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ABSTRACT 

Splicing system is a formal characterization of the 
generative capacity of specified enzymatic activities 
operating on specified set of double-stranded DNA 
molecules. The formalism of this splicing system is 
illustrated under the framework of Formal Language 
Theory which is a branch of applied discrete mathematics 
and theoretical computer science. The mathematical 
fonnalism that will be used in this research is the splicing 
system concept that was first initiated by Head in 1987. 
In this research, some new bio-mathematical concepts 
involved in the DNA splicing system will be presented. 
These concepts include factor of a language and constant 
ofa language. The regularity of these concepts will also 
be presented with their proofs. 

1. INTRODUCTION 

Splicing system was first introduced by Head in 1987. 
A splicing system comprises of the set A of alphabets in 
Deoxyribonucleic Acid (DNA), set 1 of initial strings, and 
sets B and C of triples, also known as the rules. The set 
of alphabets include Adenine (A) , Guanine (G), Cytosine 
IC) and Thymine (I) , which are the bases of DNA in their 
nucleotide chain. When restriction enzymes are added 
to DNA molecules, these molecules will be cleaved at 
certain restriction site of the molecule. After the 
cleavage, the resulting fragments can be adjoined 
together to form new strings of DNA molecules. This 
process is also called the ligating process. The language 
"hich results from a splicing system is called a splicing 
language. 

The relation between DNA splicing system and 
Fonnal Language Theory can be shown through a 
mathematical modeling of splicing system. DNA 
molecules are modeled as strings in Formal Language 
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Theory, while enzymatic operations are modeled as a set 
of splicing rules . The recombinant behavior of DNA is 
modeled as a language (normally denoted as L) in a 
splicing system. 

Splicing languages are regular, but not all regular 
languages are splicing languages (Gatterdam, 1989). In 
the following two sections, the factor of a language, 
constant of a language and their regularity will be 
discussed using some concepts of automaton. 

2. FACTOR OF LANGUAGE 

Let A be a finite set to serve as the alphabet. l is a 
regular language and Fac(L) is the set of all factors of L. 
The definition of Fac(L) is given in the following . 

Definition 2.1: Fac(l) 
Fac(l) = {x in A*: uxv in L for some u, v in A*} . 

Suppose that L(M} is the language recognized by the 
automaton M'. We can show that L(M} = Fac(L) as 
given in the following theorem. 

Theorem 2.1 
l(M} = Fac(L). 

Proof. 
First, let w E L(M). There are p E P and q E Q for 

which pwq is a recognition path in M'. Since p is 
accessible in M and q is coaccessible in M, there are 
states i EI and I E T, u, v E A* for which upwqv is a 
labeled path from state i to state I. Thus uwv E L(M) = 

l . Hence W E Fac(L) . 
Next, let w EFac(L). Then there exist u, v in A• such 

that uwv E l = L(M). So, there are i E ! , t E T, for 
which uwv is a labeled path from state i to state t. Let p , 
q E Q for which upwqv is a labeled path from state i to 



state t. Then pwq is a recognition path in M'. So 
wEL(M). o 

Since the next few theorems will involve the concept 
of regularity, the definition of a regular language is given 
in the following. 

Definition 2.2 (Linz, 2001): Regular 
A language L is called regular if and only if there exist a 
deterministic finite accepter M such that L = L(M). 

Regular expressions are constructed from primitive 
constituents by repeatedly applying certain recursive 
rules. The definitions of primitive regular expressions 
and regular expressions are given next. 

Definition 2.3 (Linz, 2001): Primitive Regular 
Expressions, Regular Expressions 

Let I be a given alphabet. Then 
(I) ¢ ,}.,and a EI are all regular expressions. These 
are called primitive regular expressions. 
(2) If r 1 and r2 are regular expressions, so are r 1+r2, r 1 •r2, 

r 1 • and (r1)(r2). 
(3) A string is a regular expression if and only if it can be 
derived from the primitive regular expressions by a finite 
number of applications of the rules in (2). 

For the definition of regular language, deterministic 
finite accepter is used instead of deterministic finite 
automaton since deterministic finite automaton (Kelly, 
1995) is also known as deterministic finite accepter in 
(Linz, 2001 ). 

The following theorem is on the regularity of Fac(L) 
given that l is a regular language. 

Theorem 2.2 
If l is regular language, then Fac(l) is regular. 

Proof. 
Since l is regular, let L be recognized by the trimmed 

automaton M = (Q, I, 7), where Q is the set of states, I is 
the set of initial states, and Tis the set of terminal states. 
So L(M) = l. Let M' be the automaton (Q, Q, Q) where 
all states are both initial and final. By Theorem 2.1, 
l(M) = Fac(L). So, Fac(L) is recognized by the 
automaton M'. Thus Fac(L) is regular. o 

However, the converse of Theorem 2.2 is not true as 
shown using a counterexample in Theorem 2.3. 

Theorem 2.3 
If Fae (L) is regular, then Lis not necessarily regular. 

Proof. 
Let A = {a,b} . l = {w in A•: lwla = lwlb} is not 

regular, but Fac(l) = A* is regular. For any wE A•= 
Fac(L) , let lwl0 2: lwl6, then wb ... b EL, where the number 
of bs is equal to lwla - lwl&· Thus lwb ... bla = lwb .. . bl&, 
wEL but L is not regular. Therefore, Fac(L) is regular 

does not imply that L is regular. o 

In the next section, some characteristics regarding 
constant of a language are given. 

3. CONSTANT OF A LANGUAGE 

Let Con(l) be the set of all constant factors of L. 
The definition of Con(L) is given as follows. 

Definition 3.1 Con(L) 
Con(l) = {x in Fac(l): pxq and uxv in L imply that p.n 
and uxq are also in L}. 

We can show that any word containing an element in 
Con(l) is also in Con(L) as given in the following 
theorem. 

Theorem 3.1 
If c E Con(L) , then w = xcy E Con(L). 

Proof. 
If pwq EL and uwv EL, then pwq = pcxyq El and 1111·1· 

= uxcyv El. Since c E Con(L) , pxcyv = pwv El and 
uxcyq = uwq E L. Thus, WE Con(l). o 

The language recognized by the automaton P' are the 
words which are not constant relative to the language l. 
This is shown in the following theorem. 

Theorem 3.2 
l = (P') = {WE A· : w is not constant relative to L}. 

Proof. 
First, we show L(P')<:;;;; ={wEA · : w is not constant 

relative tol}. Let wEL (P'), (p1'p2 )~(qpq2 ) in?', 

qi* qi, P1 ~q1 , /J2 ~q2 EM. Since q1 :tq1 
q1 ~11,q2 ~r2 where exactly one of {1j,12} is 
terminal and one is not. Note that there are u, v in A' for 
which i ~ p 1, i ~ p 2 • Without loss of generality, 
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state t. Then pwq is a recognition path in M'. So 
wEL(M').o 

Since the next few theorems will involve the concept 
of regularity, the defi nition of a regular language is given 
in the following. 

Definition 2.2 (Linz, 2001): Regular 
A language L is called regular if and only if there exist a 
deterministic finite accepter M such that L = L(M). 

Regular expressions are constructed from primitive 
constituents by repeatedly applying certain recursive 
rules. The definitions of primitive regular expressions 
and regular express ions are given next. 

Definition 2.3 (Linz, 2001): Primitive Regular 
Expressions, Regular Expressions 

Let I be a given alphabet. Then 
( I ) ¢,A. and a E I are all regular expressions. These 
are called primitive regular expressions. 
(2) If r1 and r2 are regular express ions, so are r 1+r2, r1•r2, 

r 1 • and (r1)(r2). 
(3) A string is a regular express ion if and only if it can be 
derived from the primitive regular express ions by a finite 
number of applications of the rules in (2) . 

For the definition of regular language, deterministic 
finite accepter is used instead of deterministic finite 
automaton since deterministic finite automaton (Kelly, 
1995) is also known as deterministic finite accepter in 
(L inz, 2001). 

The following theorem is on the regularity of Fac(L) 
given that L is a regular language. 

Theorem 2.2 
lf L is regular language, then Fac(L) is regular. 

Proof. 
Since L is regular, let L be recognized by the trimmed 

automaton M = (Q, 1, 1), where Q is the set of states, f is 
the set of initial states, and Tis the set of terminal states. 
So L(M) = L. Let M' be the automaton (Q, Q, Q) where 
all states are both initial and final. By Theorem 2.1, 
L(M') = Fac(L). So, Fac(L) is recognized by the 
automaton M'. Thus Fac(L) is regular. o 

However, the converse of Theorem 2.2 is not true as 
shown using a counterexample in Theorem 2.3. 

Theorem 2.3 
If Fae (L) is regular, then Lis not necessarily regular. 

Proof. 
Let A = {a,b}. L = {w in A·: lwla = lwlb} is not 

regular, but Fac(L) =A• is regular. For any WE A•= 
F ac(L ), let lwl0 2: lwlb, then wb ... b EL, where the number 
of bs is equal to lwla - lwlb· Thus lwb ... bla = lwb ... blb, 
wEL but L is not regular. Therefore, Fac(L) is regular 

does not imply that L is regular. o 

In the next section, some characteristics reg 
constant of a language are given. 

3. CONSTANT OF A LANGUAGE 

Let Con(L) be the set of all constant factors of 
The definition of Con(L) is given as follows. 

Definition 3.1 Con(L) 
Con(L) = {x in Fac(L): pxq and uxv in L imply that 
and uxq are also in L}. 

We can show that any word containing an element 
Con(L) is also in Con(L) as given in the folio 
theorem. 

Theorem 3.1 
If c E Con(L ), then w = xcy E Con(L ). 

Proof. 
If pwq EL and uwv EL, then pwq = pcxyq El and 

= uxcyvE L. Since CE Con(L) , pxcyv = pwl'EL 
uxcyq = uwq E L. Thus, w E Con(L ). o 

The language recognized by the automaton P' are 
words which are not con tant relative to the language 
This is shown in the following theorem. 

Theorem 3.2 
L = (P') = { w EA•: w is not constant relative to Ll. 

Proof. 
First, we show L(P')~ ={wE A · : w is not co 

relative to L}. Let w EL (P') , (pl' p 2 ) ~(C/pC/2 ) in 
qi * qz, Pi ~qi, P2 ~ q2 E M. Since q, ~ 
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Case 2: If v1 wu2 "L, there exist iv1p 2 wq2u2r ', r' * t1 , 

that is, r' is not terminal. From iu1 p 1 wq1u2t1 and 
iv1p 2 wq2u2r',q1 * q2 • Therefore in P', there exist a path 
(pl> p 2 )w( qi> q2 ) , where (pl> p 2 ) is an initial state of P' 
and (q1>q 2 ) is a tenninal state of P'. Thus, w E L(P'). 
Therefore, w E L(P ') in both cases. o 

Theorem 3.3 states that Con(L) 1s a necessary 
condition for L being regular. 

Theorem 3.3 
lf Lis regular language, then Con(L) is regular. 

Proof. 
Let M be a minimal intrinsic deterministic automaton 

recognizing L where M = (Q, 1, T, E). Therefore L(M) = 
L. Construct P = M x M = (Q x Q, 1 x 1, T x T, E') 
where E's;;;; (Q x Q) x A x (Q x Q), (p1, P2 )----"----t( q1, q2) 
is in E' where (p1, a, q1) E E and (p2 , a, qi) EE . Define 
P' = (Qx Q,Qx Q, {(p,q) E Q x Q: p * q},E'). From 
Theorem 3.2, L(P') = {wEA· : w is not constant relative to 
L}. Thus the set of non-constants, A• I Con(L) is regular. 
Consequently Con(L) is regular. o 

However, Con(L) is not a sufficient condition for L 
being regular as shown using a counterexample in 
Theorem 3 .4. 

Theorem 3.4 
If Con(L) is regular, then L is not necessarily regular. 

Proof. 
LetA = {a, b}. The setE = {winA' :lwL = lwjb} is 

not regular. Let WE Con(L) , uwv E E andpwq E E. Let w 
=ab, u = aa, v = bb, p = abab, q = abab. From uwv E E 
and pwq EE, that is aaabbb and ababababab, uwq = 
aaababab "E. Thus ab" Con(L) and in fact, Con(L) 
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CONCLUSION 

In this research, some new bio-mathematical concepts 
in DNA splicing system are introduced. These include 
factor of a language and constant of a language. Since 
all splicing languages are regular, but not all regular 
languages are splicing languages, the regularity of the 
new concepts are discussed through theorems and their 
proofs . 
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NOMENCLATURE 

A* : 

1 : 
B, C: 

Con(L) 
Fac(L) 

L 
L(M) 

lwla 
p-q 

strings obtained by concatenating zero or 
more symbols from A 
set of initial strings 
rules in splicing system 
the set of all constant factors of L 
the set of all factors of L 
language 
language recogni zed by an automaton M ' 
number of as in w 
state p to state q 
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