

## Workshop on:

# Rainfall-Runoff Simulation Supporting with GIS and Satellite Data

Speaker:

Dr. ABOLGHASEM AKBARI

Faculty of Civil Engineering & Earth Resource, University Malaysia Pahang (UMP)

akhariinhox@vahon.com/akhari@umo.edu.mv

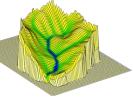
Date: 18-20 July 2016

Venue: FKASA 5, Level 1, Faculty of Civil Engineering & Earth Resources University of Malaysia
Pahang (UMP), 26300 Gambang, Kuantan, Malaysia



## Watershed Modeling using HEC-GeoHMS

- Watershed boundary delineation
- Watershed parametrization




18-20 July 2016 ©Dr. A. Akbari

University Malaysia Pahang Malaysi



Digital Elevation Model (DEM)



with the invention of Geospatial Information Systems (GIS) and computer models, the role of digital elevation model (DEM) has become very important and effective tools in, Flood inundation process. Flood simulation mapping and landslide susceptibility mapping are as examples that effectively employ the DEM and its derivatives as one of the important modeling inputs. On the other hand, satellite based DEMs have been growing rapidly in recent years.

18-20 July 2016 ©Dr. A. Akba

University Malaysia Pahang, Malaysi

|      | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
| <br> |      |  |
|      |      |  |
|      |      |  |
|      |      |  |



Since Miller and Laflamme who coined the original term, other expressions such as  $\ensuremath{\mathsf{DEM}},$ 

Digital Height Models (DHM),

Digital Surface Model (DSM), Digital Terrain Model (DTM),

Digital Terrain Model (DTM),
Digital Ground Models (DGM) and
Digital Terrain Elevation Model (DTEM),
have been used by Maidment, Djokic and Ye, Vieux and Li
et al. According to Li et al. the word DEM is widely used in
United States,

DHM in Germany,
DGM in the United Kingdom
and DTEM was introduced and is used by United States

Geological Survey (USGS)



Recommended DEM cell sizes and their range of applications (After Maidment)

| Cell<br>Size | Watershed Area<br>(km²) | Typical<br>Application |
|--------------|-------------------------|------------------------|
| 30 m         | 5                       | Urban watersheds       |
| 90 m         | 40                      | Rural watersheds       |
| 460 m        | 1000                    | River basins           |
| 930 m        | 4000                    | Nations                |
| 5.6 km       | 150,000                 | Continents             |
| 9.3 km       | 400 000                 | Global                 |



#### Different sources of free satellite-based DEMs:



|       |      |      | -    |    |       |
|-------|------|------|------|----|-------|
| 18-20 | July | 2016 | ©Dr. | A. | Akbar |

| <br> |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |



# Different sources of free satellite-based DEMs :

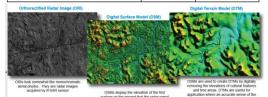




# **ASTER Satellite Sensor Specifications**

| Launch Date                  | 18 December 1999 at Vandenberg Air<br>Force Base, California, USA |
|------------------------------|-------------------------------------------------------------------|
| Equator Crossing             | 10:30 AM (north to south)                                         |
| Orbit                        | 705 km altitude, sun synchronous                                  |
| Orbit Inclination            | 98.3 degrees from the equator                                     |
| Orbit Period                 | 98.88 minutes                                                     |
| Grounding Track Repeat Cycle | 16 days                                                           |
| Resolution                   | 15 to 90 meters                                                   |

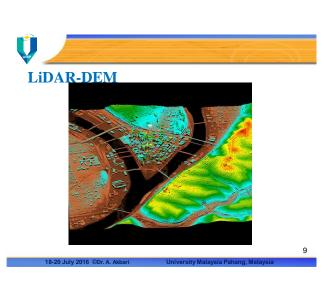
7

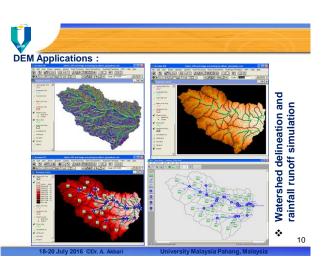

18-20 July 2016 ©Dr. A. Akbari

University Malaysia Pahang, Malaysia



# ifSAR-DEM


| Product Deliverables                     | Pixel Size/Post<br>Spacing | Accuracy<br>(RMSE)               |  |
|------------------------------------------|----------------------------|----------------------------------|--|
| Type II Digital Surface Model (DSM)      | 5.0m                       | 1.0m vertical<br>2.0m horizontal |  |
| Tropical Digital Terrain Model (DTM)     | 5.0m                       | 1.0m vertical<br>2.0m horizontal |  |
| Type 1+ Orthorectified Radar Image (ORI) | 0.625m/1.25m               | 1.0m vertical                    |  |




18-20 July 2016 @Dr A Akbari

University Malaysia Pahang, Malays

|   | <br> |  |
|---|------|--|
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
| - |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |







Integration with Landsat image for better visualization :



18-20 July 2016 ©Dr. A. Akba

Jniversity Malaysia Pahang, Malaysi

|  |  |  | _ |
|--|--|--|---|
|  |  |  | _ |
|  |  |  | _ |
|  |  |  | _ |
|  |  |  | _ |
|  |  |  | _ |
|  |  |  | _ |
|  |  |  |   |



# Flood inundation modeling and visualization



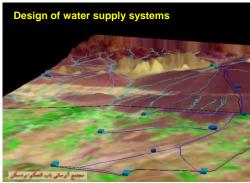
18-20 July 2016 ©Dr. A. Akbari

University Malaysia Pahang, Malaysi

12



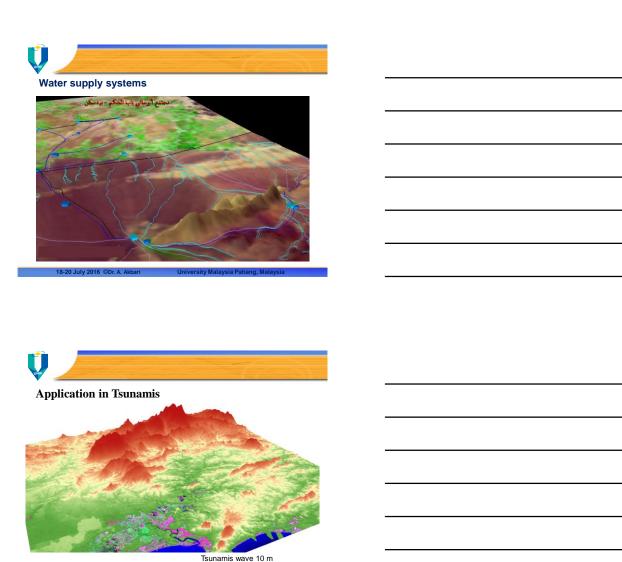
# Hazard mapping and visualization



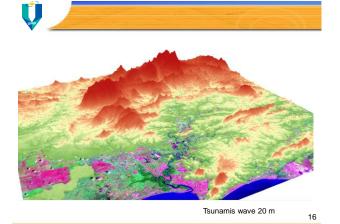

18-20 July 2016 ©Dr. A. Akbari

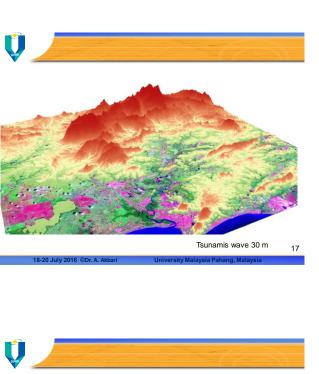
University Malaysia Pahang, Malaysia

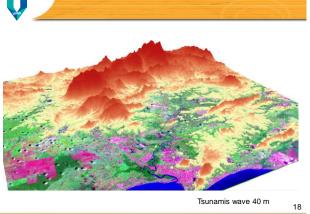
13

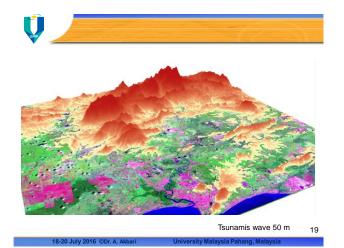






18-20 July 2016 ©Dr. A. Akba


University Malaysia Pahana Malays


14




18-20 July 2016 ©Dr. A. Akbari University Malaysia Pahang, Malaysia











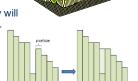
## **DEM Optimization Hydrologically adjusted DEM or** called Agree-DEM

#### Basic stapes:

- Smoothing (using average filter)
  Majority filter (filling undefined pixels)
- Filling sinks
- Reconditioning

18-20 July 2016 ©Dr. A. Akbari




DEM creation results in artificial sinks in the landscape.

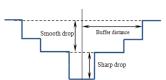
A sink is a set of one or more cells which has no downstream

cells around it.

Unless these sinks are filled they will isolate portions of the watershed.

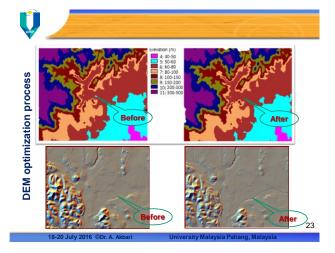
Filling sinks is the first step for processing a DEM for watershed delineation.

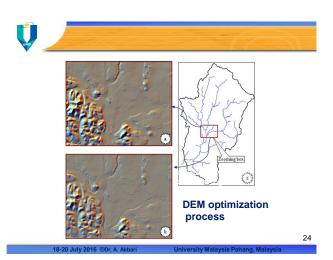


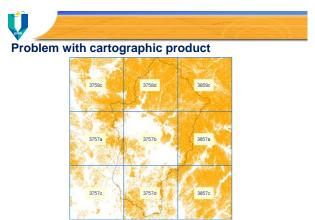

Profile view of sink in DEM (left) and filled depression of DEM (right)






|   | Buffer_dist | Smooth_drop | Sharp_drop |
|---|-------------|-------------|------------|
| 2 | 40          | 2.0         | 2.0        |
| 1 | 20          | 1.0         | 1.0        |


DEM reconditioning using attributes table of stream network




Schematic representation of DEM reconditioning

18-20 July 2016 ©Dr. A. Akbari





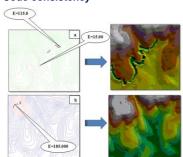


Watershed-layout in map index of topo sheets at scale of 1:25000

3-20 July 2016 ©Dr. A. Akbari University Malaysia Pahan

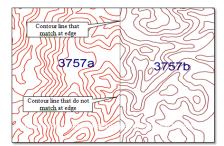





# Problem with cartographic product



18-20 July 2016 ©Dr. A. Akbari University Malaysia Pahang, Mala




## Code consistency





# Edge matching

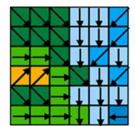






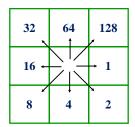
# Hydrologic Slope - Direction of Steepest Descent

| <b>⊢</b> 30→ |    |    | <b>-30</b> → | l  |    |
|--------------|----|----|--------------|----|----|
| 67           | 56 | 49 | 67           | 56 | 49 |
| 52           | 48 | 37 | 52           | 48 | 37 |
| 58           | 55 | 22 | 58           | 55 | 22 |


Slope:  $\frac{67-48}{30\sqrt{2}} = 0.45$ 

$$\frac{67 - 52}{30} = 0.50$$




# Flow Direction Arrows Based on Direction of Steepest Descent

| 78 | 72 | 69 | 71 | 58 | 49 |
|----|----|----|----|----|----|
| 74 | 67 | 56 | 49 | 46 | 50 |
| 69 | 53 | 44 | 37 | 38 | 48 |
| 64 | 58 | 55 | 22 | 31 | 24 |
| 68 | 61 | 47 | 21 | 16 | 19 |
| 74 | 53 | 34 | 12 | 11 | 12 |
|    |    |    |    |    |    |





Eight Direction Pour Point Model



ArcGIS Flow Direction Encoding

18-20 July 2016 @Dr A Akhari

Jniversity Malaysia Pahang, Malaysia

31

32



GIS-based River Discharge Modeling Workshop

# ArcGIS Flow Direction Raster Encoding

| 78 | 72 | 69 | 71 | 58 | 49 |   | 2   | 2   | 2 | 4 | 4 | 8  |
|----|----|----|----|----|----|---|-----|-----|---|---|---|----|
| 74 | -  |    | 49 |    |    |   | 2   | 2   | 2 | 4 | 4 | 8  |
| 59 | 53 | 44 | 37 | 38 | 48 |   | 1   | 1   | 2 | 4 | 8 | 4  |
| 4  | 58 | 55 | 22 | 31 | 24 | _ | 128 | 128 | 1 | 2 | 4 | 8  |
| 8  | 61 | 47 | 21 | 16 | 19 |   | 2   | 2   | 1 | 4 | 4 | 4  |
| 74 | 53 | 34 | 12 | 11 | 12 |   | 1   | 1   | 1 | 1 | 4 | 16 |

Elevation

32 64 128 16- 1 8 4 2 Direction Coding

Flow Direction

18-20 July 2016 ©Dr. A. Akbari

Iniversity Malaysia Pahang Malays



#### Flow Accumulation Number of Cells Contributing Flow

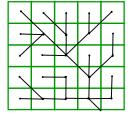


| 0 | 0 | 0 | 0  | 0  | 0 |
|---|---|---|----|----|---|
| 0 | 1 | 1 | 2  | 2  | 0 |
| 0 | 3 | 7 | 5  | 4  | 0 |
| 0 | 0 | 0 | 20 | 0  | 1 |
| 0 | 0 | 0 | 1  | 24 | 0 |
| 0 | 2 | 4 | 7  | 35 | 2 |

Flow Direction

Flow Accumulation
Value = Number of Cells Flowing Into 33

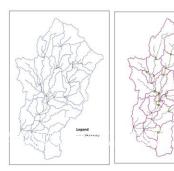
18-20 July 2016 ©Dr. A. Akbari


University Malaysia Pahang, Malaysi

| _ |  |  |  |
|---|--|--|--|
|   |  |  |  |
| _ |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
| _ |  |  |  |
| - |  |  |  |
| _ |  |  |  |
| _ |  |  |  |
| _ |  |  |  |
|   |  |  |  |
| _ |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
| - |  |  |  |
| _ |  |  |  |
| _ |  |  |  |
| _ |  |  |  |
| _ |  |  |  |
| _ |  |  |  |
|   |  |  |  |



# Delineating Surface Water Drainage


| /             | /             | Ţ             | 1 | 1 |
|---------------|---------------|---------------|---|---|
| $\rightarrow$ | /             | <b>↓</b>      | / | ļ |
| 1             | $\rightarrow$ | /             | 1 | 1 |
| /             | $\rightarrow$ | 1             | Ţ | ļ |
| $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | / | ← |



18-20 July 2016 ©Dr. A. Akbari

Jniversity Malaysia Pahang, Malaysia



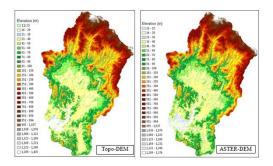


18-20 July 2016 ©Dr. A. Akbar

University Malaysia Pahang, Malays

35





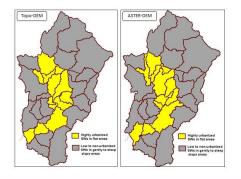

18-20 July 2016 ©Dr. A. Akba

University Malaysia Pahang, Malaysi

| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| - |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |






18-20 July 2016 ©Dr. A. Akbari University Malaysia Pahang, Malaysia

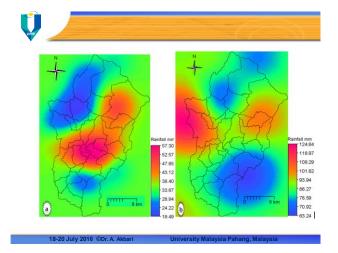
37

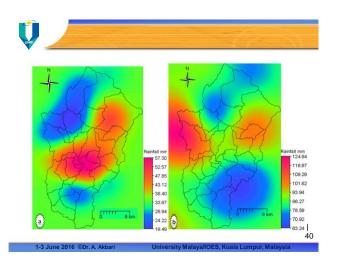
38

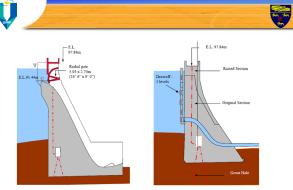
39



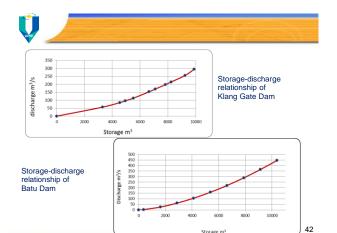



18-20 July 2016 ©Dr. A. Akbari University Malaysia Pahang, Malaysia

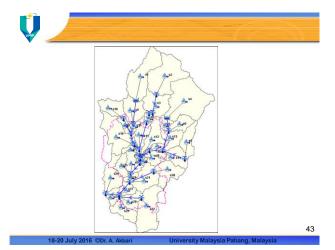


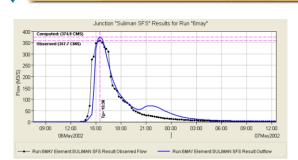

18-20 July 2016 ©Dr. A. Akbari


| - |  |
|---|--|
|   |  |
| _ |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |



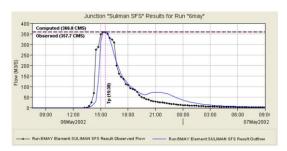






Cross section of Klang Gate Dam. Taken from Gibson and Dodge (1983)



18-20 July 2016 ©Dr. A. Al








Observed and simulated flood hydrograph resultant from modified-CN for event 6-May at Sulaiman Bridge.





Observed and simulated flood hydrograph resultant from modified-CN for event 6-May at Sulaiman Bridge.

1-3 June 2016 ©Dr. A. Akbari

University Malaya/IOES Kuala Lumnur Malaysia



#### **Exercise 2**

- Open your ArcMap and active your HEC-GeoHMS extension
- Generate Agree-DEM for raw DEM provided on d:\data
- Delineate watershed boundary for the Klang Gates Dam watershed
- Calculate the following watershed characteristics for each subbasin:
  - (i) form factor,
  - (ii) compactness coefficient,
  - (iii) elongation ratio, and
  - (iv) circularity ratio.

45

18-20 July 2016 ©Dr. A. Akbari

niversity Malaysia Pahang, Malaysia



Thank you akbariinbox@yahoo.com