliminated and the higher order terms for ( ) ( ) ( ) ( ) ( ), , , ,i i i i i
j j j j jf u v s tG G G G G  are 

dropped, the system of equations (24) is obtained 

� �1 1 1 1/2
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� �1 1 2 1/2
1 ( ) ,
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� �1 1 3 1/2
1 ( ) ,
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where 
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             (27) 

 
According to Cebecci and Bradshaw [23], the boundary condition (23) is fully satisfied with no iteration. Therefore, to 
maintain these correct values in all the iterates, let  

0 0 00, 0, 0, 0Jf u t uG G G G     and 0.JsG                  (28) 
 

D. Block Elimination Technique 
The linearized system of non-linear differential equations (24) has a block- tridiagonal structure which then can be solved by 
block elimination technique. It can be written in the block matrix form as 
> @> @ > @A rG                      (29) 
where 

1 1 1 1

2 2 2 2 2

1 1 1 1 1

[ ] [ ] [ ] [ ]
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.
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The elements of the matrices are 
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If A is nonsingular, then (29) can be factored as 
> @ > @> @

1 1

2 2 2

1 1

[ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

J J

J J

A = L U ,

I
B I

=
I

B I

D
D

D
D

� �

*ª º ª º
« » « »*« » « »
« » « »
« » « »

*« » « »
« » « »¬ ¼¬ ¼

              (36) 

 
where [I] is the identity matrix of order 5, > @iD and > @i*  are 5u5 matrices which elements can be expressed as follows 

> @ > @1 1 ,AD                                   (37) 

> @ > @ > @1 1 1 ,A C*                       (38) 

1[ ] [ ] [ ] [ ],j j j jA BD � � *   2,3,..., ,j J                 (39) 

[ ][ ] [ ],j j jCD *       2,3,..., 1.j J �                   (40) 
Substituting (36) into (29) yield, 
> @> @> @ > @.L U rG                      (41) 
Equation (41) becomes  
> @> @ > @,L W r                     (42) 
by defining 
> @> @ > @,U WG                      (43) 
where 
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1

2

1

[ ]
[ ]

,
[ ]
[ ]

J

J

W
W

W
W
W

�

ª º
« »
« »
« » 
« »
« »
« »¬ ¼

       

and [ ]jW  are 5 u 1 column matrices. From (42), the solution for elements W is obtained 

1 1 1[ ][ ] [ ],W rD                      (44) 

1[ ][ ] [ ] [ ][ ],j j j j jW r B WD � �     2 .j Jd d                  (45) 
The forward sweep is performed to find the elements of W . Then, the elements G  is calculated in backward sweep by the 
following relations 
[ ] [ ],J JWG                      (46) 

1[ ] [ ] [ ][ ],j j j jWG G � � *      1 1.j Jd d �                  (47) 
These calculations are repeated until some convergence criterion is satisfied. Calculations are stopped when 

( )
0 1,
ivG H�                     (48) 

where 7
1 10H �  is a too small fixed value. 

 
4. RESULTS AND DISCUSSION 

 
The system of non-linear ordinary differential equations (6) and (7) with respect to boundary conditions (8) are solved 
numerically using the Keller-box method and the results are presented in tabular as well as graphical form. To validate the 
present results the comparison with previously published results and exact solution has been made for various values of Prandtl 
number by neglecting the magnetic field ( 0)M   and aligned angle 1 0D   at 1J   (see Table 1). It is noticed from Table 1, 
the present results are in a good agreement with the previously published results. Therefore, the authors confident the 
numerical results obtained are accurate and precise for the present problem. 

 
Table 1: Comparative results 

Pr 
                                                          ( )0T  

Salleh et al. 
[7] 

Exact 
equation (9b) 

Turkyilmazoglu 
[9] Present 

3 6.02577 6.051585 6.05158546 6.025776 
5 1.76594 1.760395 1.76039543 1.765941 
7 1.13511 1.116815 1.11681524 1.135107 
10 0.76531 0.764524 0.76452369 0.765312 

 
The current results presented in this paper are limited to distribution of velocity and temperature for various values of aligned 
angle only at fixed values of Pr 1,    0.5J   and 1M  . Fig. 3 and 4 illustrated the effects of aligned angle 1D  on 
distribution of velocity and temperature of fluid respectively. At 1 0D   the flow is in the absence of magnetic field while 

1 / 2D S  indicating the transverse magnetic field on the flow region. It is clearly shown from Fig.3 that increasing value of 
aligned angle 1 0, / 6, / 4, / 3, / 2D S S S S  lead to increase the fluid’s temperature profile. Meanwhile, the fluid’s velocity 
decrease with the increasing values of aligned angle. Physically, the increasing in values of 1D  strengthens the applied 
magnetic field in the flow region which lead to the enhancement of Lorentz forced.  
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Figure 3: Temperature profile for various value of 1D  

 
Figure 4: Velocity profile for various value of 1D  

 

5. CONCLUSION 
 

The numerical analysis on the effect of aligned magnetic field of a Newtonian Fluid flow over a stretching sheet with 
Newtonian heating is discussed in the present study. It is observed that increase in aligned angle enhances the magnetic field 
which leads to decline the fluid’s velocity and increase the fluid’s temperature. 
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