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ABSTRACT 

 

Recently, the development of online quality monitoring system based on the arc sound 

signal has become one of the main interests due its ability to provide the non-contact 

measurement. Notwithstanding, numerous unrelated-to-defect sources which influence 

the sound generation are one of the aspects that increase the difficulties of applying this 

method to detect the defect during welding process. This work aims to reveal the hidden 

information that associates with the existence of irregularities and porosity on the weld 

bead from the acquired arc sound by applying the discrete wavelet transform. To 

achieve the aim, the arc sound signal was captured during the metal inert gas (MIG) 

welding process of three API 5L X70 steel specimens. Prior to the signal acquisition 

process, the frequency range was set from 20 Hz to 10 000 Hz which is in audible 

range. In the next stage, a discrete wavelet transform was applied to the acquired sound 

in order to reveal the hidden information associated with the occurrence of discontinuity 

and porosity. According to the results, it was clear that the acquired arc sound was not 

giving an obvious indication of the presence of defect as well as its location due to the 

high noise level. More interesting findings have been obtained when the discrete 

wavelet transform (DWT) analysis was applied. The analysis results indicate that the 

level 8 of the approximate and detail wavelet coefficient have given a significant sign 

associated with the presence of irregularities and porosity respectively. Moreover, 

despite giving the information on the surfaces pores, the detail wavelet coefficient was 

found to give a clear indication of the sub-surface porosity formation during welding 

process. Hence, it could be concluded that the hidden information with respect to the 

occurrence of discontinuity and porosity on the weld bead could be obtained by 

applying the discrete wavelet transform. 

 

Keywords: MIG welding, sound signal, discrete wavelet transform. 

 

INTRODUCTION 

 

In the oil and gas industries, welding is one of the major joining processes which 

received a lot of attention. This process is vital because many catastrophic failures in the 

gas pipeline system were reported to initiate from the welding defect [1-3]. For that 

reason, the advancement of welding technology has been increasing rapidly since the 

past few decades in order to improve the strength of the joined part, reduce risk as well 

as increase productivity. This was made through the studies related to the optimization 

of welding parameter as well as the strength analysis of the welded part [4-9]. In 

industries, welding is done according to the general procedures and standard in order to 
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avoid the welding defect. However, the welding defect could still exist due to the 

uncertainties that occur during the process. Due to that reason, many studies were done 

to find the potential development of the online welding monitoring system due to the 

fact that it could offer a greater control during the process. According to Grad et al., the 

online quality monitoring is believed to be an influential factor contributing to higher 

productivity, lower cost and greater reliability of the welded components even though it 

is still not established in industries. Literally, many studies have been conducted in 

attempt to find the potentially fast and robust method to detect and localize the defect 

during welding process. Based on previous studies, defects such as cavity, linear 

porosity, gas pores and slag inclusion could be detected using methods such as the 

ultrasonic testing [10, 11], acoustic emission [12], x-ray radiography [13-16], and arc 

spectroscopy [17, 18]. In spite of the ability of these methods, it also has some 

limitations. For instance, the application of ultrasonic testing can only provide 

information on the vicinity of the scanned area, and when it comes to measuring the 

whole area, it is definitely time consuming. Meanwhile, the application of the acoustic 

emission technique might be laborious due to the structure-borne nature of the signal 

which consequently makes it difficult to be applied on a hardly-accessed area. 

Comparing to the ultrasonic and acoustic emission methods, the x-ray radiography and 

arc spectroscopy have shown greater potential in detecting defect during welding 

process. However, in some cases, the application of x-ray radiography could be 

subjective and time consuming [15] while the accuracy of the arc spectroscopy method 

depends on the process behaviour [19]. Unlike other methods, the detection of defect 

using the arc sound can be considered as a more unique method because it is simple and 

promotes a non-contact measurement. This factor increased the researcher’s interest to 

obtain a deeper understanding of this method.   

Based on the past studies, the detection of defect from sound signal was done 

based on the understanding of several phenomena such as the weld pool metal vibration 

[20, 21], arc plasma jet pulsation [22], change in arc intensity [20] and metal transfer 

[23] because these are the possible sources of the sound generated during the welding 

process. However, it is important to understand that the sound signal is not only created 

from these sources but also non-damage-related sources. You et al. [19] in their study 

reported that the limitation in applying this method is the harsh surrounding where it 

contributes to the higher noise in the acquired signal. Previously, many studies show 

that the signal processing method was able to reveal the defect-related information from 

the acquired arc sound. For example, Wang et al. [21] used the short time Fourier 

transform in order to decompose the acquired arc sound signal and select the related 

decomposed component for further analysis. They reported that this method was 

significant in monitoring the keyhole status and the analysis results show a good 

agreement with the presence of irregularities on the weld bead. In another study, Hong 

Luo et al. [24] used wavelet transform to analyse the acquired sound from laser welding. 

In that study, the intensity of the decomposed signal was found to give a clear relation 

with the existence of defects. On the other hand, signal processing is applied to extract 

the signal features instead of decomposing it. In works related to this approach [20, 22, 

23], the extracted features were found to show a clear correlation to the phenomena that 

occur during the process. According to the findings, it could be summarized that the use 

of sound signal can provide a significant result in detecting several types of defect, as 

well as monitoring some phenomena during the welding process in order to prevent the 

formation of defect. However, in most of the reported findings, the exploration of this 

method was limited to several types of defect. Moreover, only small number of studies 
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highlighted the identification of defect based on the arc sound signal pattern. To ensure 

that this method can be further developed, it would be more significant if a wide variety 

of defects can be detected and identified through this method, especially the more 

severe types such as porosity and inclusion underneath the weld bead. Thus, the 

application of the signal processing method is helpful due to its ability to remove the 

unwanted noise which consequently hides the information associated with the existence 

of defect. This has been proven by some researchers. Nonetheless, the signal processing 

approach is still not broadly applied in this case. The study of the signal analysis method 

as the pre-processing technique is important in the attempt to optimize the capability of 

detecting and localizing multiple types of defect in a single measurement.  

In this paper, the aim is to study the application of the discrete wavelet transform 

in revealing the hidden information associated with the existence of irregularities and 

porosity in the weld bead from the acquired arc sound. In the first stage, the arc sound 

signal was acquired during the welding process of an API 5L X70 gas pipeline steel 

using a Metal Inert Gas (MIG) welding. Then, the DWT was applied on the acquired arc 

sound and the selected decomposition product in the form of detail and an approximate 

coefficient which was found relatively related to the presence of irregularities and 

porosity will be discussed. 

 

EXPERIMENTAL SET UP 

 

Experimental Procedures 

The arrangement of instruments in this experiment is shown in Figure 1. Basically, the 

instrumentation system in this project consists of the PCB Electronics microphone with 

the bandwidth from 20 Hz to 10,000 Hz. Based on previous findings [21-25], the 

information of defect could be obtained within this range. To acquire the signal the 

National Instrument Analogue-to-Digital Converter Model NI9234 was used due to its 

ability to provide suitable sampling frequency for this experiment. Meanwhile, a PC 

was used as a signal analyser unit. Prior to the experiment stage, the sampling frequency 

of data acquisition was set to be 25.6 kSamples/s. Welding parameters were set 

according to the values shown in Table 1. These parameters were based on the 

recommendation in the technical specification sheet from the filler wire manufacturer. 

The filler wire used in this experiment was E70RS-6 carbon steel. The selection was 

made based on the chemical composition in which it was slightly similar to the based 

metal (specimens) used in this experiment. The specimen used in this project was API 

5L X70 grade carbon steel with the dimension of 40 mm x 70 mm x 4 mm each side.  

 

Table 1. MIG welding parameters. 

 

Specimen Voltage Current 
Welding Speed 

(mm/s) 

Shielding Gas (pure 

Argon) Flow rate (L/min) 

1 24 200 5 15 

2 24 170 3 7.5 

3 23 165 4 10 

 

In an attempt to avoid human error, the automated MIG welding was used in this 

experiment. During the welding process, the specimen on the railed clamp was moved 

in accordance with the welding speed which was set in the prior stage and a microphone 



 

Detection of defects on weld bead through the wavelet analysis of the acquired arc sound signal 

2034 
 

was attached to the welding torch to ensure the distance from the area of metal transfer 

was kept constant. 

 

 
Figure 1. Experiment setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

Figure 2. Discrete wavelet transform. 

 

Discrete Wavelet Transform 

Basically, the wavelet transform (WT) turn out to be one of the best decomposition 

methods because it can cater time scale information of a signal enabling the extraction 

of features that vary in time. This feature makes wavelet an ideal tool for analysing the 

signal of a non-stationary nature [26]. As proposed by [27] and represent in Eq.(1), the 
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continuous wavelet transform (CWT) of is the sum over all time of the signal 

multiplied by scale, shifted versions of the wavelet functions . 

 

                                     (1) 

 

where Ψ (t), α, and b denotes the mother wavelet, scale index and time shifting 

respectively. Meanwhile, the DWT was derived from the discretization of CWT (a, b) 

and the most common discretization was dyadic given by [26] as,  

 

                                (2) 

Whereas [26] proposed a and b to be replaced by  and . In 1989, [28] found 

a persuasive way to apply this method using filters. The  passed through two 

complementary filters and emerged as the low- and high-frequency signals. The 

decomposition may be iterated with the successive approximations began to decompose 

in turn, so that the signals may be broken down into the lower resolution components as 

illustrated in Figure 2.  

 

RESULTS AND DISCUSSION 

 

Acoustic Signatures Acquired During Welding Process 

The captured acoustic signatures in the distance domain from the welding process for all 

specimens are shown in Figure 3. Basically, the time domain series was converted into 

distance domain according to the welding speed for each of the specimen. Based on the 

result in Figure 3(a), it was clear that there were uncertainties in the pattern of the 

acquired arc sound at around 2mm to 5mm and 27mm from the initial point.  

Conforming to the image of the weld bead in the same figure, the uncertainties occurred 

at the region where irregularities in the weld bead shape exist. Moreover, the surface 

pores were found at around 2 mm from the initial point. In Figures 3(b) and (c), the 

same pattern of arc sound could be observed when the irregularities in the weld bead 

shape existed though no porosity was found for both cases. Overall, even though the 

acquired arc sound signal gave a sign of the existence of irregularities on the weld bead, 

the signal itself was influenced by the high amount of noise. As a result, the 

uncertainties in the signal were barely clear to be seen. As explained in the earlier 

literatures, this phenomenon commonly occurs if sound is used as a medium to monitor 

the welding process due to the fact that the process itself undergoes harsh surrounding 

[19, 21] 

 

Detection of Irregularities of the Weld Bead 

Based on the results in the previous section, it was observed that the physical patterns of 

the arc sound at the location where the defect existed were unclear. Hence, it was 

significant to decompose the signal into several frequency components to entirely reveal 

the hidden signal abnormalities associated with the defect formation during welding 

process. The decomposition result from the discrete wavelet transform (DWT) is shown 

in Figures 4 and 5. Figures 4(a), 4(b), and 4(c) present the plot of approximate wavelet 

coefficients level 8 over the distance for specimens 1, 2, and 3, respectively.  
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(a) 

 
(b) 

 
(c) 

 

Figure 3. The acquired sound signal during welding process  

(a) Specimen 1 (b) Specimen 2 (c) Specimen 3. 
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(a) 

 
(b) 

 
(c) 

 

Figure 4: Level 8 approximate wavelet coefficient of a decomposed arc sound signal 

during welding process of (a) Specimen 1, (b) Specimen 2, and (c) Specimen 3 
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Overall, it was found that the level 8 approximate wavelet coefficient gave a 

better trend with respect to the irregularities of the weld bead shape as compared to the 

raw signal. For instance, the decomposition result of the acquired sound from specimen 

1 showed that there was a clear transient-shape trend from 1.65 mm to 4.28 mm, 4.6 

mm to 15mm, 23.35 mm to 26 mm, and 27.3 mm to 33 mm. Comparing to the trend of 

the arc sound before the decomposition, the uncertainties were not found at around 

23mm. This showed that the decomposition process was significantly aided in revealing 

the hidden information with respect to the defect. Similar result trend also were 

recorded in Figures 4(b) and (c) whereas the transient shape signal was found from 

14.43 mm to 23.7 mm, and 12.68 mm to 20.45 mm respectively. The weld bead 

irregularities were also found as the result was compared to the weld bead image in the 

same figure. Overall, the results presented in Figure 4 obviously show that the 

irregularities on the weld bead shape can be significantly correlated with the occurrence 

of the transient shape of the decomposed sound signatures. It was estimated that the 

transient shape signal produced by the arc sound was associated with the instability of 

weld pool oscillation due to the existence of surface tension force or Marangoni force. 

According to the previous finding [29], it was reported that this force has led to the 

irregularities in the weld bead. This happens because the exerted force tends to make the 

molten metal flow away from the desired area and cause discontinuity to occur [30]. 

Mendez [29] defined this as the split bead. As illustrated by Figure 2, the approximate 

coefficient obtained from the discrete wavelet transform was from the lower frequency 

component. This shows good agreement with what reported by Wang et al. [21]. In a 

previous study, Wang et al. [21] summarized that the weld pool status could be 

significantly monitored from the lower frequency component of the acquired arc sound 

signal.  

 

Detection of Porosity  

As illustrated in Figure 3(a), the result for specimen 1 shows the presence of several 

numbers of porosity on the surface. Unlike discontinuity, in this study, the porosity 

phenomenon was found to be highly related with the detail wavelet coefficient level 8. 

This was evident whereas the plot of level 8 details wavelet coefficient in Figures 5 and 

Figure 6 show a significant correlation with the presence of both surface and sub-

surface porosity. Basically, the image of subsurface porosity was obtained after the 

specimen was grounded.  As shown in Figure 5(a), the small burst signatures were 

found at around 3 mm, 5 mm, 23 mm and 27 mm from the starting point. Comparing to 

the weld image in Figure 5(b), the surface porosity was found at around 3 mm and 5 

mm which were the same spots where the burst signature occurred. In contrast, there 

was no clue to the existence of porosity at around 23mm and 27mm. However, the 

subsurface pores were found around both spots after the specimen was grounded by 

2.84 mm and 4.15 mm. The similar trends were also recorded for the decomposed signal 

for specimen 2 in Figure 6. In Figure 6(a), it could be observed that the burst signatures 

appeared at the spot where the small sub-surface was found after the specimen was 

grounded by 4.87 mm. This was confirmed by the grounded weld image shown in 

Figure 6(b). In contrast with other specimens, no porosity was found in specimen 3. 

Overall, it could be summarized that the burst signatures appeared in the detail wavelet 

coefficient gave a significant sign of the existence of both surface and sub-surface 

porosity. The detail observation led to the findings that the spot where the burst 

signatures appeared in the detail wavelet coefficient were actually the same spots where 

the transient shape signature occurred. According to [30], both the surface and sub-
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surface porosities could occur from the entrapped insoluble air during the welding 

process. This entrapment happened when the convection pattern was in the downward 

direction as the Marangoni force occurs. As explained in the previous section, the 

transient shape signatures are believed to be relatively associated with the weld pool 

instability due to the existence of Marangoni force. Hence, it was estimated that the 

burst type signal occurred due to the Marangoni force itself which consequently caused 

the high energy amplitude to occur instantly.  

 

 
 

Figure 5. Level 8 detail wavelet coefficient of a decomposed arc sound signal during 

welding process of Specimen 1 (a) Level 8 detail wavelet coefficient, (b) Weld bead 

image, (c) Specimen grounded by 2.84 mm, and (d) Specimen grounded by 4.15 mm. 

 

 
Figure 6. Level 8 detail wavelet coefficient of a decomposed sound signal during the 

welding process of Specimen 2 (a) Level 8 detail wavelet coefficient, (b) Weld bead 

image, and (c) Specimen grounded by 4.87 mm. 
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CONCLUSIONS 

 

In accordance with the results, the sound signal was successfully acquired from the 

welding process of the API 5L X70 steel. As illustrated in the beginning part, the 

acquired arc was influenced by the high amount of noise which caused the noticeable 

sign of defect almost hidden. After applying the discrete wavelet transform, it was 

clearly shown that the approximate wavelet coefficient gave obvious significant pattern 

related to the weld pool instability which led to the irregularities in the weld bead shape. 

Meanwhile, the small burst appeared in the detail wavelet coefficient plot gave a 

significant alarm of the existence of both surface and sub-surface porosities. Thus, it 

could be concluded that the application of discrete wavelet transform was significant in 

revealing the hidden information associated with the existence of discontinuity and 

porosity of the acquired sound signal. However, several limitations need to be improved 

in future. In this work, the estimation of the phenomena leading to the defect formation 

during the welding process was from both literature and result trend basis. Nevertheless, 

it is more significant if the image from the high speed camera could be used to confirm 

the estimation. Moreover, the development of the mathematical model for the sound 

generation from the phenomena that occur during the welding process might be useful 

to get earlier estimation of the result. 
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