A short review on mesoporous silica-supported catalysts for methane dry reforming

Sharanjit Singh, Osaze Omoregbe, Tan Ji Siang, Fahim Fayaz, Dai-Viet N. Vo*
Faculty of Chemical and Natural Resource Engineering
Universiti Malaysia Pahang (UMP)
Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
*Corresponding author. Tel.: +609 549 2874; fax: +609 549 2889
E-mail address: vietvo@ump.edu.my (D.-V. N. Vo).

Abstract—The aim of this review is to gain a better insight in to the recent developments made in mesoporous silica molecular sieves, such as MCM-41, SBA-15, and SBA-16, as supports for dry reforming of methane. It further explored how different constraints such as the synthesis method for the mesoporous materials and techniques for metal loading on the mesoporous materials influence the dry reforming reactions and products yields. The high surface area and 2D hexagonal arrays of MCM-41 and SBA-15, 3D cage like structure of SBA-16 allow for good dispersion of metals inside their channels, which in turn, facilitates high catalytic activity and less catalyst deactivation. In this review, attention will be given to different strategies for enhancing catalytic activities, and the effect of metal dispersion on mesoporous silica supports.

Keywords—methane dry reforming; mesoporous materials; metal dispersion.

1. INTRODUCTION

Methane is a key constituent of natural gas and cheap source of energy (4.4USD/giga joule), which can be obtained through fermentation and decay of organic materials. Although there are large deposits of natural gas globally, most of them are located in remote areas. Consequently, the transportation of the natural gas to its markets becomes a problem because of the large distance that need to be covered. Moreover, the high diffusibility of methane also makes it problematic in transporting it to the point of utilization. These limitations have led to series of research on how methane can be converted into more useful and easily transportable chemicals. However, properties of methane such as similar electronegativity, high bond dissociation energy of CH3-H bond (439.3 kJ/mol) and low polarity values of carbon and hydrogen, make its conversion at the point of exploration more challenging [1]. Researchers explored different ways by which methane can be converted to easy transportable products.

Methane dry reforming (MDR) is an eco-friendly approach [2], which involves the reaction between two abundantly available greenhouse gases (CH4 and CO2) to produce syngas [3]. The syngas produced in MDR is industrially important because the product ratio (H2/CO ratio) which is close to unity, makes it suitable for production of aldehyde and long chain hydrocarbons by Oxo-synthesis [4] and Fischer-Tropsch (F-T) reaction [5]. Although, other techniques, such as partial oxidation, steam reforming, autothermal reforming, and oxidative dry reforming have been practiced by researchers to produce syngas, the obtained syngas is however, not suitable for F-T synthesis. Steam reforming of methane is currently the most significant method to produce hydrogen [6]. But high H2/CO ≥ 3 (unsuitable for downstream processing such as Fischer-Tropsch reaction), steam corrosion and cost to handle excess of steam are major drawbacks in steam reforming of methane [7]. In literature, CO2 is represented as oxidizing agent in the process of MDR, whereas, CH4 serves as a source of H2. Moreover, there is proportional consumption of one mole of CO2 per mole of CH4 being introduced. Therefore, the reduction of carbon footprint can be achieved by the effective utilization of methane via MDR.

One of the main bottlenecks for production of syngas by MDR is the need for catalyst with anti-sintering property and high stability and resistance against coke formation characteristics. Any catalyst which can overcome these impediments is considered as suitable and good catalyst for MDR. Unfortunately, MDR technology has not yet been established to industrial scale due to the absence of highly stable and active catalyst [8, 9]. Group VIII (noble metals: Ru, Pd, Pt, Rh), transition metals (Ni and Co) are the most commonly used metals for this reaction. The noble metals containing catalyst give promising results against deactivation and coke formation. But their high cost and low availability make these metals uneconomical in comparison to transition metals. Non precious transition metal nickel, has been recommended as the best candidates for methane reforming technologies. Ni metal has excellent capability to rupture C-H and C-C in methane and carbon dioxide to produce syngas [10,
Nickel metal has been impregnated on different supports, such as Al₂O₃, La₂O₃, CeO₂, MgO, SiO₂, ZrO₂, perovskite, and mesoporous materials (MCM-41, MCM-48, SBA-15, SBA-16, and Zeolites), as catalysts for MDR. The introduction of a metal with small particle size on high surface area support is recommended for better dispersion, and strong metal-support interactions [14, 15]. The use of mesoporous materials as metal supports has been recommended because of the open framework and tunable metal porosities provided by these materials [16].

This review highlights the recent work and achievements on the use of mesoporous materials as supports, and the effect of different metal combinations used with the various mesoporous supports for the production of syngas by methane dry reforming. In this review, attention will be given to different strategies for the enhancement of the catalytic activity and effect of subsequent metal deposition on the mesoporous support for dry reforming technology. Several literatures were cited, and there results are compared to provide the better understanding of the effect of different constraints in the mesoporous materials for MDR.

2. EFFECT OF SYNTHESIS TECHNIQUE FOR METAL INCORPORATION IN FRAMEWORK

The efficacy of these materials is exhibited in their mesoporous structures. The mesopores allow the metals to enter inside the channels that enhances catalytic activity [17]. Mobil scientist prepared ordered MCM-41 hexagonal molecular sieves by using cationic cetyl-trimethylammoniumbromide (CTAB) surfactant [18]. The materials are synthesized under conditions where silica surfactant self-assembly and condensation of inorganic species occurs simultaneously [19]. These materials are extensively explored by many researchers for MDR. Zhao et al. reported the use of biodegradable, low cost commercially available non-ionic amphiphilic block copolymer as structure directing agent for the production of well-ordered mesoporous silica (SBA-15). The transition metals in combination with basic promoters is extensively used for almost all reforming technologies. The table below summarizes the performance of different mesoporous materials used for the methane dry reforming and technique of preparation.

A Alberazi et al. [20] used three different type of methods to synthesize ceria-zirconia doped Ni/SBA-15 and investigated its effect on catalytic activity for MDR, where they concluded that the synthesis route has significant effect on the physicochemical features and activity of the catalyst. The co-precipitation method for loading of ceria and zirconia (Cz) and Ni on SBA-15 is effective because it facilitates strong metal-support interactions, which is favourable for high catalytic activity, stability and resistance towards deactivation. Wang, Ning, et. al. [21] incorporated different concentration of cerium promoter inside the framework of SBA-15 by one pot synthesis and then impregnated with nickel and concluded that incorporation of cerium inside framework of SBA-15 promoted the formation of small nickel metallic particles, which eventually suppressed the formation of carbon. Ceria promoted Ni/SBA-15 synthesized by simple impregnation technique for ethanol steam reforming have been explored by the Li, Di, et.al. [22] and they reported that CeO₂ could effectively control the particle size of Ni by strong metal support interaction and exhibited superior activity. The captivity provided by SBA-15 support restricted the nickel particle growth under harsh reaction conditions. Similar kind of strategies have also been applied to the MCM-41 by introducing nickel in the framework, and then impregnating with Ru and Mg for MDR [23]. However, the catalyst was deactivated over a long time-on-stream. This problem of early catalyst deactivation was resolved by introducing Zr³⁺ as promoter, which activated the CO₂ and resulted in high catalytic activity and long term stability [24]. The promotion of nickel-supported SBA-16 by ceria was reported to showed higher durability in MDR reaction when compared to the unpromoted Ni/SBA-16 [25]. The remarkable stability of ceria promoted Ni/SBA-16 was attributed to the cage-like structure of the support, which kept the catalyst framework from collapse.

3. ROLE OF SURFACE AREA AND DISPERSION

The mesoporous materials (SBA-15 and SBA-16) can be synthesized by hydrothermal and non-hydrothermal technique by using different surfactant materials. The silicate mesoporous structures have uniform parallel pores and high surface area, which provides high permeation of metal and low resistance to mass transfer. High pore volume give longer contact time for interaction between active metals and reactants [7]. As earlier mentioned, metal-support interactions play a vital role in catalysts stability. Metal particle growth also helps in enhancing the catalyst stability and activity. Indirectly it enhances the dispersion of metal particles on the silica support. Many strategies have been employed such as insitu self-assembled core shell precursor route to increase the dispersion of nickel and lanthanum on the surface of SBA-15 and this results as high metal support interaction and high catalytic activity and stability [8, 26]. The basic promoters also played crucial role to increase the dispersion of metal on the catalytic support in framework and outside by impregnation and one pot synthesis technique. The wide angle XRD analysis studies clarified that the incorporation of cerium inside framework of SBA-15 promoted dispersion, which results in better dispersion and strong interaction between small nickel metallic particles and support [21]. The strong metal-support interactions by introducing oleic acid precursor route and basic promoter in the catalyst showed excellent catalytic activity and stability for long duration for syngas production by MDR.
Table 1. Summary of performance by mesoporous silica materials used for methane dry reforming

<table>
<thead>
<tr>
<th>Mesoporous material and surface area</th>
<th>Template</th>
<th>Structure</th>
<th>Technique used for metal loading</th>
<th>(X_{\text{CH}4}) and (X{\text{CO}_2}) at (T)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce-Ni/SBA-16</td>
<td>Pluronic F127</td>
<td>Cage like structure & tubular channels</td>
<td>Incipient wetness impregnation</td>
<td>(X_{\text{CH}4} = 72%), (X{\text{CO}_2} = 77%) @973K</td>
<td>(25)</td>
</tr>
<tr>
<td>La-Ni-SBA-15</td>
<td>Tri-block polymer P123</td>
<td>Hexagonal mesoporous structure</td>
<td>Core-shell precursor and Incipient wetness impregnation</td>
<td>(X_{\text{CH}4} = 82%), (X{\text{CO}_2} = 85%) @973K</td>
<td>(26)</td>
</tr>
<tr>
<td>Ni-CZ-SBA-15</td>
<td>Tri-block polymer P123</td>
<td>Mesoporous structure</td>
<td>Two sequential incipient wetness impregnation</td>
<td>(X_{\text{CH}4} = 49%), (X{\text{CO}_2} = 56%) @873K</td>
<td>(20)</td>
</tr>
<tr>
<td>LaNiO(_x)-SBA-15</td>
<td>TCP(E(_2)-PO(_3)-E(_3))</td>
<td>Mesoporous structure</td>
<td>Incipient wetness impregnation and vacuum drying</td>
<td>(X_{\text{CH}4} = 88%), (X{\text{CO}_2} = 91%) @973K</td>
<td>(27)</td>
</tr>
<tr>
<td>Ni-MCM-41</td>
<td>(C_{16}H_{33}(CH_3)NBr)</td>
<td>Mesoporous structure</td>
<td>One-pot hydrothermal procedure</td>
<td>(X_{\text{CH}4} = 66%), (X{\text{CO}_2} = 47%) @873K</td>
<td>(28)</td>
</tr>
<tr>
<td>Pt-Ni-Co-MCM-14</td>
<td>CTAB</td>
<td>Hexagonal mesoporous structure</td>
<td>Wet impregnation method</td>
<td>(X_{\text{CH}4} = 75%), (X{\text{CO}_2} = 7%) @1023K</td>
<td>(29)</td>
</tr>
<tr>
<td>Ni-grafted SBA-15</td>
<td>Non-ionic surfactant P123</td>
<td>Mesoporous material</td>
<td>Atomic layer deposition</td>
<td>(X_{\text{CH}4} = -5%), (X{\text{CO}_2} = -%) @1023K</td>
<td>(30)</td>
</tr>
<tr>
<td>Rh-Ce-SBA-15</td>
<td>P123</td>
<td>Mesoporous framework</td>
<td>Wet impregnation method</td>
<td>(X_{\text{CH}4} = 78%), (X{\text{CO}_2} = 96%) @1073K</td>
<td>(32)</td>
</tr>
<tr>
<td>Ni-Mg-SBA-15</td>
<td>Pluronic P123</td>
<td>2D hexagonal framework</td>
<td>One-pot synthesis method</td>
<td>(X_{\text{CH}4} = 73%), (X{\text{CO}_2} = 80%) @1073K</td>
<td>(33)</td>
</tr>
<tr>
<td>La-Ni-SBA-15</td>
<td>Pluronic P123</td>
<td>P6mm hexagonal symmetry</td>
<td>Wetness impregnation technique</td>
<td>(X_{\text{CH}4} = 82%), (X{\text{CO}_2} = 71%) @1063K</td>
<td>(34)</td>
</tr>
<tr>
<td>Ru-Co/SBA-15</td>
<td>P123</td>
<td>Mesoporous silica</td>
<td>Two solvent method</td>
<td>(X_{\text{CH}4} = 82%), (X{\text{CO}_2} = 71%) @1063K</td>
<td>(35)</td>
</tr>
<tr>
<td>Y doped-Ni-SBA-15</td>
<td>P123</td>
<td>Two dimensional hexagonal with cylindrical pores</td>
<td>Impregnation method</td>
<td>(X_{\text{CH}4} = 36%), (X{\text{CO}_2} = 50%) @1073K</td>
<td>(36)</td>
</tr>
<tr>
<td>Ni/Co-SBA-15</td>
<td>Pluronic P123</td>
<td>Mesoporous structure with cylindrical channels</td>
<td>One pot and Incipient impregnation</td>
<td>(X_{\text{CH}4} = 95%), (X{\text{CO}_2} = 92%) @1073K</td>
<td>(21)</td>
</tr>
<tr>
<td>Ni/MgO-SBA-15</td>
<td>P123</td>
<td>Mesoporous structure</td>
<td>One pot and incipient impregnation</td>
<td>(X_{\text{CH}4} = 74%), (X{\text{CO}_2} = 76%) @1073K</td>
<td>(36)</td>
</tr>
<tr>
<td>Ru-Mg/Ni-MCM-41</td>
<td>(C_{16}H_{33}(CH_3)NBr)</td>
<td>Mesoporous Structure</td>
<td>One pot and Incipient wetness impregnation</td>
<td>(X_{\text{CH}4} = 35%), (X{\text{CO}_2} = 38%) @873K</td>
<td>(23)</td>
</tr>
<tr>
<td>Ce-Ni- SBA-15</td>
<td>P123</td>
<td>Hexagonal porous structure</td>
<td>Two solvent technique</td>
<td>(X_{\text{CH}4} = 97%), (X{\text{CO}_2} = 85%) @923K</td>
<td>(37)</td>
</tr>
</tbody>
</table>
4. CONCLUSION AND FUTURE OUTLOOK

Mesoporous materials show remarkable textural properties which make them attractive as support for MDR catalysts. Catalysts synthesis routes, however, have significant effects on the catalytic performance. In this review, we tried to draw a correlation between the constraints involved in the preparation of mesoporous supports and the catalysts for MDR with catalytic performance by citing various work reported in literature. Properties such as strong metal-support interaction (SMSI) and dispersion can be achieved by different synthesis techniques. Metal dispersion is significant in CH₄ activation step because it is the most important and slowest step during the MDR reactions, and this occurs mainly on the metallic site. High surface and better dispersion provided by mesoporous structure facilitates a better metal to dispersion, which will results in improved catalytic activity. The support played crucial role for activation of carbon dioxide and stability of catalyst by increasing oxygen mobility in the catalytic reaction occurring during MDR.

5. ACKNOWLEDGEMENT

This work was funded by the University Malaysia Pahang- Postgraduate Research grant scheme 160314 and Doctoral scholarship scheme.

6. REFERENCES

The National Conference for Postgraduate Research 2016, Universiti Malaysia Pahang

