

Workshop on : GIS&RS Application in Simulation of Hydrological Process

Dr. ABOLGHASEM AKBARI

Faculty of Civil Engineering & Earth Resources, University Malaysia Pahang (UMP)

14-15 April 2016

Venue: Tehran, Iran

GIS&RS Application in Simulation of Hydrological Process

Query and Spatial Analysis Raster and Vector

Map Overlay

Union, Intersect, Identity, Erase, Symmetrical Difference, Extract Point in Polygon, Line in Polygon, Polygon on Polygon Clip, Select, Split, Table Select

Proximity

Buffer, Multiple Ring Buffer, Near, Point Distance

Statistics

Frequency, Summary Statistics

Symmetrical Difference

14-15 April 2016 ©Dr. A. Akbari

GIS&RS Application in Simulation of Hydrological Process

Split

14-15 April 2016 ©Dr. A. Akbari

GIS&RS Application in Simulation of Hydrological Process

Tehran, Iran

Buffer Multiple Ring Buffer Near Point Distance

Raster Analysis

Local, Focal, Zonal, and Global Functions Map Algebra Terrain Analysis Hydrologic Functions

Arithmetic Operators Example

Logical Operators Example

Logical and Comparison Operators Combination

14-15 April 2016 ©Dr. A. Akbari

Tehran, Iran

Minimum	Lowest Value				
Maximum	Highest Value				
Range Maximum – Minimum					
Sum	Total of all values				
Mean Sum/N					
Sigma Standard deviation					
Variety Number of different values					
Majority	Value occurring most often				
Minority	Value occurring least often				
Median Middle value in a range of ranked values					

14-15 April 2016 ©Dr. A. Akbari

Zonal Operations

<page-header><page-header>

Local Operations

14-15 April 2016 ©Dr. A. Akbari

GIS&RS Application in Simulation of Hydrological Process

Neighbourhood Operations Spatial Filtering

Linear Filters

Take a linear combination of values of a window (3x3, 5x5)

Low Pass Filtering

Integration/Averaging Result: Smoothing noise reduction outlier detection

Non Linear Filters

Take a non linear combination of values within a window

High Pass Filtering

Differentiation Result: Edge enhancement (Making edges sharper) Edge detectors Identification of boundaries

14-15 April 2016 ©Dr. A. Akbari

Tehran, Iran

GIS&RS Application in Simulation of Hydrological Process

Smoothing

14-15 April 2016 ©Dr. A. Akbari

Zone:

- Any two or more connected cells with the same value (e.g. covering the class urban area)
- Neighbourhood is the zone to which the target cells belong
- Usually, one layer defines the zones, another layers contains the values on which the operation is carried out

14-15 April 2016 ©Dr. A. Akbari

Input elevation dataset

d: II I I I I Show: All Selected R				
			•	
9	Polyline	10	3200	-
8	Polyline	9	1600	
7	Polyline	8	1200	
6	Polyline	7	1200	
5	Polyline	6	3600	
4	Polyline	5	1200	
3	Polyline	4	2400	
2	Polyline	3	1000	
1	Polyline	2	1200	

 FID
 Shape
 ID
 CONTOUR

 O Polutine
 1
 1800

Output contour dataset

Rec

14-15 April 2016 ©Dr. A. Akbari

Tehran, Iran

Output slope dataset

GIS&RS Application in Simulation of Hydrological Process

Aspect

It is measured clockwise in degrees from 0—due north—to 360 again due north, coming full circle. The value of each cell in an aspect dataset indicates the direction the cell's slope faces. Flat slopes have no direction and are given a value of -1.

14-15 April 2016 ©Dr. A. Akbari

14-15 April 2016 ©Dr. A. Akbari