THE EFFECT OF THERMOFORMING TEMPERATURE AND MOULD VENT HOLE TO THE THERMOPLASTIC CONTAINER MADE OF 1 MM POLYPROPYLENE (PP) SHEET

SA’ID BADI’URZAMAN BIN HASANUDDIN
FA12036

Report submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Engineering in Manufacturing Engineering

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

June 2016
UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : SA’ID BADI’URZAMAN BIN HASANUDDIN
Identification Card No : 930523-06-5067
Title : THE EFFECT OF THERMOFORMING TEMPERATURE AND MOULD VENT HOLE TO THERMOPLASTIC CONTAINER MADE OF 1 MM POLYPROPYLENE (PP) SHEET
Academic Session : 2015/2016

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)
☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*
☐ OPEN ACCESS I agree that my thesis to be published as online open access (Full text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of University Malaysia Pahang.
2. The Library of University Malaysia Pahang has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

__ _______________________________________
(Author’s Signature) (Supervisor’s Signature)

SA’ID BADI’URZAMAN BIN HASANUDDIN DR. NOOR MAZNI ISMAIL
Name of Author Name of Supervisor
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this project report and in my opinion, this project is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Engineering in Manufacturing Engineering

Signature :

Name of supervisor : DR. NOOR MAZNI ISMAIL

Position : LECTURER

FACULTY OF MANUFACTURING ENGINEERING

UNIVERSITI MALAYSIA PAHANG

Date : JUNE 2016
STUDENT’S DECLARATION

I hereby declare that the work in this project report is my own except for quotation and summaries which have been duly acknowledged. The project report has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : SA’ID BADI’URZAMAN BIN HASANUDDIN
ID Number : FA12036
Date : JUNE 2016
TABLE OF CONTENT

SUPERVISOR’S DECLARATION i
STUDENT’S DECLARATION ii
ACKNOWLEDGEMENT iii
ABSTRACT iv
ABSTRAK vi
TABLE OF CONTENTS viii
LIST OF TABLES xi
LIST OF FIGURES xiii

CHAPTER 1 INTRODUCTION
1.1 Background of Study 1
1.2 Problem Statement 2
1.3 Project Objective 2
1.4 Scope of the Project 3

CHAPTER 2 LITERATURE REVIEW
2.1 Introduction 4
2.2 Thermoplastic 5
 2.2.1 Introduction to Thermoplastic Materials 5
 2.2.2 Polypropylene (PP) 6
 2.2.3 Advantage of Polypropylene 7
2.3 Thermoforming
2.3.1 Thermoforming Process 7
2.3.2 Methods in Thermoforming 8
2.3.3 Phases in Thermoforming 11

CHAPTER 3 METHODOLOGY
3.1 Design Polypropylene (PP) Plastic Container and its Mould 15
3.2 Fabricate Mould 19
 3.2.1 Cutting Rough Aluminum Block 19
 3.2.2 Machine Aluminum Block 19
 3.2.3 Drilling Vent Hole on the Mould 21
3.3 Fabricate Plastic Container 22
3.4 Analyze Result 24
3.5 Budget Plan 25

CHAPTER 4 RESULT AND DISCUSSION
4.1 Experimental Result using 1 Vent Hole on Mould 27
 4.1.1 Effect of Temperature on 1 mm Polypropylene (PP) Sheets with
 1 Vent Hole on Mould 27
 4.1.2 Hardness Test on Plastic Container with 1 Vent Hole on Mould 32
4.2 Experimental Result using 5 Vent Hole on Mould 34
 4.2.1 Effect of Temperature on 1 mm Polypropylene (PP) Sheets with
 5 Vent Holes on Mould 34
4.2.2 Hardness Test on Plastic Container with 5 Vent Hole on Mould 38

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion 41
5.2 Recommendation 42

REFERENCES 43

APPENDICES

A1 GANTT CHART FINAL YEAR PROJECT 1 45
A2 GANTT CHART FINAL YEAR PROJECT 2 46
B TES-1310/1320 THERMOMETER SPECIFICATION 47
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Steps of Drape Thermoforming</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Types of Vent Holes on Aluminum Block</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Bill of Materials Use</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Result after forming the 1 mm Polypropylene sheet on both sides at</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>temperature of 160°C</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Result after forming the 1 mm Polypropylene sheet on both sides at</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>temperature of 165°C</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Result after forming the 1 mm Polypropylene sheet on both sides at</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>temperature of 170°C</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Result after forming the 1 mm Polypropylene sheet on both sides at</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>temperature of 175°C</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Hardness test value taken from 4 sides of plastic container with 1 vent</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>hole using Vickers Micro Hardness Tester</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Result after forming the 1 mm Polypropylene sheet on both sides at</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>temperature of 160°C</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Result after forming the 1 mm Polypropylene sheet on both sides at</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>temperature of 165°C</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Result after forming the 1 mm Polypropylene sheet on both sides at</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>temperature of 170°C</td>
<td></td>
</tr>
</tbody>
</table>
4.9 Result after forming the 1 mm Polypropylene sheet on both sides at temperature of 175°C

4.10 Hardness test value taken from 4 side of plastic container with 5 vent hole using Vickers Micro Hardness Tester
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Illustration of different shaping work</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Steps in Vacuum Thermoforming</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Process Flow for Final Year Project</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>Rough Illustration of Polypropylene Plastic Product</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>Isometric View of Plastic Container designed in CATIA P3 V5R21</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Isometric View of Mould designed in CATIA P3 V5R21 software</td>
<td>16</td>
</tr>
<tr>
<td>3.5</td>
<td>Details Dimension of Plastic Container</td>
<td>17</td>
</tr>
<tr>
<td>3.6</td>
<td>Details Dimension of Mould</td>
<td>18</td>
</tr>
<tr>
<td>3.7</td>
<td>Aluminum Block for Mould</td>
<td>19</td>
</tr>
<tr>
<td>3.8</td>
<td>SDNC RS232 Communications Software by Surfcam on Computer Connected to Milling Machine</td>
<td>20</td>
</tr>
<tr>
<td>3.9</td>
<td>Makino KE55 CNC Milling Machine Used to Cut the Shape on Aluminum Block</td>
<td>20</td>
</tr>
<tr>
<td>3.10</td>
<td>White Polypropylene Plastic Sheet</td>
<td>22</td>
</tr>
<tr>
<td>3.11</td>
<td>Own Fabricated Thermoforming Machine</td>
<td>23</td>
</tr>
<tr>
<td>3.12</td>
<td>TES-1310 Digital Thermometer Temperature Reader</td>
<td>23</td>
</tr>
<tr>
<td>3.13</td>
<td>Steps in Vacuum Thermoforming</td>
<td>24</td>
</tr>
<tr>
<td>3.14</td>
<td>Hardness Test using Vickers Micro Hardness Tester</td>
<td></td>
</tr>
</tbody>
</table>