THE EARTHQUAKE EFFECT OF DOUBLE STOREY RC BUILDING DUE TO SURROUNDING EARTHQUAKE IN MALAYSIA

AINAA NABILA BINTI MD ABD AZIZ

B. ENG (HONS.) CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT			
Author's full name : AINAA	A NABILA BINTI MD ABD AZIZ		
	UST 1993		
Title : THE E	ARTHQUAKE EFFECT OF DOUBLE STOREY RC		
<u>BUILDI</u>	<u>NG DUE TO SURROUNDING EARTHQUAKE IN</u>		
MALAY	<u>ZSIA</u>		
Academic Session : 2015/20	<u>)16</u>		
I declare that this thesis is classified a	as:		
CONFIDENTIAL	(Contains confidential information under the Official		
	Secret Act 1972)*		
RESTRICTED	(Contains restricted information as specified by the		
	organization where research was done)*		
\checkmark OPEN ACCESS	I agree that my thesis to be published as online open		
	access (full text)		
Lacknowledged that University Mala	ysia Pahang reserves the right as follows:		
	of University Malaysia Pahang.		
	Malaysia Pahang has the right to make copies for the		
purpose of research only.			
	to make copies of the thesis for academic exchange.		
5. The Library has the right to make copies of the thesis for academic exchange.			
Certified By:			
(Student's Signature	e) (Signature of Supervisor)		
930805-01-6474	IR. SAFFUAN BIN WAN AHMAD		
(New Ic No./Passport N	o.) (Name of Supervisor)		
Date: 27 th JUNE 2016	Date: 27 th JUNE 2016		

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction

THE EARTHQUAKE EFFECT OF DOUBLE STOREY RC BUILDING DUE TO SURROUNDING EARTHQUAKE IN MALAYSIA

AINAA NABILA BINTI MD ABD AZIZ

Thesis submitted in fulfillment of the requirements for the award of the degree of B. Eng. (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering.

Signature	:
Name of Supervisor	: IR. SAFFUAN BIN WAN AHMAD
Position	: SENIOR LECTURER
Date	: 27 th JUNE 2016

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been properly acknowledged. The thesis has not been accepted for any degree and is not concurrency submitted for award of other degree.

Signature:Name: AINAA NABILA BINTI MD ABD AZIZID Number: AA12218Date: 27th JUNE 2016

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENT	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xiv

CHAPTER 1 INTRODUCTION

1.1	Background Information	1
1.2	Problem Statement	3
1.3	Research Objective	4
1.4	Scope of Study	4
1.5	Research Significant	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction of Earthquake	6
2.2	Seismicity of Malaysia	
2.3	Ground Shaking	
	2.3.1 Seismic Wave	10
	2.3.2 Measuring Devices	11
	2.3.3 Strong Ground Motion 2.3.3.1 Characteristic of Strong	13
	Ground Motions	13
2.4	Magnitude and Intensity	14

Page

	2.4.1	Magnitude	14
	2.4.2	Intensity	15
	2.4.3	The Differences between Magnitude and	
		Intensity	16
		2.4.3.1 Magnitude and Intensity in Seismic	17
		Design	
2.5	Compa	arison in Term of Loading	
	2.5.1	Type of Loading	17
		Duration of Loading	18
2.6	Seismic Design		
	2.6.1	Fundamental of Performance- based	
		Seismic Design	18
	2.6.2	Seismic Design Motion	19
	2.6.3	Seismic Design Procedure	21
	2.6.4	Importance of Seismic Design	22
2.7	The Se	eismic Effect on the Structure	
	2.7.1	Inertia Force in Structure	22
	2.7.2	Effect of Deformation in Structure	23
	2.7.3	Horizontal and Vertical Shaking	24
	2.7.4	Flow of Inertia Forces to Foundation	24

CHAPTER 3 METHODOLOGY

3.1	Planning of the Study		26
3.2	Input Data Collection		27
		Reinforced Concrete Structure Building Earthquake Data Loadings	27 29 30
3.3	Modelling & Analysis Using Esteem		
	3.3.1 3.3.2	Esteem Software SAP2000 Software 3.3.2.1 Steps in SAP2000 Software	30 33 34

2	4.1	Introdu	iction	44
2	4.2	Esteen	n Software	44
		4.2.1	Shear Force and Bending Moment of Critical Member Using Esteem Software	45
2	4.3	SAP20	000 Software	49
			Free Vibration Analysis Shear Force and Bending Moment of Critical Member using SAP2000 Software	49 54
2	4.4	Compa	arative Analysis between Esteem	
		Softwa	are and SAP2000 Software	57

CHAPTER 5 CONCLUSIONS

5.1 Conclusions	61
-----------------	----

REFERRENCE

63

LIST OF TABLES

Table No.	Title	Page
1.1	Earthquake felt in Malaysia	2
2.1	Global Occurrence of Earthquake	15
2.2	Description of shaking intensity VIII as per MSK scale	16
2.3	PGAs during tremors of various intensities	17
4.1	Shear fore and bending moment	45
4.2	Natural Periods and Natural Frequencies	50
4.3	Shear force and bending moment	54

LIST OF FIGURES

Figure No.	Title	Page
2.1	Internal structure of earth	7
2.2	Mechanism of earthquake	8
2.3	Earthquake-prone region of Malaysia	10
2.4	The movement and type of seismic waves	11
2.5	Simple schematic of seismograph	12
2.6	Basic terminology	14
2.7	Effect on building due to inertia when the base shaken	23
2.8	Seismic inertia forces flow through all structural component	25
3.1	Ground floor plan	27
3.2	First floor plan	28
3.3	Roof plan	28
3.4	Distribution of data between May 2004 and July 2007	29
3.5	Plan view (1) Left view (2) Front view of double storey building	32
3.6	Seismic load factor	33
3.7	Select structure model type	35
3.8	Define grid system data	36
3.9	Plan view (1) Front view (2) Left view of double storey building	37
3.10	Joint restraints	38
3.11	(1) Beam section (2) Column section	39
3.12	Time history of Acheh earthquake	40
3.13	Define load pattern	41

3.14	Define load cases	41
3.15	Load combination data	42
3.16	Set load cases to run	43
4.1	(a) Shear force diagram (b) Bending moment diagram(c) Deflection diagram	46
4.2	(a) Shear force diagram (b) Bending moment diagram	48
4.3	Natural periods and natural frequencies versus mode number	50
4.4	Vibration mode of double storey RC building with their respective mode number	51
4.5	(a) Shear force diagram (b) Bending moment diagram(c) Deflection	55
4.6	(a) Shear force diagram (b) Bending moment diagram(c) Deflection	56
4.7	Comparison of shear force and bending moment	58
4.8	Comparison shear force and bending moment of beam section	59
4.9	Comparison shear force and bending moment of column section	60

LIST OF ABBREVIATIONS

- JKR Malaysian Public Work Department
- MGDM Minerals and Geoscience Department of Malaysia
- MMD Malaysian Meteorological Department
- PGA Peak Ground Acceleration
- PGV Peak Ground Velocity

THE EARTHQUAKE EFFECT OF DOUBLE STOREY RC BUILDING DUE TO SURROUNDING EARTHQUAKE IN MALAYSIA

AINAA NABILA BINTI MD ABD AZIZ

Thesis submitted in fulfillment of the requirements for the award of the degree of B. Eng. (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

ABSTRACT

Most structures in Malaysia do not consider for seismic design during its service lifetime. However, recently, Malaysia experienced a tremor events in Ranau, Sabah and it might be effected the structures in Malaysia by the tremors of earthquake in Malaysia and also from neighbouring countries such as Philippines, Indonesia etc. The aim of this study is to identify the behaviour of double storey reinforced concrete building that subjected to earthquake excitation. This research presents the comparative analysis between using Esteem Structural and SAP2000 software. The structure is in three-dimensional form and it is tested with dead load, live load and environmental load such as wind and current load with addition of earthquake ground accelerations from Aceh earthquake. The response of the structure due to the above loadings are illustrated and discussed. Results such as the natural frequencies, vibration modes of the structure, displacement, bending moment and shear stress, etc. are collected and analyzed for both software and be compared. From the analysis result, SAP2000 is more detailed and accurate compared to Esteem. Generally, the building structure with consideration of seismic ground motion is still within the member capacity desirable range. In summary, the double storey reinforced concrete building is yet consider safe and does not require seismic design for this moment of time

ABSTRAK

Kebanyakan struktur di Malaysia tidak mempertimbangkan untuk reka bentuk seismik semasa hayat perkhidmatannya. Walau bagaimanapun, kebelakangan ini Malaysia mengalami gempa bumi di Ranau, Sabah dan kemungkinan struktur di Malaysia akan terjejas daripada kesan gegaran gempa bumi di Malaysia dan juga dari negara-negara jiran seperti Filipina, Indonesia dan lain-lain Tujuan kajian ini adalah untuk mengenal pasti tindak balas bangunan konkrit dua tingkat yang dikenakan pengujaan gempa bumi bertetulang. Kajian ini menunjukkan perbandingan analisis antara menggunakan Esteem dan SAP2000. Struktur adalah dalam bentuk tiga dimensi dan ia diuji dengan beban mati, beban hidup dan beban persekitaran seperti angin dan beban semasa dengan penambahan beban seismik daripada gempa bumi yang berlaku di Aceh. Gerak balas struktur yang disebabkan oleh beban di atas digambarkan dan dibincangkan. Keputusan seperti frekuensi semula jadi, mod getaran struktur, anjakan, momen lentur dan tegasan ricih, dan lain-lain yang dikumpul dan dianalisis untuk kedua-dua perisian dan dibandingkan. Hasil daripada pemerhatian mendapati SAP2000 lebih terperinci dan tepat berbanding Esteem. Secara umumnya, struktur bangunan dengan pertimbangan pergerakan tanah seismik masih dalam julat wajar kapasiti anggota. Ringkasnya, dua tingkat bertetulang bangunan konkrit belum mempertimbangkan selamat dan tidak memerlukan reka bentuk seismik untuk masa ini masa

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Malaysia experienced a relatively strong earthquake recently in Sabah with moment magnitude 6.0 on June this year. These were the strongest earthquake that happens in Malaysia that lasting for thirty seconds since 1976. The tremors exactly struck Ranau and can be felt by the other places like Tambunan, Kota Kinabalu, Sandakan and Tawau. The results from the earthquake, the Kinabalu Park, hostels and the rest house near the Mount Kinabalu has been seriously damaged and temporarily closed. Besides, weak tremors occurred 47 times around 2.2 to 3.3.

Malaysia is labeled as positioned at incredibly some distance far away from the active seismic fault zone. Also known as earthquake free zone. Malaysia is located on a Sunda Tectonic Plate that lies among the Australian and Eurasian Plate in the west of Peninsular Malaysia, while the Philippine Sea Plate and Eurasian Plate on the Borneo of Malaysia. Even though, the tremor effects from the neighboring country still can be felt. Table 1 shows the earthquakes felt in Malaysia from year 1909 to 2005 for Peninsular Malaysia and from 1923 to 2005 for East Malaysia (Taksiah A. Majid, 2007). Since Malaysia is situated in the safe mood region from the earthquake, most of the building in the country does not check earthquake loadings into structural design consideration.

State	Frequencies	Maximum Intensity Observed (Modified Mercalli Scale)
Peninsular Malaysia (1909-2005)		
Perlis	2	IV
Kedah	9	V
Penang	31	IV
Perak	18	IV
Selangor/ KL	37	IV
Negeri Sembilan	4	v
Melaka	9	v
Johor	21	IV
Pahang	4	Ш
Terengganu	1	IV
Kelantan	3	IV
Sabah and Sarawak (1923-2005)		
Sabah	24	VII
Sarawak	5	V

Table 1.1: Earthquake felt in Malaysia

Source: Taksiah A. Majid, Shaharudin Shah Zaini, Fadzli Mohd. Nazri, 2007

Based on the past earthquake effect, there were no impacts on the building in Malaysia. But, regarding to a Great Sumatra – Andaman earthquake occurred on December 2004 that caused the strong tsunami and devastated a part of Peninsular Malaysia. In addition, it also damaged the building cause by the sequences of the earthquake effect. Since having affected by the neighboring earthquake and itself, Malaysia has come to realize and concern about earthquake seismic design consideration.

1.2 PROBLEM STATEMENT

Recently, Malaysia is facing a difficulty due to the earthquake that happen in Ranau, Sabah, whereas, Malaysia was categorized as a free seismicity group. From this situation, Malaysia need come to realize that seismic hazard from the earthquake is certain and become a probable that can threaten the safety of the public and may damage to the properties. Such concern is attributed to the buildings in Malaysia less than one percent of it are seismic resistance (Taksiah Abdul Majid, 2009).

Earthquake cannot be predicted nor can be prevented. After a large earthquake struck Acheh in Sumatra, Indonesia, it had become warning to all Malaysians as they can feel the tremors in their home ground. In addition, the far-field quake sources, it has been reported that tremors are being felt within Peninsular Malaysia due to correction of Bukit Tinggi fault line (30 km from Kuala Lumpur) after the strong earthquake in 2004 (MMD, 2011). Hence, it is important to consider the probability of hazard from small magnitude intraplate earthquakes at Peninsular Malaysia.

After experiencing several tremors originating from neighbor country and within the country, Malaysia starts considering the earthquake design consideration. Based on a previous investigation (MOSTI, 2009), it had stated that almost of the buildings in Peninsular Malaysia were in great state and only about 50% of buildings chosen had been discovered in deterioration of concrete problems because of vibration throughout earthquake. It has additionally been reported that the design of vertical component in procurement were deficient for no less than half of the building picked.

REFERENCES

Adiyanto, M. I., & Majid, T. A. (2014). Seismic Design of Two Storey Reinforced Concrete Building In Malaysia With Low Class Ductility, 9(1), 27–46

Campbell, K.W. (2002). Prediction of strong ground motion using the hybrid empirical method: example: application to Eastern North America. Submitted to bulletin of the seismological society of America

Ch, C., & Nikos, M. (2010). Building design based on energy dissipation : a critical assessment, 1375–1396. http://doi.org/10.1007/s10518-010-9182-x

Design, L. E. (2005). Earthquake Tips, (March)

Drakatos, I., & Dritsos, S. E. (2014). Contribution of Earthquake-Resistant Design for Reinforced Concrete Buildings when Coping with External Explosions Contribution of Earthquake-Resistant Design, 2469(October 2015). http://doi.org/10.1080/13632469.2013.872061

Hinman, E. [2009] "Blast safety of the building envelope," National Institute of Building Sciences, Whole Building Design Guide (WBDG), Retrieved from http://www.wbdg.org/resources/env_blast.php (January 5, 2011)

Ismail, R., Adnan, A., & Ibrahim, A. (n.d.). Performance of Low and Medium-Rise Concrete Frames under Various Intensities Earthquake in, 6(1), 101–104.

Lam, N.T.K., Chandler, A.M., Wilson, J.L. and Hutchinson, G.L. (2000c). Response spectrum modeling for sites in low and moderate seismicity regions combining velocity, displacement and acceleration predictions. Earthquake Engng Struct. Dyn, 29: pp. 1491-1525.

Majid, T. A., Zaini, S. S., Mohd Nazri, F., Arshad, M. R., & Mohd. Suhaimi, I. F. (2007). Development of Design Response Spectra for Northern Peninsular Malaysia Based on UBC 97 Code. The Institution of Engineers Malaysia, 69(4), 23 – 29.

Mustaffa Kamal Shuib (2009). The Recent Bukit Tinggi Earthquake and their Relationship to Major Geological Structures. Geological Society of Malaysia, Bulletin 555, Nov. 2009, pp. 67-72. National Earthquake Information Center Database. USGS. http://neic.us.gs.gov/

MOSTI (2009). Seismic and tsunami hazards and risks study in Malaysia. Final Report, 59-142.

Razak, Z. A., Abdullah, A., Adnan, A., Vafaei, M. R., & Khalil, Z. (2012). Seismic Behaviour O F 4-L Egged Self -Supporting Telecommunication Towers Considering Earthquake, 24(2), 118–147.

Sooria, S. Z., Sawada, S., & Goto, H. (2012). Proposal for Seismic Resistant Design in Malaysia : Assessment of Possible Ground Motions in Peninsular Malaysia. Disaster Prevention Research Institute Annuals. B, 55(B), 81–94. Retrieved from http://hdl.handle.net/2433/161867