THE MECHANICAL PROPERTIES OF MICROWAVE SEWAGE SLUDGE ASH (MSSA) AS PARTIAL CEMENT REPLACEMENT IN CONCRETE

TAN CHIN GIAP

B. ENG (HONS.) CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT			
Author's full name :	TAN CHIN GIAP		
Date of birth :	<u>28 MAY 1992</u>		
Title :	THE MECHANICAL PROPER	TIES OF MICROWAVE	
	SEWAGE SLUDGE ASH (MS	SA) AS PARTIAL	
	CEMENT REPLACEMENT IN	<u>CONCRETE</u>	
Academic Session :	<u>2015/2016</u>		
I declare that this thesis is	classified as :		
	(Contains confidential information Act 1972)*	under the Official Secret	
	(Contains restricted information a where research was done)*	s specified by the organization	
C OPEN ACCESS	I agree that my thesis to be publis (Full text)	shed as online open access	
I acknowledge that Unive	rsiti Malaysia Pahang reserve the	right as follows:	
1. The Thesis is the Pro	perty of University Malaysia Pahan	g	
2. The Library of Univer of research only.	sity Malaysia Pahang has the righ	t to make copies for the purpose	
3. The Library has the ri	pht to make copies of the thesis for	academic exchange.	
Certified By:			
(Student's Sigr	ature) (Sig	nature of Supervisor)	
920528-14-5	<u>219</u>	DR DOH SHU ING	
New IC / Passpor	Number	lame of Supervisor	
Date : 22 JUNE	2016 D	ate : 22 JUNE 2016	

NOTES : *If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

THE MECHANICAL PROPERTIES OF MICROWAVE SEWAGE SLUDGE ASH (MSSA) AS PARTIAL CEMENT REPLACEMENT IN CONCRETE

TAN CHIN GIAP

Thesis submitted in fulfilment of the requirements for the award of the degree of B. Eng (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons) Civil Engineering.

Signature	:	
Name of Supervisor	:	DR DOH SHU ING
Position	:	SENIOR LECTURER / DEPUTY DEAN
Date	:	22 JUNE 2016

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:	
Name	:	TAN CHIN GIAP
ID Number	:	AA12206
DATE	:	22 JUNE 2015

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Objective	4
1.4	Scope of Study	4
1.5	Research Significant	4
1.6	Expected Outcome	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Concrete	6
	 2.2.1 Cement 2.2.2 Aggregates 2.2.2.1 Coarse Aggregates 2.2.2.2 Fine Aggregates 	7 9 9 10
2.3	Previous Research of Cement Replacement Material	10

	2.3.1 Sewage Sludge Ash as Partial Cement Replacement	10
	2.3.2 Fly Ash as Partial Cement Replacement Material	12
	2.3.3 Palm Oil Fuel Ash as Partial Cement Replacement Material	13
	2.3.4 Rice Hush Ask as Partial Cement Replacement Material2.3.5 Sugarcane Bagasse Ash as Partial Cement Replacement Material	14 15
2.4	Different Burning Method of Sewage Sludge	16
	2.4.1 Incineration2.4.2 Microwave Heating	17 18
2.5	Mechanical Properties of Concrete	19
	 2.5.1 Compressive Strength 2.5.2 Flexural Strength 2.5.3 Ultrasonic Pulse Velocity (UPV) 2.5.4 Slump Test 	19 20 20 21
2.6	X-ray Diffraction (XRD) Test on SSA	21
2.7	Summary	22

CHAPTER 3 RESEARCH METHODOLOGY

	20
Preparation of Material	24
 3.2.1 Ordinary Portland Cement (OPC) 3.2.2 Microwave Sewage Sludge Ash (MSSA) 3.2.3 Fine Aggregate 3.2.4 Coarse Aggregate 3.2.5 Water 	24 25 26 27 27
Concrete Mix Design	28
Casting, Moulding and Demoulding	28
Determination of Concrete Performance	29
 3.5.1 Slump Test 3.5.2 Compressive Strength Test 3.5.3 Three-point Flexural Strength Test 3.5.4 Ultrasonic Pulse Velocity (UPV) Test 3.5.5 X-ray Diffraction (XRD) 	29 29 30 31 32
	 Preparation of Material 3.2.1 Ordinary Portland Cement (OPC) 3.2.2 Microwave Sewage Sludge Ash (MSSA) 3.2.3 Fine Aggregate 3.2.4 Coarse Aggregate 3.2.5 Water Concrete Mix Design Casting, Moulding and Demoulding Determination of Concrete Performance 3.5.1 Slump Test 3.5.2 Compressive Strength Test 3.5.3 Three-point Flexural Strength Test 3.5.4 Ultrasonic Pulse Velocity (UPV) Test 3.5.5 X-ray Diffraction (XRD)

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Introduction	33
4.2	Concrete Properties	33
	 4.2.1 Slump Test 4.2.2 Compressive Strength 4.2.3 Flexural Strength 4.2.4 Ultrasonic Pulse Velocity (UPV) Test 4.2.5 X-ray Diffraction (XRD) 	34 35 39 42 43
4.3	Optimum Percentage of Replacement and Microwave Heated Temperature of Sewage Sludge Ash	46
4.4	Concluding Remark	47

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Introduction	48
5.2	Conclusion	48
5.3	Recommendations	50
REFEI	RENCES	51
APPEN	NDICES	55
А	Result For Compressive Strength Test	55
В	Result For Flexural Strength Test	56
С	Result For Ultrasonic Pulse Velocity (UPV) Test	57
D	Photo of Laboratory Preparation	58

LIST OF TABLES

Table N	Io. Title	Page
2.1	Standards and specifications of cement in Malaysia	8
2.2	Chemical Components in SSA incinerated at 800°C	18
3.1	Name Representation of Concrete Specimens	28
3.2	Mix Proportion Table	28
4.1	Name Representation for Concrete Specimens	34
4.2	Slump Results of Different Mix Type	35
4.3	Compressive Strength Results	36
4.4	Flexural Strength Results	39
4.5	UPV Results	42
4.6	XRD Results for MSSA-A	44
4.7	XRD Results for MSSA-B	45

LIST OF FIGURES

Figure No	D. Title	Page
1.1	Statistic of World Cement Production, 2004-2013	2
3.1	Flow Chart of the Research	23
3.2	YTL Orang Kuat Ordinary Portland Cement	24
3.3	ELBA Microwave EMO-A2072(SV)	25
3.4	Sewage Sludge	26
3.4	MSSA	26
3.5	River sand	26
3.6	Granite	27
3.8	Compressive Machine	30
3.8	Flexural Machine	31
3.9	Ultrasonic Pulse Velocity (UPV)	31
3.10	Grind MSSA	32
4.1	Slump Test Results for MSSA Concrete with w/c 0.55	35
4.2	Compressive Strength against Age of Concrete	37
4.3	Compressive Strength against MSSA-A Contents	38
4.4	Compressive Strength against MSSA-B Contents	38
4.5	Flexural Strength against Age of Concrete	40
4.6	Flexural Strength against MSSA-A Contents	41
4.7	Flexural Strength against MSSA-B Contents	41
4.8	UPV against Age of Concrete	42
4.9	XRD Pattern of MSSA-A	44
4.10	XRD Pattern of MSSA-B	45

LIST OF SYMBOLS

Percentage
Millimeter
Newton per millimeter square
Kilogram
Newton
Kilonewton
Kilogram per meter cubic
Water to cement ratio
Millimeter square
Meter cubic
Pascal
Mega Pascal
Pounds per inch square
Potential of Hydrogen

LIST OF ABBREVIATIONS

ACI	American Concrete Institute
ASTM	American Society for Testing and Materials
BS	British Standard
СЕМ	Certified Energy Manager
EN	European Standards
SSA	Sewage Sludge Ash
MSSA	Microwave Sewage Sludge Ash
POFA	Palm Oil Fuel Ash
RHA	Rice Husk Ash
SCBA	Sugarcane Bagasse Ash
OPC	Ordinary Portland Cement
UPV	Ultrasonic Pulse Velocity (UPV)
XRD	X-ray Diffraction

THE MECHANICAL PROPERTIES OF MICROWAVE SEWAGE SLUDGE ASH (MSSA) AS PARTIAL CEMENT REPLACEMENT IN CONCRETE

TAN CHIN GIAP

Thesis submitted in fulfilment of the requirements for the award of the degree of B. Eng (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

ABSTRACT

Rapid urbanization in the developing country leads to prosper of construction sector due to the demand of house, building and infrastructure with the increasing urban population. Hence, cement is highly demand in any construction project. Nonrenewable natural resources such as limestone, clay, coal, petroleum, natural gas and fuel oil are consumed in the production of cement will be depleted eventually. Huge quantities of sewage sludge being produced every year and needed to be disposed. Solid waste disposal had come into discussion for years to resolve the space limitation in landfills. An alternative method of sewage sludge disposal is to utilize it as one of the construction materials. Despite of incineration method to reduce the quantities of sewage sludge, microwave heating which is more efficient in term of time and energy consumption is used in this research. Microwave Sewage sludge ash (MSSA) is proposed as partial cement replacement in concrete. 0%, 5%, 10% and 15% MSSA which were heated at medium and medium-high temperature are used in this research. Compressive strength, flexural strength, UPV and XRD were performed. The mechanical properties of MSSA concrete were compared among each other and conventional concrete G30. The results showed that 5% MSSA which was microwave heated at medium-high temperature is the optimum percentage replacement in concrete.

ABSTRAK

Proses pembandaran yang pesat dalam pembangungan negara membawa makmur kepada sektor pembinaan disebabkan oleh permintaan rumah, bangunan dan infrastruktur dengan penduduk bandar yang semakin meningkat. Oleh yang demikian, simen adalah sangat permintaan dalam apa-apa projek pembinaan. Sumber alam yang tidak boleh diperbaharui seperti batu kapur, tanah liat, arang batu, petroleum, gas asli dan minyak yang digunakan dalam pengeluaran simen akan dihabiskan akhirnya. Kuantiti yang besar daripada kumbahan sludge dihasilkan setiap tahun dan perlu dilupuskan. Perbincangan tentang pelupusan sisa pepejal telah diadakan sepanjang tahun demi menyelesaikan had ruang di tapak pelupusan sampah. Satu kaedah alternatif untuk pelupusan kumbahan sludge adalah menggunakan ia sebagai salah satu bahan pembinaan. Walaupun kaedah pembakaran dapat mengurangkan kuantiti kumbahan sludge, ketuhar Pemanas yang lebih cekap dari segi penggunaan masa dan tenaga telah digunakan dalam kajian ini. Ash kumbahan sludge ketuhar gelombang mikro (MSSA) adalah dicadangkan sebagai gantian simen separa dalam konkrit. 0%, 5%, 10% dan 15% MSSA yang telah dipanaskan pada suhu sederhana dan sederhana-tinggi digunakan dalam kajian ini. Kekuatan mampatan, kekuatan lentur, UPV dan XRD telah dijalankan. Sifat-sifat mekanikal konkrit MSSA dibandingkan antara satu sama lain dan G30 konkrit konvensional. Keputusan menunjukkan bahawa 5% MSSA yang ketuhar dipanaskan pada suhu sederhana-tinggi adalah penggantian peratusan optimum dalam konkrit.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Development in urbanization is growing rapidly due to the increasing population in a developed country. In 2015, urban population in Malaysia is reported as 74.7% of total population with 2.66% annual rate of change of urbanization (Central Intelligence Agency, 2015). This population rate indicates the importance of construction industry in leading to the development of country for the construction of houses, buildings, roads and infrastructures. Therefore, cement which is the main component of concrete is essential and common in any construction projects. From the Table 1.1, the world cement production had revealed a significant increment yearly from year 2004 to year 2013. The statistics reflect the continued highly demand of cement production from year to year throughout the world.

According to Naik (2008), it is necessary to search for the sustainable solution for future concrete construction due to the limitation of natural resources such as limestone, which will eventually affect the cement production along with the increasing population. Replacement of the cement in concrete construction is essential with the utilization of industrial, agriculture and domestic waste product (Imbabi et al., 2012) in order to overcome the sustainability issue.

Figure 1.1: Statistic of World Cement Production, 2004-2013

Source: United State Geological Survey (2011)

Sewage sludge is a by-product from domestic and light industrial area which being treated in wastewater treatment plant. The production of sewage sludge increase drastically every year due to the rapid urbanization in the developing country such as Malaysia. Indah Water Konsortium (2010) reported that around 3 million metric tons of sewage sludge is produced annually and estimated it will be reached to 7 million metric tons in the year 2020. This alarming increment of production of sewage sludge arise environmental issues for their disposal. One of the common waste disposal is controlled landfills. However, Monzo et al. (2003) stated that space limitation for disposal on the existing landfills and the problem of waste stabilization for environmental control as sewage sludge contains organic and inorganic matters. Incineration is another way to disposal which can resulting in optimum volume reduction and stabilization for sewage sludge, but the incinerated residue still being disposed in landfill, emission of gases and heavy metal which can lead to environment issue (Yen et al., 2011). Pavsic et al. (2013) mentioned that reuse of sewage sludge is difficult to implement in agriculture due to the presence of pathogens and heavy metals. Thus, there is a need to develop alternative disposal methods to overcome the environmental issues. Researches have conducted experiments on uses of sewage sludge ash (SSA) as construction materials due to its pozzolanic properties which could increase the mechanical strength and durability of cement.

1.2 PROBLEM STATEMENT

Rapid urbanization in the developing country leads to prosper of construction sector due to the demand of house, building and infrastructure with the increasing urban population. Hence, cement is highly demand in any construction project. Nonrenewable natural resources such as limestone, clay, coal, petroleum, natural gas and fuel oil are consumed in the production of cement will be depleted eventually. Sewage sludge ash (SSA) is proposed as partial cement replacement to overcome this sustainability issue.

According to Mat, Shaari & How (2012), estimated 2.97 billion cubic meters of wastewater is generated by municipal and industrial sector every year. This figure indicates the huge quantities of sewage sludge being produced every year and needed to be disposed. Solid waste disposal had come into discussion for years to resolve the space limitation in landfills. An alternative method of sewage sludge disposal is to utilize it as one of the construction materials. A huge reduction in volume of sewage sludge which facilitate the waste disposal can be achieved via the burning of sludge in order to obtain the sewage sludge ash (SSA).

Altwair & Kabir (2010) stated that the production of Portland cement emits significant amount of carbon dioxide and other greenhouse gases (GHGs). This greenhouse gases are corresponding to the greenhouse effect and global warming which increase the temperature of earth. Without exception, cement industries contribute negative impact to the environment. One approach to reduce the carbon dioxide emission is through green concrete. Research had been done for the SSA which exhibit pozzolanic behavior can be utilized as one of the component of green concrete.