STUDY OF RAINFALL-RUNOFF RELATIONSHIP USING HYDROLOGICAL MODELLING SYSTEM (HEC-HMS) FOR LIPIS RIVER BASIN, PAHANG

WAN NURFATIN BT WAN ZAINULABIDIN

B. ENG (HONS.) CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT		
Author's full name: WAN NURFATIN BINTI WAN ZAINULABIDINDate of birth: 11 MARCH 1993Title: STUDY OF RAINFALL-RUNOFF RELATIONSHIP USING HYROLOGICAL MODELLING SYSTEM (HEC-HMS) FOR LIPIS RIVER BASIN, PAHANGAcademic Session: 2015/2016		
CONFIDENTIAL	(Contains confidential in Act 1972)*	formation under the Official Secret
RESTRICTED	(Contains restricted info organization where rese	rmation as specified by the earch was done)*
✓ OPEN ACCESS	I agree that my thesis to (Full text)	be published as online open access
 I acknowledged that University Malaysia Pahang reserves the right as follows: The thesis is the property of University Malaysia Pahang. The Library of University Malaysia Pahang has the right to make copies for the purpose of research only. The Library has the right to make copies of the thesis for academic exchange. Certified By:		
(Student's Signature)	(Signature of Supervisor)
930311-03-5296		DR. BAMBANG WINARTA
Date: 21 JUNE 2010	6	Date: 21 JUNE 2016

UNIVERSITI MALAYSIA PAHANG

STUDY OF RAINFALL-RUNOFF RELATIONSHIP USING HYDROLOGICAL MODELLING SYSTEM (HEC-HMS) FOR LIPIS RIVER BASIN, PAHANG

WAN NURFATIN BT WAN ZAINULABIDIN

Thesis submitted in fulfillment of the requirements for the award of degree of Bachelor of Civil Engineering (Hons)

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project report and in my opinion this project is satisfactory in terms of scope and quality for the award of Bachelor of Civil Engineering (Hons).

Signature:Name of Supervisor: DR. BAMBANG WINARTAPosition: LECTURERDate: 21 JUNE 2016

STUDENT'S DECLARATION

I hereby declare that the work in this report is my own except for quotations and summaries which have been duly acknowledged. The report has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:
Name of Student	: WAN NUR FATIN BINTI WAN ZAINULABIDIN
ID Number	: AA12239
Date	: 21 JUNE 2016

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii

LIST OF ABBREVIATIONS	xiii

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objectives of Study	4
1.4	Scope of Study	4
1.5	Research Significance	5

CHAPTER 2 LITERATURE REVIEW

2.1	Hydrology	6
	2.1.1 Hydrologic Cycle	7
2.2	Hydrological Characteristics	8
	2.2.1 Rainfall	8
	2.2.2 Runoff	9
	2.2.2.1 Factor Affecting Runoff	11
	2.2.3 Specific Peak Discharge	12

2.3	Flood	12
	2.3.1 Factors Affecting Flood	13
2.4	Rainfall-Runoff Relationship	13
2.5	Hydrograph	14
	 2.5.1 Unit Hydrograph Method 2.5.1.1 Snyder Unit Hydrograph 2.5.1.2 SCS Dimensionless Unit Hydrograph 2.5.1.3 Clark's Unit Hydrograph 2.5.1.4 Rational Method 	15 16 16 17 17
2.6	Parameter of Analysis Rainfall-Runoff Data	18
	 2.6.1 Snyder Unit Hydrograph 2.6.2 SCS Dimensionless Unit Hydrograph 2.6.2.1 Time of Concentration 	18 19 20
2.7	Hydrologic Engineering Center – Hydrologic Modeling System (HEC-HMS)	20
	 2.7.1 Introduction to HEC-HMS 2.7.2 Watershed Physical Description 2.7.3 Meteorology Description 2.7.4 Hydrologic Simulation 2.7.5 Parameter Estimation 2.7.6 Advantages of HEC-HMS 	20 21 23 23 24 24
2.7.7	Limitation of HEC-HMS	24

CHAPTER 3 METHODOLOGY

3.1	Introduction	26
3.2	Flowchart of Methodology	27
3.3	Area of Study	28
3.4	Data Collection	28

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction	34
4.2	HEC-HMS	34

	4.2.1 Model Parameter	36
	4.2.1.1 Transform Method	37
	4.2.1.2 Base Flow	40
	4.2.1.3 Loss Rate	40
4.3	Rainfall-Runoff Analysis	41

4.4	Evaluation of Model Using Root Mean Square Error (RMSE)	46

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	47
5.2	Recommendation	49
REFE	RENCES	50
APPENDICES		
А	Sample Data of Rainfall	53
В	Sample Data of Stream flow	54

LIST OF TABLES

Table	e No. Title	Page
2.1	Intensity of rainfall	9
3.1	Rainfall and stream flow station in Lipis River	29
3.2	Area of Lipis River basin model	29
3.3	Reach of Lipis River basin model	32
3.4	Junction of Lipis River basin model	33
4.1	Value of standard lag, t_p for each sub basin	38
4.2	Value of lag time, t_p for each sub basin	39
5.1	Comparison value of RMSE	48

LIST OF FIGURES

Figure	No. Title	Page
1.1	Distribution of earth's water	2
2.1	Hydrological Cycle	8
2.2	Formation of runoff	10
2.3	Rainfall-runoff relationship	14
2.4	Hydrograph	15
3.1	Flowchart of the study	27
4.1	HEC-HMS layout model for Lipis River	35
4.2	Topography area of Lipis River in AutoCAD	36
4.3	Loss rate parameter	40
4.4	Hydrograph in January 2010	42
4.5	Hydrograph in March 2010	43
4.6	Hydrograph in January 2010	44
4.7	Hydrograph in March 2010	45

LIST OF ABBREVIATIONS

HEC-HMS	Hydrologic Engineering Center – Hydrologic Modeling System
IDF	Intensity Duration Frequency
JPS	Jabatan Pengairan dan Saliran
SCS	Soil Conservation Service
Sg.	Sungai
UH	Unit Hydrograph
UNESCO	United Nations Educational, Scientific, and Cultural Organization

STUDY OF RAINFALL-RUNOFF RELATIONSHIP USING HYDROLOGICAL MODELLING SYSTEM (HEC-HMS) FOR LIPIS RIVER BASIN, PAHANG

WAN NURFATIN BT WAN ZAINULABIDIN

Thesis submitted in fulfillment of the requirements for the award of degree of Bachelor of Civil Engineering (Hons)

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

ABSTRACT

In this study, Hydrologic Engineering Center – Hydrologic Modeling System (HEC-HMS) is used to determine the rainfall-runoff relationship of Lipis River, Pahang. HEC-HMS is software use in analyzing, planning, and simulating the process of rainfall and runoff. HEC-HMS 4.0 is used in this study to simulate discharge for Lipis River. This study uses rainfall data and stream flow data from January 2008 to December 2014. The data needed is from eleven rainfall stations and one stream flow station in Lipis River catchment area. The analysis result of the data is depends on the parameter used in HEC-HMS. Snyder Unit Hydrograph and SCS Unit Hydrograph are the method use in this study. The parameters include standard lag, peaking coefficient and lag time. The results of simulation can be generated in form of hydrograph, summary table, and time series table. Root Mean Square Error, RMSE is used to show the relationship of the observed and the simulated flow. If the RMSE value is lesser, it would indicate that the variables are positively linear related. During evaluation of model, the best value RMSE for Snyder UH method is 11.63m³/s while for SCS UH method is 13.148m³/s. It shows that the simulated models were fit with the observed data and proves that the HEC-HMS is suitable to predict and analyze rainfall-runoff relationship in Lipis River.

ABSTRAK

Hydrological Modeling System (HEC-HMS) Dalam kajian ini, digunakan untuk menentukan hubungan hujan dan proses larian air di Sungai Lipis, Pahang. HEC-HMS merupakan satu perisian yang digunakan untuk menganalisis, merancang, dan mensimulasi proses hujan dan larian air. HEC-HMS 4.0 digunakan dalam kajian ini untuk menjalankan simulasi pergerakan air untuk Sungai Lipis. Kajian ini menggunakan data air hujan dan aliran sungai dari Januari 2008 hingga Disember 2014. Data yang diperlukan adalah dari sebelas stesen air hujan dan satu stesen aliran sungai di kawasan tadahan Sungai Lipis. Keputusan analisis data bergantung kepada parameter yang digunakan dalam HEC-HMS. Snyder Unit Hidrograf dan SCS Unit Hidrograf adalah kaedah yang digunakan dalam kajian ini. Parameter tersebut termasuklah standard lag, peaking coefficient dan lag time. Keputusan simulasi boleh dihasilkan dalam bentuk hidrograf, jadual ringkasan, dan jadual siri masa. Root Mean Square Error, RMSE digunakan untuk menunjukkan hubungan aliran tersimulasi dan aliran diperhatikan. Jika nilai RMSE lebih rendah, ianya menunjukkan bahawa pembolehubah yang berkaitan adalah positif linear. Semasa penilaian model Sungai Lipis ini, nilai RMSE yang terbaik untuk kaedah Snyder UH adalah 11.63m³/s manakala bagi kaedah SCS UH adalah 13.148m³/s. Ianya menunjukkan bahawa model tersimulasi hampir selari dengan data diperhatikan. Ianya juga membuktikan bahawa HEC-HMS ialah perisian yang sesuai untuk meramal analisis hubungan proses hujan dan larian air di Sungai Lipis.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Water is essential to life and is the defining characteristic of Earth, the blue planet. Hydrology is the study of the global water cycle and the physical, chemical, and biological processes involved in the different reservoirs and fluxes of water within this cycle. This includes water vapour, liquid water, snow, and ice; indeed, one of the things that make our planet unique is the fact that water can be found in all three phases at Earth surface temperatures and pressures. It encompasses the occurrence, distribution, movement and properties of the water of the earth. Knowledge of hydrology is one of the key ingredients in decision-making processes where water is involved.

The Earth is a watery place. About 71 per cent of the Earth's surface is watercovered, and the oceans hold about 97.22 per cent of all Earth's water. Water also exists in the air as water vapour, in rivers and lakes, in icecaps and glaciers, in the ground as soil moisture and in aquifers shown in **Figure 1.1**.

Figure 1.1: Distribution of earth's water

Source: Slide share, 2014

Hydrology Engineering Centre-Hydrologic Modelling System (HEC-HMS) had been used as tool for the hydrologic modelling of Lipis River basin. HEC-HMS is a popularly used watershed model to simulate rainfall runoff process.

HEC-HMS is hydrologic modelling software developed by the US Army Corps of Engineers-Hydrologic Engineering Centre (HEC), it is the physically based and conceptual semi distributed model designed to simulate the rainfall-runoff processes in a wide range of geographic areas such as large river basin water supply and flood hydrology to small urban and natural watershed runoff. The system encompasses losses, runoff transform, open channel, routing, and analysis of meteorological data, rainfallrunoff simulation and parameter estimation. HEC-HMS uses separate models to represent each component of the runoff process, including models that compute runoff volume, models of direct runoff, and models of base flow. Each model run combines a basin model, meteorological model and control specifications with run options to obtain results.

1.2 PROBLEM STATEMENT

Nowadays, flood is the most significant disaster in Malaysia that effect to the social and economic of the population. Lipis River has been identified as one of the river that contributes flood problem. Heavy rainfall can cause the excess of runoff rise to the high water levels and causing the area to be flooded. Flood occurs in Kuala Lipis due to the drainage problem which the drainage capacity cannot cattle the quantity of water when the capacity of runoff increases (Amanina, 2014). When the quantity of the runoff is increasing and filled all the drainage and river, then the flood will occur (Laporan Banjir Pahang, Daerah Kuala Lipis, 2014). Thousands of money are spent every year in flood control and flood forecasting. Lipis River which is located in Kuala Lipis, Pahang is one of the rivers which can contribute to this problem.

This research is carried out to analyse the relationship between rainfall and runoff in order to prevent this disaster. Hydrological Engineering Centre-Hydrologic Modelling System (HEC-HMS) is one of the computer programs that can be used to simplify the data and assist to understand the hydrological characteristics. HEC-HMS is used to develop rainfall-runoff from a design rainfall or historic rainfall event for Lipis River basin. In this software, hydrology parameter such as rainfall data and stream flow data are important to simulate rainfall-runoff data. By analyse the data using HEC-HMS, it can assist to recognise the rainfall-runoff relationship in a certain period.

REFERENCES

Analysis of rainfall-Runoff relationship on Sloping Uplands.pdf. (n.d.).

- Awang, H., Daud, Z., & Hatta, M. Z. M. (2015). Hydrology Properties and Water Quality Assessment of the Sembrong Dam, Johor, Malaysia. *Procedia - Social and Behavioral Sciences*, 195(January 2016), 2868–2873. http://doi.org/10.1016/j.sbspro.2015.06.409
- Chen, S., & Doolen, G. D. (1998). Lattice Boltzmann Method for Fluid Flows. *Annual Review of Fluid Mechanics*, *30*(1), 329–364.
- Choudhari, K., Panigrahi, B., & Paul, J. C. (2014). Simulation of rainfall-runoff process using HEC-HMS model for Balijore. *International Journal of Geomatics and Geosciences*, 5(2), 253–265.
- Holman, J. P., & Lloyd, J. (2010). Fluid Mechanics S1.2. *Refrigeration And Air Conditioning*, 6(3), e18068. http://doi.org/http://dx.doi.org/10.1016/j.rser.2004.09.010
- Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2007). Fundamentals of Heat and Mass Transfer. (F. P. Incropera & F. P. F. O. H. A. M. T. Incropera, Eds.), Water (Vol. 6th). John Wiley & Sons. http://doi.org/10.1016/j.applthermaleng.2011.03.022
- Landau, L. D., & Lifshitz, E. M. (1987). *Fluid Mechanics. Image Rochester NY* (Vol. 6). Pergamon books Ltd. http://doi.org/10.1007/b138775
- Lomax, H., Pulliam, T., Zingg, D., & Kowalewski, T. (2002). Fundamentals of Computational Fluid Dynamics. *Applied Mechanics Reviews*. http://doi.org/10.1115/1.1483340
- Marshall, S. J. (2013). Hydrology. Reference Module in Earth Systems and Environmental Sciences, 1–4. http://doi.org/10.1016/B978-0-12-409548-9.05356-2
- Mcenroe, B. M., Zhao, H., & Author, 7. (1999). LAG TIMES AND PEAK COEFFICIENTS FOR RURAL WATERSHEDS IN KANSAS 4 Title and Subtitle

LAG TIMES AND PEAK COEFFICIENTS FOR RURAL WATERSHEDS IN KANSAS 6 Performing Organization Code, (October).

- Nam, J. (2002). New approach to multichannel linear prediction problems. 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2(4), II– 1341–II–1344.
- Of, O. O. L., & Ces, O. S. C. (n.d.). H y d ro l o g y.
- Pidwirny, M. (2006). "The Hydrologic Cycle". Fundamentals of Physical Geography, 2nd Edition. Date Viewed. http://www.physicalgeography.net/fundamentals/8b.html
- Scharffenberg, W. a. (2013). Hydrologic Modeling System HEC-HMS User 's Manual, (December), 442.
- Soediono, B. (1989). No Title No Title. *Journal of Chemical Information and Modeling*, 53, 160. http://doi.org/10.1017/CBO9781107415324.004
- Squires, T. M., & Quake, S. R. (2005). Microfluidics: Fluid physics at the nanoliter scale. *Reviews of Modern Physics*, 77(3), 977–1026.
- US Army Corps of Engineers. (2008). Hydrologic Modeling System User 's Manual. *Transform*, (September), 290.
- USACE. (2000). Hydrologic Modeling System HEC-HMS Technical Reference Manual. US Army Corps of Engineers, (March), 155. http://doi.org/CDP-74B
- Welch, G., & Bishop, G. (2006). An Introduction to the Kalman Filter. In Practice, 7(1), 1–16. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.6578&rep=rep1 &type=pdf
- Xia, Y., & Whitesides, G. M. (1998). Soft Lithography. Annual Review of Materials Science, 28(1), 153–184.
- Yang, J., Reichert, P., Abbaspour, K. C., & Yang, H. (2007). Hydrological modelling of the Chaohe Basin in China : Statistical model formulation and Bayesian inference, 167–182. http://doi.org/10.1016/j.jhydrol.2007.04.006

- Yener, M. K., Sorman, a U., & Gezgin, T. (2007). Modeling studies with HEC-HMS and runoff scenarious in Yuvacik Basin, Turkiye. *River Basin Management*, 621– 634.
- Zalba, B. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. *Applied Thermal Engineering*, *23*(3), 251–283. http://doi.org/10.1016/S1359-4311(02)00192-8