UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : NORUL AMIERAH BINTI NOR ZAMANI
Date of Birth : 24th MARCH 1993
Title : MECHANICAL PROPERTIES AND CHARACTERIZATIONS
 OF POLYPROPYLENE BASED COMPOSITE
Academic Session : 2015/2016

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official
 Secret Act 1997)*
☐ RESTRICTED (Contains restricted information as specified by the
 organization where research was done)*
☐ OPEN ACCESS I agree that my thesis to be published as online open
 access (Full Text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies for the purpose
 of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified By:

__ _______________________________________
 (Author’s Signature) (Supervisor’s Signature)
 930324-03-5754 ASSOC.PROF.DR. DEWAN MUHAMMAD
 NURRUZAMAN

Date: Date:
MECHANICAL PROPERTIES AND CHARACTERIZATIONS OF POLYPROPYLENE BASED COMPOSITE

NORUL AMIERAH BT NOR ZAMANI

Report submitted in partial fulfillment of the requirements for the award of the degree of B.Eng. (Hons.) Manufacturing Engineering

Faculty of Manufacturing Engineering
UNIVERSITY MALAYSIA PAHANG

June 2016
SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of the Bachelor of Manufacturing Engineering (Hons.)

Signature :
Name of Supervisor : Assoc. Prof. Dr. Dewan Muhammad Nurruzaman
Position : Senior lecturer
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : Norul Amierah Binti Nor Zamani
ID Number : FA12026
Date :
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR'S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>STUDENT'S DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.0 Background of Research 1
1.1 Problem Statement 2
1.2 Objectives 3
1.3 Project Scope 3

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 4
2.2 Polymer 4
2.3 Polypropylene 5
2.4 Mechanical Testing on Polypropylene 5
 2.4.1 Tensile Test 5
 2.4.2 Impact Test 6
2.5 Application of Polypropylene 7
2.6 Glass-fibre Reinforced Polymer 8
2.7 Natural-fibre Reinforced Polymer 8
CHAPTER 3 METHODOLOGY

3.1 Introduction 10
3.2 Process Flow Chart 12
3.3 Design of Experiment 13
 3.3.1 Material Selection 13
 3.3.2 Preparation of Materials 13
 3.3.3 Sample Calculations 13
3.4 Preparation of Experiment 16
 3.4.1 Specimen Design 16
 3.4.2 Raw Material 17
 3.4.3 Crushing Process 17
 3.4.4 Mixing of Material 18
 3.4.5 Injection Moulding 18
 3.4.6 Parameter Setting 18
 3.4.7 Purging Process 19
3.5 Specimen Testing 20
 3.5.1 Ultimate Tensile Strength (UTS) Test 20
 3.5.2 Izod Impact Test 23
3.6 Characterization of Failure Specimen 23
 3.6.1 Cold Mounting 24
 3.6.2 Grinding 24
 3.6.3 Polishing 24
 3.6.4 Analysis of Microstructure 25

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 26
4.2 Mechanical Properties of Composites 27
 4.2.1 Tensile test of 5mm strain rate 27
 4.2.2 Tensile test of 10mm strain rate 32
 4.2.3 Impact test 39
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction 44
5.2 Conclusions 44
5.3 Recommendations 45
 5.3.1 Parameter consideration 46
 5.3.2 Flexural test 46
 5.3.3 Using scanning electron microscope 46

REFERENCES 48

APPENDICES 49

A Gant chart 49
B1 Injection moulding machine 50
B2 Parameter of temperature 51
C Material used 52
D Specimen 54
E Experimental results of tensile test 56
F Experimental results of impact test 80
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The mechanical properties of polypropylene and its values.</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>Temperature setting for injection moulding</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Result of tensile test</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>Result of tensile test</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Impact properties of composites</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure. No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Bottle</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Storage box</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Rope</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of methodology</td>
<td>12</td>
</tr>
<tr>
<td>3.2</td>
<td>A dimensional drawing of the dog bone with ASTM D638</td>
<td>16</td>
</tr>
<tr>
<td>3.3</td>
<td>A dimensional drawing of bar specimen with ASTM D256</td>
<td>17</td>
</tr>
<tr>
<td>3.4</td>
<td>Purging process using pure polypropylene material</td>
<td>20</td>
</tr>
<tr>
<td>3.5</td>
<td>Universal Testing Machine (UTM)</td>
<td>22</td>
</tr>
<tr>
<td>3.6</td>
<td>Tensile testing of dog bone shaped specimen</td>
<td>22</td>
</tr>
<tr>
<td>3.7</td>
<td>Impact tester (INSTRON – CEAST 9050)</td>
<td>23</td>
</tr>
<tr>
<td>3.8</td>
<td>The micrographs of grinding and polishing machine</td>
<td>25</td>
</tr>
<tr>
<td>3.9</td>
<td>Olympus BX51M optical microscope</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Stress-strain curve of 100% polypropylene</td>
<td>27</td>
</tr>
<tr>
<td>4.2</td>
<td>Stress-strain curve of 80% PP + 20% PA6</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>Stress-strain curve of 80% PP + 15% PA6 + 5% GF</td>
<td>28</td>
</tr>
<tr>
<td>4.4</td>
<td>Stress-strain curve of 70% PP + 30% PA6</td>
<td>29</td>
</tr>
<tr>
<td>4.5</td>
<td>Stress-strain curve of 70% PP + 25% PA6 + 5% GF</td>
<td>29</td>
</tr>
<tr>
<td>4.6</td>
<td>The Tensile Stress (MPa) Graph of 5mm Strain Rate</td>
<td>31</td>
</tr>
<tr>
<td>4.7</td>
<td>The Elastic Modulus (Mpa) Graph of 5mm Strain Rate</td>
<td>31</td>
</tr>
<tr>
<td>4.8</td>
<td>Stress-strain curve of 100% Polypropylene</td>
<td>32</td>
</tr>
<tr>
<td>4.9</td>
<td>Stress-strain curve of 80% PP + 20% PA6</td>
<td>33</td>
</tr>
<tr>
<td>4.10</td>
<td>Stress-strain curve of 80% PP + 15% PA6 + 5% GF</td>
<td>33</td>
</tr>
</tbody>
</table>
4.11 Stress-strain curve of 70% PP + 30% PA6
4.12 Stress-strain curve of 70% PP + 25% PA6 + 5% GF
4.13 The Tensile Stress (MPa) Graph of 5mm Strain Rate
4.14 The Elastic modulus (MPa) Graph of 10mm Strain Rate
4.15 The Tensile Stress at Maximum Load (MPa)
4.16 Modulus (E-modulus) (Gpa)
4.17 Graph of impact strength
4.18 OM micrographs of the tensile fracture surface of composites
100% PP (A) 80% PP + 20% PA6 (B) 80% PP + 15% PA6 + 5% GF (C) 70% PP + 30% PA6 (D) 70& PP + 25% PA6 + 5% GF (E)
4.19 OM micrographs of the impact fracture surface of composites
100% PP (A) 80% PP + 20% PA6 (B) 80% PP + 15% PA6 + 5% GF (C) 70% PP + 30% PA6 (D) 70& PP + 25% PA6 + 5% GF (E)
6.1 Gant chart final year project 1
6.2 Gant chart final year project 2
6.3 Injection moulding machine
6.4 Range of temperature used during injection moulding
6.5 Polypropylene
6.6 Nylon/Polyamide 6
6.7 Glass fibre
6.8 Dog bone-shaped specimen of ASTM D638
6.9 Tensile specimen after fractured
6.10 Impact specimen after fractured
6.11 Stress-strain curve of 100% Polypropylene 5mm sample 1
6.12 Stress-strain curve of 100% Polypropylene 5mm sample 2
6.13 Stress-strain curve of 100% Polypropylene 5mm sample 3
6.14 Stress-strain curve of 100% Polypropylene 10mm sample 1
6.15 Stress-strain curve of 100% Polypropylene 10mm sample 2
6.16 Stress-strain curve of 100% Polypropylene 10mm sample 3
6.17 Stress-strain curve of 80% PP + 20% PA6 5mm sample 1
6.18 Stress-strain curve of 80% PP + 20% PA6 5mm sample 2
6.19 Stress-strain curve of 80% PP + 20% PA6 10mm sample 1
6.20 Stress-strain curve of 80% PP + 20% PA6 10mm sample 2
6.21 Stress-strain curve of 80% PP + 15% PA6 + 5% GF 5mm sample 1
6.22 Stress-strain curve of 80% PP + 15% PA6 + 5% GF 5mm sample 2
6.23 Stress-strain curve of 80% PP + 15% PA6 + 5% GF 10mm sample 1
6.24 Stress-strain curve of 80% PP + 15% PA6 + 5% GF 10mm sample 2
6.25 Stress-strain curve of 70% PP + 30% PA6 5mm sample 1
6.26 Stress-strain curve of 70% PP + 30% PA6 5mm sample 2
6.27 Stress-strain curve of 70% PP + 30% PA6 5mm sample 3
6.28 Stress-strain curve of 70% PP + 30% PA6 10mm sample 1
6.29 Stress-strain curve of 70% PP + 30% PA6 10mm sample 2
6.30 Stress-strain curve of 70% PP + 25% PA6 + 5% GF 5mm sample 1
6.31 Stress-strain curve of 70% PP + 25% PA6 + 5% GF 5mm sample 2
6.32 Stress-strain curve of 70% PP + 25% PA6 + 5% GF 5mm sample 3

6.33 Stress-strain curve of 70% PP + 25% PA6 + 5% GF 10mm sample 1

6.34 Stress-strain curve of 70% PP + 25% PA6 + 5% GF 10mm sample 2

6.35 Impact properties of 100% polypropylene

6.36 Impact properties of 80% PP + 20% PA6

6.37 Impact properties of 70% PP + 30% PA6

6.38 Impact properties of 80% PP + 15% PA6 + 5% GF

6.39 Impact properties of 70% PP + 25% PA6 + 5% GF
LIST OF SYMBOLS

ε Total strain, Bandwidth parameter

L_0 Initial length of the specimen

L Final length

Gpa giga pascal

Mpa mega Pascal

J joule

Kpa kilopascal

mm millilitre

kN kilo newton

°C degree Celsius

J/m joule per meter
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CATIA</td>
<td>Computer aided three-dimensional interactive application</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-aided drafting</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PA6</td>
<td>Polyamide 6</td>
</tr>
<tr>
<td>GF</td>
<td>Glass fibre</td>
</tr>
<tr>
<td>UTS</td>
<td>Ultimate tensile strength</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal testing machine</td>
</tr>
<tr>
<td>OM</td>
<td>Optical microscope</td>
</tr>
</tbody>
</table>