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ABSTRACT 

 

This thesis presents a comparison between methods for tool life prediction. The main 

objective of the thesis is to have an accurate prediction of the RUL and select the best method 

for prediction. An experiment has been conducted using Kistler dynamometer and Olympus 

metallurgical microscope on a HASS VF-6 milling machine to acquire the sensor force 

signals and actual tool wear respectively. The force signal gives the significant statistical 

features of the data. The features are extracted using statistical measure and reduced using a 

stepwise regression model. The prediction methods are Support Vector Regression and 

Neural Network. Both the models are trained using the MATLAB software. The results of 

the models are compared against each other to select the best method. Moreover, the methods 

are also applied on data taken from PHM Society. This data serves as a preliminary result and 

fundamental knowledge for my own experiment. The models trained in this project are 

compared with the existing models. These results show that the proposed methods are suitable 

for predicting the remaining useful life. 
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ABSTRAK 

 

Tesis ini membentangkan perbandingan antara kaedah untuk ramalan hayat alat. Objektif 

utama tesis ini adalah untuk mempunyai ramalan yang tepat daripada RUL dan memilih 

kaedah yang terbaik untuk ramalan. Satu eksperimen telah dilakukan dengan 

menggunakan Kistler dinamometer dan Olympus mikroskop logam pada HASS VF-6 

pengilangan mesin untuk memperoleh isyarat kuasa sensor dan penggunaan alat sebenar 

masing-masing. Isyarat kuasa memberikan ciri-ciri statistik besar daripada data. Ciri-ciri 

yang diekstrak menggunakan kaedah statistik dan dikurangkan dengan menggunakan 

model regresi langkah demi langkah. Kaedah ramalan adalah Support Vector Regresi dan 

Neural Network. Kedua-dua model dilatih menggunakan perisian MATLAB. Keputusan 

model dibandingkan antara satu sama lain untuk memilih kaedah yang terbaik. Selain itu, 

kaedah ini juga digunakan pada data yang diambil daripada PHM Society. Data ini 

berfungsi sebagai hasil awal dan pengetahuan asas untuk percubaan saya sendiri. Model-

model dilatih dalam projek ini dibandingkan dengan model yang sedia ada. Keputusan ini 

menunjukkan bahawa kaedah yang dicadangkan adalah sesuai untuk meramalkan baki 

hayat berguna. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

Machining process is a widely used method of production method to remove 

excess material to get the desired dimension. Machining processes can be classified into 

traditional machining process or nontraditional machining process. Traditional machining 

processes are milling, turning, and etc. while the nontraditional machining processes are 

electrical discharge cutting, chemical milling, and etc.  

Milling process is one of the most adaptable traditional machining process where 

a rotating cutter removes the material while traveling along different axes with respect of 

the workpiece. Milling is able to produce a part with very compact shape but still very 

close to the tolerance and with a very fine finishing surface.  

Due to the ability of milling process to produce workpiece with intricate profiles 

or complicated shape, it has been classified as commonly used machining process. An 

end mill is used in the machining process to remove the material on the workpiece. This 

cutter can be either having a straight shank for a small size cutter or a tapered shank for 

an end mill with bigger diameter. The cutter has different kinds of geometry such as 

cylindrical end mill, ball end mill, bull nose end mill, and other geometries [1]. The end 
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mill is installed on a tool holder and mounted on the spindle of the milling machine. 

Generally, the cutter is made from high speed steel (HSS) but it may be made from carbide 

or cobalt and come with a protective coating to increase its surface hardness [2]. 

The quality of the end milling is related to the milling parameters such as cutting 

speed, feed, cutting time, material removal rate, and etc. Other than these parameters, the 

quality of the surface is also depending on the condition of the cutting tools. The quality 

and wear of the end mill will affect directly the result of the end milling process. Normally 

the wear pattern found in the ends mill are flank wear on the cutting edge and center wear 

on the tool tip [2]. A worn end mill will give a damaged surface to the workpiece, thus it 

is very important for us to understand the wear mechanism of the end mill and remaining 

useful life of it. 

This research paper is focus on estimating the amount of wear and predicting the 

remaining useful life of an end mill. A few different prediction methods have been 

established to know the remaining tool life of the cutter. The approaches available are 

Artificial Neural Network [3], Fuzzy Neural Network [4], Support Vector Regression [5], 

and etc. Different prediction methods were investigated in this research paper to 

determine the best approach for remaining useful life prediction. The data driven 

approach is selected to be investigated in this research paper. 

 

1.2 PROBLEM STATEMENT 

 

In the manufacturing sectors nowadays, end milling process is a machining 

process that is widely adopted. The condition of the tool cutter is very important as it 

represents the remaining useful tool life of the cutter. The failure of a cutting tool occurs 

when it has come to the end of its service life. A worn tool will cause the workpiece to 
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have inferior quality and increased surface roughness. In some cases, if the wear of the 

tool was not detected, it may cause damage to the milling machine or may even cause 

accidents. This has negatively impact the usefulness of milling process [5]. 

Therefore, it is important to conduct this research to determine the best approach 

to estimate the wear of an end mill and predict its remaining useful life. The main focus 

of this research will be on the data driven type of prediction method with the help of 

MATLAB software in the analysis of data. This research will investigate different 

prediction methods using MATLAB to increase the reliability of the tool life prediction 

model. This allows us to reduce the manufacturing costs by reducing the scrap produced 

due to the broken tools and the service life of the end mill cutter can be fully utilized 

before it is disposed away. 

 

1.3 OBJECTIVES  

 

The objectives of this project are: 

1. To predict the remaining useful life of an end mill cutter. 

2. To investigate and compare different prediction methods available using 

MATLAB software. 

3. To propose the best approach to predict the remaining tool life end mill cutter. 

 

1.4 PROJECT SCOPE 

 

The scope of this project is to investigate the methods available to estimate the 

wear of the end mill and predict its remaining useful life. The prognostics prediction 

approaches for remaining tool life can be classified into three types which are model based 
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approach, data driven approach, and hybrid approach [5]. In this paper we will focus on 

investigate and compare the different data driven approaches for useful tool life 

estimation. 

In the model based approach, a mathematical model is used to illustrate the 

performance for the physical parts. The model is used to predict the future degradation, 

thus predict the remaining useful life. In data driven method, the data acquired from the 

sensors will be monitored and implemented into the suitable models. Later these models 

will be used to predict the remaining useful life of the cutter by evaluate the health 

indicator of the system. The hybrid approach is the combination of the two approaches 

[5]. 

The software that will be used for analysis in this paper is MATLAB. It provides 

the user an environment to carry out different kinds of calculations [6]. The limitation of 

the MATLAB is it is not a general programming language such as C++ or FORTRAN. It 

is also not suitable for other applications other than scientific calculations. MATLAB is 

an interpreted language, thus slower than the compiled language such as C++ [7]. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

 The main purpose of this chapter is to provide the knowledge relevant to this 

project by reviewing several literatures. The different researches done by the researchers 

were reviewed. The literatures are in the form of journal, articles, publications, website, 

and other reliable sources. This is to establish a connection between the available 

researches to this project. This chapter also helps in the selection of most appropriate 

method for this project. The cutting force, cutting parameters, wear mechanism of end 

mill, remaining useful life, and prediction methods available were discussed and reviewed 

in this chapter.   

 

2.2 FACTORS AFFECTING TOOL LIFE 

 

 The tool life of an end mill can be affected by many different variables, such as 

the type of milling method, cutting forces, machining parameters and other uncertainty in 

the machining environment.  
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The cutting speed is the most influencing factor in affecting the tool life. The 

temperature will increase when the cutting speed increases. The heat is mainly focus on 

the tool than the workpiece. The hardness of the tool will increase due to the changing in 

the matrix of the material and this condition will accelerate the abrasion of the tool. The 

flank wear will be dominant when the cutting speed is increased. Other than that, the tool 

life is influenced by the feed rate also. The chip will pass through the tool face at a greater 

surface area when using a fine feed compared to a coarse feed in swarf removal. The 

resultant pressure will offset the advantage as to cope with the greater chip [8]. 

Besides that, the tool geometry will affect the tool life.  The tool will become weak 

when the rake angle is large because it will reduce the cross section of the tool and the 

heat absorption by the metal. The form stability of the tool the wear rate will be affected 

by both the chemical and physical properties of the workpiece material. The tool will 

wear more when cutting a harder material. The cutting fluid can reduce the friction 

coefficient at the tool chip interface thus helping in lengthen the tool life. It acts as a 

coolant when the tool is under high speed milling operation or it can also act as a lubricant 

in a normal low speed milling [8]. 

 

2.3 CLIMB MILLING AND CONVENTIONAL MILLING 

 

 The climb milling and conventional milling can produce a very different result in 

the milling process. By understanding the main difference between these two milling 

methods, we will be able to extend the tool life, improve the product quality, and increase 

the utilization of the machine [9].  

In the conventional milling, the forces needed is lower and it is more favorable 

for roughing process. The cutter will revolve in the direction oppose to the table feed and 
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the workpiece will be fed into the rotation of the tool cutter. The chip starts with a 

minimum width and reaches its maximum width at the end of the cut. On the other hand, 

the climb milling method is able to produce a very nice surface finish and is suitable for 

most cases. The cutter will revolve in the direction same as the table feed. The cutter will 

meet the workpiece at the maximum thickness, thus largest chip will be produced first. 

The combination of the direction of the table feed and the rotation of the tool cutter will 

have the tendency to bring the chips away from the workpiece [9]. Figure 2.1 shows the 

climb milling method and conventional milling method. 

 

Characteristic of conventional milling: 

 Suitable for rough and abrasive surface. 

 Cause more rubbing between the tool and workpiece, thus cause premature failure 

of tool. 

 The tooth of cutter makes contact with the workpiece at the bottom of cut. 

 It exerts an upward force on the workpiece and causes more workpiece movement. 

 It requires more torque than climb milling. 

 It gives worse surface finish as the chips are brought upward and dropped at the 

front cutter. 

 The chip starts with zero thickness until maximum at the end of cut. 

 The tool deflection tends to be parallel to the cut direction. 

 

Characteristics of climb milling: 

 It is suitable for solid carbide cutter. 

 It gives improved surface finish and helps to extend the tool life by up to 50%. 

 The tooth of cutter makes contact with the workpiece at the top of cut. 
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 It exerts a downward force on the workpiece, thus able to reduce workpiece 

movement. 

 It requires less torque compared to conventional milling. 

 The initial spindle load is higher and it increases when the tool cutter gets dull. 

 The chip starts with maximum thickness and decreases to zero thickness. 

 The tool deflection tends to be perpendicular to the cut direction 

 

 

 

Figure 2.1: Conventional Milling and Climb milling [9] 

 

Source: Climb & conventional milling enhancing tool life & machine performance. 

                  (n.d.), 48(888). 

 

2.4 CUTTING FORCE IN END MILLING 

 

 Cutting force is very important in machining process and it is crucial in the 

choosing of optimal machining parameters. The summation of a definite number of 

elementary cutting forces that are due to the discrete cutting edges of the tools are 

determined using the numerical integration force the total cutting forces. There are two 

types of force model available to obtain the coefficient for cutting force which are 

orthogonal to oblique cutting transformation cutting method and direct calibration method 

[10]. 
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The first method is established from the analysis of generic oblique cutting. It uses 

the shear yield, angle of shear, and angle of friction obtained from the tests. A database 

will be established using the experimental data and this database will be used to deduce 

the coefficient of cutting force and the force model. The limitation of this method is that 

a large number of tests are needed to have enough data in the setup of database. On the 

other hand, the second method uses a cutter and workpiece combination to determine the 

coefficient directly from the milling tests. The limitation of this method is that there is 

always a deviation in the predicted value for the cutting force at the maximum and 

minimum when compared to the measured values. The average thickness of the chip is 

very different from the instantaneous thickness of the chip [10]. 

 

 

 

Figure 2.2: Milling process [10] 

 

Source: Cutting force modeling for flat end milling including bottom edge cutting 

                   effect. 
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 Figure 2.2 shows the end milling operation by a flat end mill. It can be seen from 

the figure that the flank edge and the bottom are both engage with the workpiece during 

the calculation. Therefore the total cutting force is calculated by the summation of force 

at the flank edge and the force at the bottom edge. The total applied cutting force can be 

considered as: 

 

𝐹 = 𝐹𝐹 + 𝐹𝐵                                                                (2.1) 

 

The force components are illustrated in the figure 2.2 above [10]. 

 

2.4.1 Calculations of FF 

 

 The available cutting area of the tool cutter is separated into N different element 

that symbolize the cutting length same as tool axis direction. As an example, we will split 

the cutting part into 5 discrete parts during the milling process with the cutting depth at 

5mm, the length of each individual cutting element will be 1mm. Forces exerted on the 

jth axial cutting discrete element of the ith flute at the ⱷ are as following [10]: 

 

𝑭𝐹,𝑖,𝑗 = [

𝐹𝐹,𝑇,𝑖,𝑗(ⱷ)

𝐹𝐹,𝑅,𝑖,𝑗(ⱷ)

𝐹𝐹,𝑍,𝑖,𝑗(ⱷ)

] = [

[𝑔𝐹,𝑖,𝑗(ⱷ)]𝐶𝐹,𝑇,𝑖,𝑗

[𝑔𝐹,𝑖,𝑗(ⱷ)]𝐶𝐹,𝑅,𝑖,𝑗

[𝑔𝐹,𝑖,𝑗(ⱷ)]𝐶𝐹,𝑍,𝑖,𝑗

] ℎ𝐹,𝑖,𝑗𝑊𝐹,𝑖,𝑗(ⱷ)                 (2.2)  

 

The axial length of discrete part is represents as 𝑊𝐹,𝑖,𝑗(ⱷ). 

The [𝑔𝐹,𝑖,𝑗(ⱷ)]𝐶𝐹,𝑝,𝑖,𝑗(p = T,R,Z) has been shorten to 𝐶𝐹,𝑝,𝑖,𝑗 for convenience. They are 

shown as an exponential functions to show the effect of size. 
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𝐶𝐹,𝑇,𝑖,𝑗 = 𝑐𝑇[𝑔𝐹,𝑖,𝑗(ⱷ)]𝑚𝑇                                           (2.3) 

𝐶𝐹,𝑅,𝑖,𝑗 = 𝑐𝑅[𝑔(ⱷ)]𝑚𝑅                                              (2.4) 

𝐶𝐹,𝑍,𝑖,𝑗 = 𝑐𝑍[𝑔𝐹,𝑖,𝑗(ⱷ)]𝑚𝑍                                            (2.5) 

 

The tangential, axial, and rotational forces will be able to change into x-direction, y-

direction, and z-direction by 

 

[𝐹𝐹,𝑋,𝑖,𝑗(ⱷ) 𝐹𝐹,𝑌,𝑖,𝑗(ⱷ) 𝐹𝐹,𝑍,𝑖,𝑗(ⱷ)]T= 𝑻𝐹,𝑖,𝑗(ⱷ)𝑭𝐹,𝑖,𝑗                    (2.6) 

Where, 

𝑻𝐹,𝑖,𝑗(ⱷ) = [

−𝑐𝑜𝑠𝜃𝑖,𝑗(ⱷ) −𝑠𝑖𝑛𝜃𝑖,𝑗(ⱷ) 0

𝑠𝑖𝑛𝜃𝑖,𝑗(ⱷ) −𝑐𝑜𝑠𝜃𝑖,𝑗(ⱷ) 0

0 0 1

]                         (2.7) 

 

The overall forces that acts on the ith edge during cutting can be written as: 

 

[𝐹𝐹,𝑋,𝑖(ⱷ) 𝐹𝐹,𝑌,𝑖(ⱷ) 𝐹𝐹,𝑍,𝑖(ⱷ)]T =  [∑ 𝐹𝐹,𝑋,𝑖,𝑗(ⱷ)𝑗 ∑ 𝐹𝐹,𝑌,𝑖,𝑗(ⱷ)𝑗 ∑ 𝐹𝐹,𝑍,𝑖,𝑗(ⱷ)𝑗 ]T 

(2.8) 

 

2.4.2 Calculations of Fb 

 

 This is the cutting force induced at the bottom of the end mill and it is separated 

into three components which are tangential component, radial component, and axial 

component. We can treat this force to be a function of linearity of distance of the line 

connecting L and J as shown in the figure 2.2 above. This 𝐿�̅� line is the width of the uncut 

chip at the bottom. The cutting force can be obtain as [10]: 
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𝑭𝐵,𝑖 = [

𝐹𝐵,𝑇,𝑖(ⱷ)

𝐹𝐵,𝑅,𝑖(ⱷ)

𝐹𝐵,𝑍,𝑖(ⱷ)
] = [

𝐶𝐵,𝑇(𝑤𝐵,𝑖(ⱷ))

𝐶𝐵,𝑅(𝑤𝐵,𝑖(ⱷ))

𝐶𝐵,𝑍(𝑤𝐵,𝑖(ⱷ))

] 𝑤𝐵,𝑖(ⱷ)                           (2.9) 

 

The 𝑤𝐵,𝑖(ⱷ) is the length of 𝐿�̅� and is almost same as the ℎ𝐹,𝑖,1(ⱷ). The 𝐶𝐵,𝑞(𝑤𝐵,𝑖(ⱷ)) is 

shorten as 𝐶𝐵,𝑞 in the following content for the purpose of simplicity.  

The forces in the x-direction, y-direction and z-direction exerted on the ith bottom edge 

can be acquired by 

 

[𝐹𝐵,𝑋,𝑖(ⱷ) 𝐹𝐵,𝑌,𝑖(ⱷ) 𝐹𝐵,𝑍,𝑖(ⱷ)]T= 𝑻𝐵,𝑖(ⱷ)𝑭𝐵,𝑖                      (2.10) 

Where 

𝑻𝐵,𝑖(ⱷ) = [
−𝑐𝑜𝑠𝜃𝑖(ⱷ) −𝑠𝑖𝑛𝜃𝑖(ⱷ) 0

𝑠𝑖𝑛𝜃𝑖(ⱷ) −𝑐𝑜𝑠𝜃𝑖(ⱷ) 0
0 0 1

]                            (2.11) 

 

𝜃𝑖(ⱷ) is almost same as the 𝜃𝑖,1(ⱷ). 

By summing all the cutting forces caused by the cutter’s flank edge and cutter’s bottom 

edge, we will be able to get the total force component in x-direction, y-direction, and z-

direction that acts on the tool cutter at any rotation angle ⱷ. 

 

𝐹𝑠(ⱷ) = ∑ [𝐹𝐹,𝑠,𝑖(ⱷ) + 𝐹𝐵,𝑠,𝑖(ⱷ)]
𝑁𝑓

𝑖=1
             𝑠 = 𝑋, 𝑌, 𝑍                 (2.12) 

 

2.5  CUTTING PARAMETERS IN MILLING PROCESS   

 

  The parameters in milling process play an important role for determining the 

quality of milling products. The different parameters such as spindle speed, incline angle, 

feed rate, cutter diameter, depth of cut, feed per tooth, and other parameters will affect 
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the outcome of milling process. There are many researches have been done to determine 

the optimal parameters for milling process. A few of the researches done are being studied 

and reviewed in the following paragraphs to show their results and conclusions. 

First of all, the milling parameters for aluminum alloy 6082 has been researched 

by K. Siva Kumar and Bathina Sreenivasulu. Their aim was to determine the optimal 

parameters for the milling operation of aluminum alloy. The Taguchi technique and 

ANOVA analysis using MINITAB software to understand the relationship between the 

parameters and the result of experiment [11]. 

In their study, it has been shown that the surface roughness will increase when the 

depth of cut is increased, but the increase in the feed will reduce the surface roughness. 

The depth of cut is the main influencing parameter when compared to the speed and feed. 

The material removal rate will increase when the feed is increased but the material 

removal rate will reduce when we increase the cutting depth. The depth of cut is the 

parameter that will influence the material removal rate more than the speed and feed [11]. 

Furthermore, the milling process parameters for stainless steel AISI 304 to 

improve its surface finish has been studied by Ahmad Hamdan, Ahmed A. D. Sarhan and 

Mohd Hamdi. The main objective of this research was to determine the best combination 

of different parameters to achieve the best appearance for the milled surface and reduced 

force needed during the operation. The results from the experiments are analyzed using 

the Taguchi technique and Pareto ANOVA. 

Figure 2.3 and figure 2.4 show the signal to noise ratio for cutting force and 

surface roughness. The result shows that there is one parameter which is feed rate that 

will has a more significant effect followed by the cutting speed and depth of cut. The 

lubrication mode does not shows any statistically significant. These parameters were 
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tested with the optimal level of value and it has generated a result of 25.5% reduction in 

the machining force and 41.3% better surface finish [12].  

 

 

 

Figure 2.3: Graph for cutting force [12] 

 

Source: An optimization method of the machining parameters in high-speed machining 

              of stainless steel using coated carbide tool for best surface finish. 

 

 

 

Figure 2.4: Graph for surface roughness [12] 

 

Source: An optimization method of the machining parameters in high-speed machining 

              of stainless steel using coated carbide tool for best surface finish. 
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 Besides that, the process parameters for Ti-6Al-4V have been studied by Vijay S 

and Krishnaraj V to reduce the cutting force and improve the surface finish of the 

machined product. The parameters like depth of cut, speed and feed are being considered 

in this research. The Taguchi method and ANOVA are used in this research to help in 

find the improved parameters setting.  

 

Table 2.1: ANOVA for surface roughness 

 

 

 

Source: Machining Parameters Optimization in End Milling of Ti-6Al-4V. 

 

Table 2.2: ANOVA for surface roughness 

 

 

 

Source: Machining Parameters Optimization in End Milling of Ti-6Al-4V. 
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According to the ANOVA result in table 2.1, this research has concluded that the 

depth of cut is most influencing in the surface roughness of the product followed by the 

influence of feed per tooth then cutting speed. According to the ANOVA result in table 

2.2, the surface roughness is influenced the most by the feed per tooth and then followed 

by the depth of cut then cutting speed [13]. 

 

2.6 WEAR MECHANISM OF END MILL 

 

During the milling process, the temperature at the contact zone between the cutter 

and the workpiece will increase significantly when the cutting speed is increased. This 

may cause the temperature to exceed the thermal stability limit of cutter material. This 

can cause a drastic drop in the tool life of the cutter. 

 

 

 

Figure 2.5: Central wear and flank wear [2] 

 

Source: Wear mechanisms of cutting tools in high-speed cutting processes. 
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Figure 2.5 shows the most common tool wear which are central wear and flank 

wear. The flank wear occurs at the cutting edge of the cutter while the central wear occurs 

at the center of the cutter. When the feed velocity is too low, a buildup edge burr will 

occur and this will change the geometry of the tool tip. This can adversely affect the useful 

life of the cutter and the surface finish of the product. In contrast, when the feed velocity 

is high enough, the flank wear will be dominant. It will be significant at the beginning of 

the milling and stabilized after some time [2]. 

 

 

 

Figure 2.6: Schematic illustration of tool wear [2] 

 

Source: Wear mechanisms of cutting tools in high-speed cutting processes. 

 

Figure 2.6 shows the illustration of wear mechanism for a coated end mill. The 

tool wear mechanism is commonly a result of mechanical interaction and chemical 

interaction between the cutter and the workpiece. The thermo-dynamic wear can be 
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caused by thermally loaded motion such as abrasion with workpiece and adhesion of 

cutter coating. Besides that, the thermos-chemical wear due to the chemical processes at 

elevated temperature are diffusion and oxidation. The thermos-chemical becomes more 

evident under high speed milling operation as the cutting edge heated up to enhance the 

oxidation and diffusion [2].  

 During the cutting process, the hard oxide particles from end mill coating will 

rub against the hard inclusion in the workpiece and this will cause the coating of the end 

mill to be peeled off by abrasion. The abrasion process will become severe after the 

coating has been remove from the end mill. There is also a strong adhesive force existed 

between the flank edge of the end mill and the surface of the workpiece. This adhesion 

can cause a significant wear on the cutting edge of the end mill [2]. 

Besides that, according to the research done by W.Y.H. Liew and X. Ding in the 

paper “Wear progression of carbide tool in low-speed end milling of stainless steel”, the 

increment of cutting speed from 25 meter per minute to 50 meter per minute on modified 

AISI 420 stainless steel has no effect on the tool wear but the increment in the hardness 

of the workpiece will reduce the tool life of end mill. There is also a wear mechanism 

called attrition wear which will occur when the cutting speed is too slow and the buildup 

edge is formed. This build up edge will cause the carbon particles on the end mill to be 

removed and left behind empty cavities [14]. 

The end mill will form a crack when the protective coating on it has been removed 

as it is less resistant to the cracking. An impact or collision between the end mill and 

workpiece may also cause a crack on the tool. This crack will normally spread along the 

direction of cutting edge. This crack can make the edge of end mill to be weaker and more 

susceptible to chipping. The fracture will also occur at the location of crack and it will 

grow and merge with other fracture to become a large fracture surface or catastrophic 
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failure. The figure 2.7 shows the illustration of chipping/fracture and catastrophic fracture 

on an end mill [14]. 

 

 

 

Figure 2.7: Chipping and catastrophic fracture on end mill [14] 

 

Source: Wear progression of carbide tool in low-speed end milling of stainless steel. 

 

 In their research, they also found out that the use of cutting fluid is very efficient 

in extending the tool life when cutting the modified AISI 420 stainless steel. The coolant 

is able to reduce the adhesive force between the cutter and the workpiece and improves 

its surface finish. The cutting fluid acts as a coolant when it is under high speed cutting 

and it behaves as a lubricant in low speed cutting. Its effectiveness in increasing the tool 

life is due to the lubricating at the cutting interface [14].  
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2.7 REMAINING USEFUL LIFE (RUL) 

 

 The remaining useful life is defined as how long the asset will be in a good service 

condition until it becomes unusable. The useful life may be affected by many variables 

such as the frequency of use, the using condition, maintenance measure, and other 

variables. The figure 2.8 below shows a simple representation of the remaining useful life 

concept for an asset.  

 

 

 

Figure 2.8: Concept illustration of remaining life of an asset 

 

In the figure 2.8, it is assumed that the performance of an asset will deteriorate in 

a straight line, but in actual life it will follow a curved line deterioration. The asset will 

deteriorate faster when it is reaching the end of its physical life. The threshold value is 

the point for us to judge whether the asset is still serviceable or not. The time for the asset 

to have its performance to deteriorate from current level to the threshold value is the 

remaining useful life of the asset. 
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Figure 2.9: Remaining useful life (RUL) [5] 

 

Source: Health assessment and life prediction of cutting tools based on support vector 

                regression. 

 

The figure 2.9 shows the remaining useful life (RUL) of a cutter tool. The 

symptom is the point where we started to monitor the wear of the cutter and predict its 

remaining service life. The failure point is where the cutter has reached its maximum 

useful life and failed catastrophically. The negative gradient of the graph shows that the 

performance of the cutter deteriorates follow the time. The length of time between the 

times we selected the symptom of tool wear until its catastrophic failure is called the 

remaining useful life (RUL). 

The prediction of remaining useful life is very important as it can be taken as a 

measure to prevent wastage. The available remaining tool life of the cutter can be fully 

utilized before it is replaced. It also assists in the reduction of surface quality problem and 

dimension accuracy problem of the workpiece which can be caused by using a worn out 

cutter. Therefore, the RUL prediction should has the capability to estimate the best timing 
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for a tool change where most of the tool life has been utilized, but before it reached the 

failure condition. This allows us to change the cutter conveniently [3]. 

 

2.8 TOOL CUTTER CONDITION MONITORING 

 

The Condition Monitoring System (CMS) is able to monitor the real condition of 

the tool and the process. It may not able to indicate the problem in early stage, but it is 

needed to control and carry out correction decision, such as stop the process for the 

moment, update the process parameters, or ask for human interception. This system has 

the potential to make our machining system more robust and reliable [15]. 

The purpose of the condition monitoring is to detect any abnormality in the 

machining process and the wear pattern of the machine component. The machining 

process interacts with the elastic structure of a cutting tool forms the machining system. 

The cutting tool interacts with the workpiece to create the cutting forces. 

The wear pattern of a tool has been researched widely from the past with the focus 

on the wear detection, remaining useful life prediction, and the timing of the tool fracture 

or breakage. The techniques used were with the help of sensor or without the present of a 

sensor. The sensor based tool condition monitoring (TCM) are normally based on the 

cutting force measured using the rotating dynamometer or the multi-channel table type 

dynamometer, vibration signal using a multi-channel accelerometer, audible sound from 

the machining process, and the high frequency emission of sound using the acoustic 

emission sensor. On the other hand, the sensor free monitoring system uses the internal 

drive signal such as the spindle motor current, spindle motor power, and feed motor 

current. The measurement may combine the different kind of quantities unit [15]. 
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However, the use of external sensor will not be always practical because it will 

make the system becomes more complicated. Different types of sensors will be mounted 

on the machines near the machining area and all these sensors will experience the heat, 

coolant, and chips from the machining process. This may shorten the service life of the 

sensors and affect the accuracy of the measurements. These sensors also need extra cost 

for maintenance and calibration to make sure that they are functioning properly [15].  

The wiring of the sensors is another issue that must be considered especially in 

more advanced machining operations. External sensors also require additional 

maintenance and calibration in order to function properly [15]. 

 

2.9 PREDICTION METHOD 

 

 The estimation for tool life commonly can be performed using a method called 

prognostics and health management (PHM). This PHM method is able to cut down the 

cost for maintenance, increase the machine availability and come up with a better 

maintenance plan. PHM is better than the predetermined maintenance schedule by 

determining the best timing for a maintenance work to be undergone. This is important 

as the operating costs will be raised if we perform a premature maintenance, but a late 

maintenance may even bring in more damage not only in term of costs but also the danger 

to the employees safety. The main objective of this system is to detect the upcoming 

failure fast enough to take preventive measures. 
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Figure 2.10: Prognostics approach [5] 

 

Source: Health assessment and life prediction of cutting tools based on support vector 

               regression. 

 

 The figure 2.10 shows the approaches under the prognostics method. It is 

classified into model based approach, data-driven approach, and hybrid approach. The 

focus of this project will be on the data-driven- approach. 

 

2.9.1 Artificial Neural Network (ANN) 

 

 Artificial Neural Network is one of the available data-driven approach to estimate 

the remaining useful life. According to the research done by Amit Kumar Jain and 

Bhupesh Kumar Lad in “Predicting Remaining Useful Life of High Speed Milling Cutters 

based on Artificial Neural Network”, they have used an ANN network to estimate the 

remaining tool life in a high speed milling operation. The machine used was a high speed 

milling machine and the ball nose end mill was made with tungsten carbide to mill on a 

stainless steel workpiece. The data used for analysis was force signal from a dynamometer 
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in the feed direction. There were 315 cutting process with a distance of 27.2m before the 

flank wear was measured [3]. 

 

Table 2.3: Important statistical features [3] 

 

 

 

Source: Predicting remaining useful life of high speed milling cutters based on 

                      Artificial Neural Network 

 

 The table 2.3 shows the statistical features that can be collected from the cutting 

force signal. The stepwise regression will be used to select the most relevant features 

among this seven features for a best correlation. This is because the computational 

performance will become insufficient for us to develop the correlation model if we 

included too many features. The signal number 1, 2, 5 and 7 are selected to build the 

correlation model due to their prominent influence [3].   

 The figure 2.11 shows the basic architecture of ANN. This network is suitable to 

predict the remaining useful tool life due to its nonlinear characteristics, easy to adapt, 

and is capable to approximate the arbitrary function. This network consists of three layers 

which are the input layer, hidden layer and the output layer. The network tool box in the 

MATLAB is used to train the ANN model. There was two sets of data prepared for the 

training and validating of the model to prevent over fitting problem. The training process 
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will stop when there is a rising in the Mean Square Error (MSE) of the validating data set. 

The set up that gives us the lowest error percentage will be the best model use to predict 

the RUL [3]. 

 

 

 

Figure 2.11: ANN architecture [3] 

 

Source: Predicting remaining useful life of high speed milling cutters based on 

                      Artificial Neural Network 

 

 

 

 

Figure 2.12: ANN output graph [3] 

 

Source: Predicting remaining useful life of high speed milling cutters based on 

                      Artificial Neural Network 
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 The output of the ANN model is shown at the figure 2.12. The ANN model gives 

a prediction life which is very similar to the actual remaining useful life. There is over 

prediction at the beginning of the early stage, but this favorable as the cutter is still new 

and no immediate actions need to be taken yet. When it is approaching to the end of the 

service life, the prediction life becomes more accurate. This is very suitable for us to 

predict the failure of tool cutter early enough. Therefore, it is concluded that ANN is a 

very suitable approach to predict the remaining useful life of a tool cutter [3]. 

 

2.9.2 Support Vector Regression (SVR) 

 

 The Support Regression Vector (SVR) technique has been studied by T. 

Benkedjouh, Kamal Medjaher, Noureddine Zerhouni and S. Rechak in the research for 

estimating the remaining useful tool life of and end mill on high speed milling. They have 

utilized three dynamometer, three accelerometer, and one acoustic emission sensor in the 

acquisition of signal data. Six end mills are used in the experiment where data from three 

cutters are used for the training process ad three cutters are used for testing process [5]. 
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Figure 2.13: Health indicator result using EM-PCA (left) and ISOMAP (right) [5] 

 

Source: Health assessment and life prediction of cutting tools based on support vector 

                regression. 

  

The data from the sensors will be fused to have a more suitable and accurate result 

from the result get from a single sensor. After the fusion, the features will be extracted 

using the Wavelet Packet Decomposition (WPD) method. The detailed energy coefficient 

for the signal in the first six level of decomposition is calculated. The higher 

discrimination of the signal can be retain as the WPD can analyze higher frequency 

domain of a signal. After this, the features extracted will be reduced. The method used 

here were two nonlinear reduction method which are EM-PCA and ISOMAP. A trend 

will be obtained from these reduction methods and the trend is also called as a health 

indicator. Both of the trends have the same progression but different magnitude. The 

figure 2.13 shows the health indicators obtained from the reduction techniques [5]. 

The health indicator will be mapped to the regression model using the technique 

of support vector regression. Different kernel can be used for the SVR, but the Gaussian 

kernel will give a lowest learning error. Finally, the regression model will be used in a 
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power model to estimate the RUL of an end mill. The figure 2.14 shows the prediction 

result using the SVR model. The blue color line is the real RUL while the red color line 

is the predicted RUL [5]. 

 

 

 

Figure 2.14: Result of SVR model [5] 

 

Source: Health assessment and life prediction of cutting tools based on support vector 

                regression. 

 

2.10 SUMMARY 

 

 According to the literature review, it has shown that the climb milling method is 

more suitable for the project. The surface finish using this cutting method is very nice and 

the tool life is longer compared to the conventional milling method. The torque needed is 

lower so a lower force for cutting needed. The cutting force is very important in 

machining process and crucial in the choosing of optimal machining parameters. The 

summation of a definite number of elementary cutting forces that are due to the discrete 

cutting edges of the tools are determined using the numerical integration force the total 
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cutting forces. From the review of cutting force, the cutting force can be determined 

summing the force on the flank edge engage with the workpiece during cutting and the 

bottom edge force in contact with the workpiece. 

 Other than that, the cutting parameters have a significant effect on the life 

according to the studies done by researchers. The cutting force has the most significant 

on the tool life. Other factors such as feed, depth of cut, usage of cutting fluid, and etc. 

also will affect the tool life of cutter. The wear mechanism of the tool wear has been 

reviewed based on the research done. Normally, the wear pattern on the end mill are flank 

wear and central wear. The wear of the end mill will progress due to the mechanical 

interaction or chemical interaction between the workpiece and the tool cutter. 

 Besides that, the definition of remaining useful life of a tool cutter has been 

discussed according to the definition. The cutter is said to be at the end if its service life 

when the flank wear has exceeded the threshold value of wear. The tool cutter condition 

monitoring system is used to monitor the tool life during its service. The monitoring can 

be online by sensors will be used to monitor the condition of the tool continuously during 

the operations while the offline method will use the data from the sensors after the 

operations have finish to monitor the tool condition of the end mill. 

 Furthermore, the data driven prediction method is believed to be more appropriate 

for the project following the literature review. This method is easier to conduct and more 

cost efficient, The Artificial Neural Network (ANN) and Support Vector Machine (SVR) 

methods have been reviewed and they have shown that the prediction of remaining useful 

life is accurate using these two methods. These two methods use the data acquired from 

the sensors to extract the important features and use these features to train the prediction 

model. The train model will be able to give an accurate result on the prediction which is 

almost same as the actual remaining useful life. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

 This chapter provides an insight of what will be done in this project and how it 

will be carried out. A flow chart will be used to show the process flow of the project and 

the Gantt chart will provide the timeline that this project will follow. The detail methods 

used in the research project will be explained and specific tool life prediction method to 

be used is as per the analysis outcome in the literature review of the previous chapter. The 

prediction method selected in this project was data driven method. Besides that, the 

equipment and software needed will be introduced and briefly explained in this chapter. 
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3.2 FLOW CHART 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flow chart 
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3.3 PROJECT DESCRIPTIONS 

 

The equipment needed for this project was a Haas VF-6 milling machine. One 

CTPM240 coated carbide insert was selected to use in the experiment. The workpiece 

material was Uddeholm Stavax ESR stainless steel. Dynamometer was installed on the 

machine to collect data during the experimental cutting process to track the wear 

evolution of the cutter. The data from the dynamometer was amplified before fed into the 

DAQ system of the computer. Seven important statistical features were extracted from 

the dynamometer data. The features were extracted using the statistical method in 

MATLAB.  

 The features will then be reduced stepwise regression. It is a standard procedure 

to include or remove the elements from a multilinear model according to their importance 

in the regression model. The features selected through this process were used as input to 

train the Support Vector Regression model and Artificial Neural Network model. The 

generated models will predict its RUL. The predicted life was compared with the actual 

life to know the accuracy of this prediction model. 

 After the prediction has been done using the SVR model and Artificial Neural 

Network (ANN) model, the performance was compared against each other to get a best 

prediction method. Other than that, one more set of SVR model and ANN model was 

trained using the raw data from Prognostics and Health Management (PHM) Society to 

compare the performance between the trained model and the existing model. 
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3.3.1 Design of Experiment 

 

 The material used in the experiment was cut into the desired workpiece using the 

wire cut machine. Figure 3.2 shows the raw material before any preparation process. 

Figure 3.3 shows the cutting process in the wire cut machine and figure 3.4 the surface of 

the workpiece after the cutting process. 

 

 

 

Figure 3.2: Raw material 

 

 

 

Figure 3.3: Wire cutting of material 
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Figure 3.4: Material surface after wire cut 

 

 As shown in the figure 3.3, the surface finish of the wire cut was in dark color as 

the cutting was carried out the discharge of electricity between the copper wire and the 

workpiece to erode the material. The material has undergone a face milling on a Makino 

KE55 milling machine to remove the hard particles on the surface. Figure 3.5 shows the 

surface finish of the workpiece after the face milling process. 

 

 

 

Figure 3.5: Surface finish from face milling process 

 

The main equipment used in this project was the Haas VF-6 milling machine. A 

Kistler dynamometer was installed on the milling machine table to read the cutting force 
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on the material. The workpiece was clamped on top of the dynamometer. The 

dynamometer was connected to the amplifier to amplify its reading to a readable value 

before sending it to the DAQ system of the computer. Figure 3.6 shows the experiment 

setup. The dynamometer was mounted on the milling machine and the workpiece was 

clamped on top of the dynamometer. The dynamometer was connect to a Kistler amplifier 

before the data was fed into the DAQ system of the computer. 

 

 

 

Figure 3.6: Experiment setup 
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Figure 3.7: Edge finding process 

 

 

 

 

Figure 3.8: Cutting process 
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 Figure 3.7 shows the edge finding process on the workpiece. The origin for the x-

axis and y-axis will be found in this process and the origin was set at the center of the 

workpiece. Figure 3.8 shows the cutting process during the experiment. Every time the 

cutter cut through a distance of 60mm and then will be removed from the tool holder for 

wear measurement.  

 

 

 

Figure 3.9: Tool holder and insert 

 

Figure 3.9 shows the tool used for the experiment. A Ceratizit coated carbide 

insert was used for the experiment. One single insert was mounted on the tool holder for 

the cutting process. The cutting speed was set at 170 m/min. The axial depth of cut on the 

workpiece was 0.1mm and the feed was 0.06mm/tooth. The spindle speed and federate 

were calculated using the available information. The calculated spindle speed and feed 

rate were 4509 rpm and 270mm/min respectively.  

Insert 
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The dimension of the workpiece was 100mm x 60mm x 10mm. The total cutting 

length in this project was 60mm x 50 = 3000mm and with a total cutting time of 13.5𝑠 ×

50 = 675𝑠. Table 3.1 shows the experiment setting and parameters for this project. 

 

Table 3.1: Experiment Setting 

 

Experiment Setting Value 

Cutting speed 170 m/mm 

Feed 0.06 mm/tooth 

Depth of cut 0.1 mm 

Spindle speed 4509 rpm 

Feed rate 270 mm/min 

Total cutting length 3000 mm 

Total cutting time 675 s 

 

3.3.2 CAD Program 

 

 The G-code for the CNC machining process was created using the Mastercam 

software and sent to the controller of the milling machine. Figure 3.10 to 3.15 show the 

steps to generate the tool path program. Figure 3.10 shows the interface of Mastercam 

Mill X5 software while figure 3.11 shows the stock dimension setup in the software. 

Moreover, the setting for tool parameters are shown in the figure 3.12 and the tool linking 

parameters are shown in the figure 3.13.  
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Figure 3.10: Mastercam Mill X5 software 

 

 

 

Figure 3.11: Stock dimension setup 
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Figure 3.12: Tool parameters 

 

 

 

Figure 3.13: Linking parameters 
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 Figure 3.14 shows the tool path design for the experiment while figure 3.15 shows 

the illustration of full cutting tool path using the software. 

 

 

 

Figure 3.14: Tool path design 

 

 

 

Figure 3.15: Tool path illustration 
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3.3.3 Tool Wear Measurement 

 

 The end mill insert was removed from the tool holder after every cut to measure 

its tool wear using an Olympus metallurgical microscope. The magnifying factor used 

was 10x and the tool wear was measured using the computer software on the photo 

captured using the camera on the microscope. Figure 3.16 shows the measurement process 

using the microscope. 

 

 

 

Figure 3.16: Tool wear measurement 
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Figure 3.17 shows the flow chart of procedure to measure the tool wear using the 

microscope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Tool wear measurement process 
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 Figure 3.18 to 3.24 show the steps to measure the tool wear of the cutter insert. 

Both the computer and microscope was powered on first and the light level on the 

microscope was set to 9. The microscope software used to sync both of the equipment 

was opened and the height of the table was adjusted to show a focused image on the 

computer screen. The image was captured using the camera on the microscope and the 

tool wear was measured using the line feature in the software. 

 

 

 

Figure 3.18: Computer and microscope system 
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Figure 3.19: Light level on microscope 

 

 

 

Figure3.20: Specimen preparation 
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Figure 3.21: Microscope software 

 

 

 

Figure 3.22: Table height adjustment 
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Figure 3.23: Image capture 

 

 

 

Figure 3.24: Wear measurement 
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3.3.4 Signal Acquisition and Processing 

 

Normally the signal from the sensor will be amplified to make it meet the 

minimum requirement of the equipment. The signal from dynamometer was amplified to 

the range of ±5V for the maximum load. After that the signal was fed to the DAQ of 

computer and managed using the Dynoware software on the laptop. Figure 3.25 shows 

the flow chart to operate the dynamometer with the Dynoware software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: Data acquisition and export process 
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 Figure 3.26 to 3.31 show the steps to acquire the data and export it from the 

dynamometer.  The Dynoware software on the laptop was opened when the connection 

with the amplier and dynamometer has been established. The total measuring time for 

every cut was set at 14 seconds and the sampling rate was 400 Hz. The start button on the 

Dynoware was pressed at the same time when the cutting cycle on the machine was started. 

Later the data was exported from the dynoware in the format of notepad file. 

 

 

 

Figure 3.26: Dynoware 
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Figure 3.27: Amplifier Connection 

 

 

 

Figure 3.28: Measuring time and sampling rate 
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Figure 3.29: Sensor data measurement 

 

 

 

Figure 3.30: Data exportation 
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Figure 3.31: Exported data 

 

3.3.5 Features Extraction and Reduction 

 

 The statistical features were extracted from the raw signal data using the 

MATLAB software. Figure 3.32 shows MATLAB code used to extract the features from 

the signal. 

 

 

 

Figure 3.32: Features extraction 
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 After the features have been extracted, the features were reduced to the few most 

important features. The method used was the stepwise regression from the MATLAB 

software. Figure 3.33 shows the code used to reduce the features. 

 

 

 

Figure 3.33: Features reduction 

 

3.3.6 Support Vector Machine Regression Model Training 

 

 The Support Vector Machine Regression model was trained using the MATLAB. 

The function used to train the model was fitrsvm [16] and the function used to predict the 

tool wear was predict [17]. The fitrsvm function will give a fully trained regression model 

using the predictor’s value and the respond value. The predict function was used to predict 

the respond of the model for the input predictors value. Figure 3.34 shows the process to 

predict the tool wear using Support Vector Machine Regression model. 
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Figure 3.34: Support Vector Machine regression model training 
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 Figure 3.35 shows the predictors and respond used to build the prediction. The 

data was loaded into a table format. Average and kurtosis were the predictors while tool 

wear was the predictor. 

 

 

 

Figure 3.35: Predictors and respond 

 

 After that, the prediction model was trained using the fitrsvm function and tested 

with the predict function. Figure 3.36 shows the code and respond of the fitrsvm function 

while figure 3.37 shows the code and respond of the predict function. The fitrsvm code 

showed the information of the model trained in the command window and the predict 

code showed the prediction result in the command window. If the result from the predict 

function was not accurate, the model will be retrain using fitrsvm function in different 

coding. 
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Figure 3.36: fitrsvm function code 

 

 

 

Figure 3.37: predict function code 

 

3.3.7 Artificial Neural Network Model Training 

 

 The artificial neural network model was trained using the nnstart [18] GUI in the 

MATLAB. The feature used was the input-output curve fitting. This feature can train a 
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feed forward back propagation artificial neural network to predict the tool wear. Figure 

3.38 shows the training workflow for the Artificial Neural Network model. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38: Artificial Neural Network model training 

 

 Figure 3.39 to 3.44 shows the step to train the Artificial Neural Network prediction 

model. In figure 3.39, the fitting app interface is shown and the loading of input and target 

data to the app is shown in the figure 3.40. 
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Figure 3.39: Neural fitting app 

 

 

 

Figure 3.40: Data loading 
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 Figure 3.41 shows the allocation of data for training, validation, and testing while 

figure 3.42 shows the selection for number of neurons in the hidden layer and the network 

architecture. 

 

 

 

Figure 3.41: Validation and test data 
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Figure 3.42: Neurons selection and network architecture 

 

 Figure 3.43 shows the training interface for the network. In the interface, the 

suitable training algorithm was selected to train the network and the performance of the 

network trained can be seen in that interface. The mean squared error and regression plot 

value were shown to indicate the model’s performance. 

 

 

 

Figure 3.43: Training of network 

 

 If the performance of the network was not satisfying, it can be retrain using 

different numbers of neurons or different datasets. Figure 3.44 shows the retrain interface 

for the network. 
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Figure 3.44: Retraining interface 

 

 

 

Figure 3.45: Network result saving 

 

 Figure 3.45 shows the saving of the outputs from the network prediction model. 

The results were exported to the workplace of the MATLAB software. 
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3.3.8 Predict for Remaining Useful Life 

 

 The remaining useful life for the tool insert was determined by setting a threshold 

value for it. In this project, the threshold was set as the tool can be used anymore at the 

end of the experiment. Therefore, the remaining useful life for a new insert was 50 and 

was 0 at the end of the experiment.  

 The remaining useful life was predicted using the predicted wear from the Support 

Vector Regression model and Artificial Neural Network model. Figure 3.46 shows the 

workflow to predict the remaining useful life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.46: Predicting remaining useful life 
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3.4 HARDWARE AND SOFTWARE APPLICATION 

 

 The hardware and software will be used in this project are the CNC milling 

machine, wire cut machine, metallurgical microscope, coated carbide insert, stainless 

steel, dynamometer, amplifier, Mastercam, and MATLAB. We will discuss all these 

hardware and software needed in the following section. 

 

3.4.1 MAKINO Milling Machine 

 

 

 

Figure 3.47: Makino KE55 CNC milling machine 

 

 Milling machine is one of the most commonly available machine we can find in 

any machining workshop. The figure 3.47 shows a Makino KE55 CNC milling machine 

that we are going to use in this project for the facing process for the workpiece. This 

machine is very user friendly as it can reduce the tiresome set up process needed perform 

by the operator. It can perform many kinds of operation such as oblique cutting, circular 



65 

 

 

 

cutting, and tapping. It is desirable for a single part run for its speed, reliability, and 

accuracy. The figure 3.48 shows the specifications of this machine. 

 

 

 

 

Figure 3.48: Specifications for Makino KE55 [19] 

 

Source: Makino KE55 7.5 HP Vertical CNC Knee Mill Techspex.  
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3.4.2 HAAS Milling Machine 

 

 

 

Figure 3.49: HAAS milling machine VF-6 

 

 Figure 3.49 shows the HAAS milling machine VF-6 used for the experiment. This 

machine is equipped with 20HP using dual vector drive and the maximum spindle speed 

is 7500 rpm. The coolant system is through spindle coolant system [20]. The machine is 

CNC controlled and incorporated with Mastercam for its machining operation. Figure 

3.50 shows the controller of the machine where the status is displayed. 

 

 

 

Figure 3.50: Control unit 
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3.4.3 Wire Cut Machine 

 

 

 

Figure 3.51: Sodick VZ 300L wire cut machine 

 

 Figure 3.51 shows the Sodick VZ 300L wire cut machine used to prepare the 

workpiece for the experiment. This machine features Sodick’s well-known Linear Motor 

Technology. The VZ Series is a low investment, basic model of WEDMs that can provide 

the quality we look for when using a wire cut machine. This machine has a higher levels 

of accuracy and cutting speeds when compared to the High End Sodick EDM models [21].  

 The machine has a large capacity worktank that comprises a vertical access door 

for ergonomic accessibility. The machine requires less working space by using the sliding 

door and its can prevent water drip totally to secure a safer workplace. It is also energy 

efficient as its energy consumption is 60% lower than other wire cut machine. Table 3.2 

shows the specification of the machine [21]. 
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Table 3.2: Wire cut machine specification [21] 

 

Specification Value 

X - axis travel 350 mm 

Y - axis travel 250 mm 

Z - axis travel 220 mm 

U, V axis travel 80 x 80 mm 

Wire diameter range (min ~ max) 0.10 ~ 0.30 mm 

Work tank dimensions (W x D) 810 x 650 mm 

Maximum workpiece weight 500 kg 

Distance from floor to table top 900 mm 

Machine tool dimensions 1,895 x 2,180 x 1,960 mm 

Machine weight 2,400 kg 

 

Source: VZ300L Wire EDM 

 

3.4.4 Metallurgical Microscope 

 

 

 

Figure 3.52: Olympus BX51M metallurgical microscope 
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 Figure 3.52 shows the Olympus BX51M metallurgical microscope used in this 

project. This microscope give adaptability for a diverse category of materials science and 

industrial applications. It has an illuminator which can minimize the complex steps that 

are always needed when operating a microscope. Its magnifying power varies from 5x to 

50x. 

 

3.4.5 End Mill Insert 

 

 

 

Figure 3.53: End mill insert 

 

 Figure 3.53 shows the type of insert used in this project. The insert was from 

Ceratizit with model CTPM240. The yellow colour triangle in the hexagon represent the 

stainless steel and the black colour square means the tool is specialized for the usage on 

stainless steel while the empty square means the extended use of the insert [22]. 
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Figure 3.54: Insert specification [22] 

 

Source: Innovation Product Highlight 

  

 Figure 3.54 shows the specification of the insert. The insert has its coated layer 

under the series of SILVERSTAR. This kind of coating is best for high performance 

machining in interrupted machining process or on material which is hard to machine. This 

cutter performs best for the stainless steel when it is use together with coolant [22]. The 

coating layer is made up of TiAlN using a PVD method. The wear resistance of this insert 

is 7 out of 10 while its toughness is 9 out of 10. 

 

3.4.6 Workpiece Material 

 

 Uddeholm Stavax ESR was the material used in the experiment. It is a premium 

stainless mould steel for small and medium inserts and cores. Uddeholm Stavax ESR 

combines corrosion and wear resistance with excellent polishability, good machinability 

and stability in hardening. It is able to lower the mould maintenance cost and the 

production cost [23]. Figure 3.55 shows the physical data of the workpiece material. 
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Figure 3.55: Workpiece physical data [23] 

 

Source: UDDEHOLM STAVAX® ESR 

 

3.4.7 Dynamometer 

 

 A stationary dynamometer is often the connecting element between the machine 

table of the machine tool and the workpiece. The workpiece is fastened on the 

dynamometer with which the reaction forces in manufacturing processes such as milling 

or drilling are measured. The tool is placed on the dynamometer with a suitable tool holder. 

Depending on the structure, the forces that arise are recorded by one or more multi-

component force sensors and are available at the connector of the dynamometer in the 

form of charge signals. 
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Figure 3.56: Dynamometer 9257B 

 

 Figure 3.56 shows the dynamometer with workpiece on it. The dynamometer used 

in this project was the Kistler 9257B stationary multi-component dynamometer with top 

plate 100x170 mm up to 10 kN. The dynamometer is for universal use. The handy size 

and the ideal measurement range for many applications have made Type 9257B the most 

frequently built multi-component dynamometer. The connection with the machine table 

is accomplished with lateral flanges with oblong holes [24]. Figure 3.57 shows the 

technical data of the dynamometer. 
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Figure 3.57: Dynamometer technical data [24] 

 

Source: Kistler product catalog 

 

3.4.8 Amplifier 

 

 The charge amplifier carry out a charge conversion function by changing the 

charge at the input to the amplifier, to voltage at the output. The gain of a charge amplifier 

is stated in units of mV/pC. The gain of the amplifier will not be affected by the 



74 

 

 

 

capacitance and can be adjusted from the component inside. This allows the amplifier can 

be calibrated very accurately. 

 Figure 3.58 shows the type 5070A multi-channel charge amplifier for multi-

component force measurement and figure 3.59 shows the specifications. This charge 

amplifier was developed especially for multi-component force measurement. Due to its 

large and continuously adjustable measuring ranges and the wide frequency range, this 

device is suitable in measuring chains with stationary Dynamometers for cutting force 

measurement [24]. 

 

 

 

Figure 3.58: Amplifier type 5070A 
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Figure 3.59: Amplifier specifications 

 

Source: Kistler product catalog 

 

3.4.9 Mastercam 

 

 Mastercam is the most widely used CAM software worldwide and remains the 

program of choice among CNC programmers. Mastercam Mill is the next generation of 
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the popular program, delivering the most comprehensive milling package with powerful 

new toolpaths and techniques. Mastercam Mill delivers fast, easy, industry-proven NC 

programming that lets you make the most of your machines [25]. 

 The Mill suite of CAD/CAM tools is focused on delivering speed and efficiency 

to your shop. Since milling covers a huge range of disciplines—basic and complex 2D 

cutting to single-surface and advanced 3D milling—Mastercam offers an equally wide 

range of tools to make sure you can get your job done right. Mastercam also offers 

streamlined multiaxis cutting. Figure 3.60 shows the Mastercam logo. 

 

 

 

Figure 3.60: Mastercam logo [25] 

 

Source: Mastercam 

 

3.4.10 MATLAB 

 

 MATLAB is a software using a high level language and has an interactive 

environment that is commonly used worldwide by the engineers and scientists. We are 

able to visualize our ideas using this software and the collaboration across different 

disciplines is possible. As an example, MATLAB can be used to run simulations for us 

to determine the optimal parameter for a process [26]. This software is used in this project 

for the extraction and reduction of the data and predict the remaining useful life of the 
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end mill using the support vector machine toolbox available in the MATLAB. The figure 

3.61 shows the logo for the MATLAB. 

 

 

 

 

 

Figure 3.61: MATLAB Logo [26] 

 

Source: MATLAB - The Language of Technical Computing. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSIONS 

 

 

4.1 INTRODUCTION 

 

 This chapter provides all the relevant results from the experiment and the raw data 

analysis available from Prognostics Health and Management Society. The data from 

Prognostics Health and Management Society Competition 2010 was used to train the 

prediction models to acquire the theoretical background knowledge for the remaining 

useful life prediction. The preliminary data from the models will be shown and analyze 

in this chapter before the analysis of the experimental data.  

The results of the actual tool wear measurement, raw data features extraction 

process, features reduction and selection process, Artificial Neural Network model 

training, Support Vector Regression model training, and the remaining useful life 

prediction will be displayed here. The performance of the models from this project will 

be compared with each other. Other than that, all the results will be interpreted to explain 

the difference between the models trained using different methods..  
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4.2 PHM SOCIETY DATA ANALYSIS 

 

The procedures to assess the tool wear and predict the remaining useful tool life 

described in the methodology are applied on the experimental raw data taken from the 

prognostics and health management society data challenge competition. The dataset 

contains raw data of 315 cutting process of the end mill. The cutter used in the experiment 

was a three flute ball nose end mill while the sensors used in the experiment were force 

sensors, vibrations sensors, and acoustic emission sensor. The models trained using this 

PHM data was served as the theoretical model to build the prediction model for my own 

experiment. Table 4.1 shows the conditions of the experiments.  

 

Table 4.1: Cutting Condition 

 

Spindle Speed Feed Rate Depth of Cut 

Y (radial) 

Depth of Cut 

Z (radial) 

Sampling 

Frequency 

10400 RPM 1555 mm/min 0.125mm 0.2mm 20kHz 

 

The graph of the raw data from the different sensors during first cut and last cut are shown 

in the figure 4.1 to figure 4.3 below. The raw data used in this project was the data from 

the force sensor. 
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Figure 4.1: Raw data from force sensor during first cutting process (left) and final 

                        cutting process (right) 

 

 

 

Figure 4.2: Raw data from vibration sensor during first cutting process (left) and final 

                     cutting process (right) 
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Figure 4.3: Raw data from acoustic sensor during first cutting process (left) and final 

                      cutting process (right) 

 

4.2.1 Raw Data Features Extraction  

 

 The force sensor raw data went through the extraction process to acquire the 

statistical features from the data. These statistical features are mean, kurtosis, total 

amplitude, skewness, root mean square, standard deviation, and maximum level. Table 

4.2 shows the statistical features. 

 

Table 4.2: Significant statistical features 

 

No. Important Statistical Features 

1 Mean 

2 Kurtosis 

3 Total amplitude 

4 Skewness 

5 Root mean square 

6 Standard deviation 

7 Maximum level 
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4.2.2 Features Reduction and Selection 

 

 All of the features listed in the table 4.2 are important, but when there are too 

many features involved in the building of model, the established correlated model will 

possess undesirable calculation performance [4]. Stepwise regression was used in this 

project to select the most appropriate features to train the model. Table 4.3 shows the 

setting of the stepwise regression.  

 

Table 4.3: Stepwise regression parameters 

 

Input Parameters Value 

Initial model None included 

Entrance tolerance 0.05 

Exit tolerance 0.10 

Information display On 

Number of steps Infinity 

Scale Off 

 

Table 4.4: Features selection result from stepwise regression 

 

Features Coefficients P-value Status 

Mean -0.0203 0.2211 Out 

Kurtosis -13.8775 6.7262e-17 In 

Total amplitude 0.5626 4.6475e-10 In 

Skewness -27.2321 3.9430e-11 In 

Root mean square -0.0242 0.2603 Out 

Standard deviation -0.6854 0.0434 In 

Maximum level -0.0213 0.2013 Out 
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According to the table 4.4, four features were selected by the stepwise regression 

as their p-value were smaller than the selection requirement of 0.05. They were the 

kurtosis, total amplitude, skewness, and standard deviation. These four features have the 

most significant influence on the estimation of tool wear and prediction of the remaining 

useful too life. These four features were used as the input to train the prediction models. 

 

4.2.3 Support Vector Regression (SVR) Model  

 

 The features selected were used to train a support vector regression prediction 

model. The four features were the predictor and the tool wear were used as the response 

for the regression model. The table 4.5 shows the properties and parameters of the model 

trained for this project. 

 

Table 4.5: Support vector machine regression model 

 

Property Value 

Predictor names ‘kurtosis’, ‘total amplitude’, ‘skewness’, ‘standard deviation’ 

Respond name ‘Tool wear’ 

Standardize data Yes 

Kernel Gaussian 

Kernel scale Auto 

Solver Sequential Minimal Optimization 

Box constraints 27.8526 

Epsilon 2.7853 

Mu 2.1395, 79.5112, 0.0393, 17.9830 

Sigma 0.2501, 60.2180, 0.1455, 15.2199 
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 Referring to the table 4.5, the four predictor names were kurtosis, total amplitude, 

skewness, and standard deviation while the respond name was tool wear. The box 

constraint which is also called the C parameter used to train the model was 27.8526 and 

the epsilon, ε has the value of 2.7853. The Mu in table 4.5 is the mean value of the 

predictors data arranged in the sequence of kurtosis, total amplitude, skewness, and 

standard deviation. Other settings can be seen clearly from the table above. 

 

 

 

Figure 4.4: Comparison between actual wear and predicted wear of SVR 

 

 The result of actual wear and the predicted wear from the support vector machine 

regression model is shown in the figure 4.4. There was a total of 315 cuts performed using 

the end mill and the respective actual tool wear after each cut was recorded. The blue 

colour line graph was the progression of actual tool wear while the red colour line graph 

was the progression of the predicted tool wear.  
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4.2.4 Artificial Neural Network Model  

 

 The Artificial Neural Network model was trained using the same data for the 

training of support vector machine regression model, which are the same 4 features and 

the actual tool wear. Figure 4.5 shows the feedforward network architecture of the neural 

model.  

 

 

Figure 4.5: Neural Network Architecture 

 

Table 4.6: Artificial Neural network setting 

 

Parameters Description 

Data division Dividerand 

Training function Trainlm 

Hidden layer transfer function Tansig 

Output layer transfer function Purelin 

Maximum number of epochs to train 1000 

Maximum training time Infinity 

Performance MSE 

Performance goal 0 

Minimum performance gradient 1e-7 

Maximum validations failure 6 
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 Table 4.6 shows the settings of the neural network during the training process. 

The setting are the standard default for the training of the Artificial Neural Network. More 

explanation will be provided with the experimental data analysis. 

 

Table 4.7: Mean Square Error and regression of the model 

 

Subset Samples MSE Regression 

Training  221 0.608592 0.999608 

Validation 47 0.613508 0.999549 

Testing 47 2.70535 0.998181 

 

 Table 4.7 shows the result for Mean Square Error value and the regression fit of 

the three subsets. Both training, validation, and training data have a small MSE value. 

This means that the network has a good performance and the performance will be best 

when the MSE is zero. Figure 4.6 shows the line graph plotted using the MSE of both 

training, validation, and testing data. The graph shows that the validation error reached a 

minimum value at the 141 epochs with a value of 0.61351. The training process was 

continued for 6 more epochs before it was stopped.  
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Figure 4.6: Mean Square Error 

 

 

 

Figure 4.7: Regression plot 
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 Figure 4.7 shows the regression plot for the training, validation, testing, and 

overall data. The R value is same as the regression value in the table 4.7. The value from 

both training, testing and testing fit very well to the regression model. This means the 

accuracy of the model is high as a perfect fit was almost achieved. 

 

 

 

Figure 4.8: Comparison between actual wear and predicted wear of neural network 

 

 The result of actual wear and the predicted wear from the support vector machine 

regression model is shown in the figure 4.8. There was a total of 315 cuts performed using 

the end mill and the respective actual tool wear after each cut was recorded. The blue 

colour line graph was the progression of actual tool wear while the red colour line graph 

was the progression of the predicted tool wear.  

The predicted wear using the Artificial Neural Network is more accurate than the 

Support Vector Regression model. This can be seen from the figure 4.5 and figure 4.9 
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where the predicted wear is more alike as the actual wear. The values for the actual wear 

and predicted wear were later used for the prediction of remaining useful life. 

 

4.2.5 Remaining Useful Life (RUL) Prediction 

 

 The predicted tool wear was used to predict the remaining useful life. The 

remaining useful life were calculated using the same formula stated in the chapter 4.6. 

 

 

 

Figure 4.9: Comparison between actual RUL and neural network RUL 
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Figure 4.10: Comparison between actual RUL and Support Vector Regression RUL 

 

 Figure 4.9 and figure 4.10 show the graph of actual tool life versus the predicted 

wear acquired from the Artificial Neural Network model and the Support Vector 

Regression model. The predicted RUL from the Artificial Neural Network model is better 

as it can give a result nearer to the actual RUL. This meant the neural model trained in 

this project has the higher performance compared to the Support Vector Machine 

Regression model trained.  

 

4.2.6 Performance Assessment 

 

 The performance assessment process is same as for the model trained using the 

experimental data. However, two more performance measures were used to assess the 

performance of neural network trained using the PHM data, which were the R squared 

value (𝑅2) and the Mean Square Error (MSE). The performance of the models trained 
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using the PHM data in this project were compared with the exsiting model trained using 

same data.  

 R squared value is a coefficient to determine the proportionate size of discrepancy 

in the tool wear and the four features selected as the input for the model training. More 

variability will be explained by the regression model if the R squared value is large. Mean 

Square Error is a measure of how close a fitted line is to data points. For every data point, 

you take the distance vertically from the point to the corresponding y value on the curve 

fit (the error), and square the value. The smaller the Mean Squared Error, the closer the 

fit is to the data. 

 

Table 4.8: Performance assessment for SVM Regression model 

 

 Trained Model Existing Model 

Accuracy 0.90 0.87 

Precision 17.85 5.74 

MAPE 29.13 6.41 

 

 Table 4.8 shows the performance of the trained SVR model and it was compared 

with the performance of existing model. The accuracy is better if the value is nearer to 1 

while the precision and MAPE symbolise a better performance with a smaller value. 

According to the table, the model trained in this project has a slightly better accuracy than 

the existing model, with 3% improvement in accuracy. The existing model has the much 

better precision and MAPE than the trained model with values of 12.11 and 22.72 

respectively. The existing model possess a better performance due to the different features 

extraction and reduction method.  
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The existing model used the Wavelet Packet Decomposition (WPD) method to 

extract the features. The detailed energy coefficient for the signal in the first six level of 

decomposition is calculated. The higher discrimination of the signal can be retain as the 

WPD can analyze higher frequency domain of a signal. After this, the features extracted 

will be reduced. The method used here were two nonlinear reduction method which are 

EM-PCA and ISOMAP. A trend will be obtained from these reduction methods and the 

trend is also called as a health indicator. The health indicator will be mapped to the 

regression model using the technique of support vector regression to predict the RUL of 

the cutter [5]. 

 

Table 4.9: Performance assessment for neural network model 

 

 Trained Model Existing Model 

Accuracy 0.97 0.87 

Precision 5.20 14.49 

MAPE 7.21 24.76 

R2 0.97 0.98 

MSE 0.61 335.66 

 

 Table 4.9 shows the performance of the trained neural model and it was compared 

with the performance of existing model. The model trained in this project is generally 

better than the existing model in all aspect except the R2 value. The value is just slightly 

better than the model from this project.  

The Mean Squared Error (MSE) is a measure of how close a fitted line is to data 

points [27]. The performance of the neural network model is based on the Mean Squared 

Error (MSE) value.  The MSE value indicates the validation performance at its minimum 



93 

 

 

 

point. The smaller the value means the data is fitted better, hence better performance. The 

existing model has a very big MSE value, thus its performance is not at the best. The 

difference in the MSE value was due to the different neural network model training 

method. 

 

4.3 ACTUAL TOOL WEAR MEASUREMENT 

 

 The experiment conducted were 50 cuts on the STAVAX ESR stainless steel with 

axial depth of cut 0.1mm. After every cut, the end mill insert was brought to the Olympus 

metallurgical microscope to measure the flank wear.  

 

 

 

Figure 4.11: Actual tool wear of end mill 

 

Figure 4.11 shows the actual tool wear measured. The tool wear increases when 

the numbers of cutting increases. This actual tool wear were used as the target to train the 
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prediction model using Support Vector Regression method and neural network method. 

Figure 4.12 shows the tool wear image after the first cutting process while figure 4.13 

shows the tool wear image after the last cutting process. 

 

 

 

Figure 4.12: Tool wear after first cutting process 

 

 

 

Figure 4.13: Tool wear after last cutting process 
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4.4 RAW DATA FEATURES EXTRACTION 

 

The force sensor raw data went through the extraction process to acquire the 

statistical features from the data. These statistical features include the informative 

signature of the system. There are 10 different types of features presented in the available 

journal [28]. The table 4.10 shows the 7 most important statistical features for a force 

sensor identified from the literatures available. 

 

Table 4.10: Important statistical features 

 

No. Important Statistical Features 

1 Mean 

2 Kurtosis 

3 Total amplitude 

4 Skewness 

5 Root mean square 

6 Standard deviation 

7 Maximum level 

 

4.5 FEATURES REDUCTION AND SELECTION 

 

 All of the features listed in the table 4.10 are important, but when there are too 

many features involved in the building of model, the established correlated model will 

possess undesirable calculation performance [4]. Normally the selection of the features is 

random, so this can cause that some of the features selected were actually provided the 

identical information or may provide useless information for computation. This situation 

will increase the learning cost and the time taken for training [28].  
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Stepwise regression was used in this project to select the most appropriate features 

to train the model. It is a standard procedure to include or remove the elements from a 

multilinear model according to their importance in the regression model. It starts with an 

initial model and the analytical capability of bigger and smaller model will be compared 

later. The p-value of the statistic is measured to investigate the model with the presence 

of absence of a potential element [29].  

If an element is not in the current model, the null hypothesis for it will be that the 

element will have a coefficient of zero if it is added to the model. The element will be 

included to the model if there is enough evident to ignore the null hypothesis. On the other 

hand, if the element is included in the current model, the null hypothesis for that element 

will be it has a zero coefficient. The element will be remove from the model if there is 

enough evident to reject the null hypothesis [29].  Table 4.11 shows the setting of the 

stepwise regression.  

 

Table 4.11: Stepwise regression setting 

 

Input Parameters Value 

Initial model None included 

Entrance tolerance 0.05 

Exit tolerance 0.10 

Information display On 

Number of steps Infinity 

Scale Off 

 

 There was no initial element included in the initial model of the stepwise 

regression. The p-value for an element to enter the selection is smaller than 0.05 and it 

will be removed from the selection if its p-value is larger than 0.10. The maximum steps 
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in the regression is set to infinity and the elements were not scaled before the fitting 

process. All the relevant information and results from the regression model were 

displayed on the command window of MATLAB. 

 

Table 4.12: Features selection result from stepwise regression 

 

Features Coefficients P-value Status 

Mean 68.4452 7.2032e-05 In 

Kurtosis 3.5226 4.8643e-07 In 

Total amplitude 0.0897 0.5664 Out 

Skewness 5.5010 0.4620 Out 

Root mean square 0.5706 0.0877 Out 

Standard deviation 0.2343 0.7501 Out 

Maximum level -0.1404 0.2873 Out 

 

 According to the table 4.12, two features were selected by the stepwise regression 

as their p-value were smaller than the selection requirement of 0.05. They were the mean 

and kurtosis. These two features have the most significant influence on the estimation of 

tool wear and prediction of the remaining useful too life. These four features were used 

as the input to train the prediction models. 

 

4.6 SUPPORT VECTOR REGRESSION (SVR) MODEL  

 

 The features selected were used to train a Support Vector Regression prediction 

model. The two features were the predictor and the tool wear were used as the response 

for the regression model. The regression model was trained using the MATLAB support 

vector machine regression function included in the statistics and machine learning toolbox 
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version R2015b. The table 4.13 shows the properties and parameters of the model trained 

for this project. 

 

Table 4.13: Support vector machine regression model 

 

Property Value 

Predictor names ‘mean’, ‘kurtosis’, 

Respond name ‘Tool wear’ 

Standardize data Yes 

Kernel Gaussian 

Kernel scale Auto 

Solver Sequential Minimal Optimization 

Box constraints 10.1557 

Epsilon 1.0156 

Mu -1.1826, 8.5267 

Sigma 0.0434, 1.1285 

 

 Referring to the table 4.13, the two predictor names were mean and kurtosis while 

the respond name was tool wear. The predictors’ data were centered and divided each 

column by the standard deviations to standardize it. There were several different kernels 

such as linear, polynomial, Gaussian, and radial basis function can be applied to the 

support vector regression model. However, according to the established work, it has 

shown that Gaussian kernel can give the best performance for the model [5].  

The Gaussian kernel measured with a support vector is an exponentially decaying 

function in the input feature space. It will has the maximum value at the support vector 

and decreasing steadily in every directions throughout the support vector. This let the 

kernel to have a hyper spherical contour. The kernel scale used in this project was set to 

auto where the MATLAB will select a suitable scale factor by a heuristic measure. This 
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heuristic method applies subsampling technique, so estimates acquired by this method 

can be different for different purpose of Support Vector Machine Regression model [30]. 

 Other than that, the table shows that the solver for the support vector machine 

regression model was the Sequential Minimal Optimization (SMO). This algorithm is 

able to train the Support Vector Machine faster. The training process needs to solve a very 

huge quadratic programming (QP) optimization problem. SMO will create a group of 

littlest probable QP problems by diving the big QP problem. Analytic method will be used 

to solve these tiny QP problem, which prevents the implementation of a time-consuming 

numerical QP optimization as an inner loop [31]. 

 Furthermore, the box constraint which is also called the C parameter used to train 

the model was 10.1557 and the epsilon, ε has the value of 1.0156. The Mu in table 4.5 is 

the mean value of the predictors data arranged in the sequence of mean then kurtosis.  

 The C parameter and the epsilon value determines the performance and 

complexity of the model. The epsilon value will influence the numbers of support vector 

included for the prediction process. If a larger value of epsilon was selected, the numbers 

of support vector included for prediction will be lesser thus makes the model less complex. 

On the other hand, the C parameter represent the compromise between the model 

complexity and the amount of difference permit during the optimization process. The 

using of a large C parameter will result in a less complex model. The selection of epsilon 

value and C parameter is still an active field of research [32]. 
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Figure 4.14: Comparison between actual wear and predicted wear of SVR 

 

 The result of actual wear and the predicted wear from the Support Vector Machine 

Regression model is shown in the figure 4.14. There was a total of 50 cuts performed 

using the end mill and the respective actual tool wear after each cut was recorded. The 

blue colour line graph was the progression of actual tool wear while the red colour line 

graph was the progression of the predicted tool wear. The actual wear showed a smoother 

curve while the predicted wear contained a zig-zag shape with some deviation from the 

actual wear and has more fluctuation at the beginning of the cutting process. This was due 

to some fitting error in the regression model. The values for the actual wear and predicted 

wear were later used for the prediction of remaining useful life. 

 

4.7 ARTIFICIAL NEURAL NETWORK MODEL  

 

 The Artificial Neural Network model was trained using the same data for the 

training of support vector machine regression model, which are the same 2 features and 
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the actual tool wear. Figure 4.15 shows the feedforward network architecture of the neural 

model. 

 

 

 

Figure 4.15: Neural network architecture 

 

 This architecture contained two layers which are the hidden layer and the output 

layer. There was 10 neurons in the hidden layer and 1 neuron in the output layer. Great 

result can be achieved by using single hidden layer, but more layers can be used if the 

result is not satisfying. The number of neurons determines the power of the neural 

network, so by increasing the number of neurons, the power of the network will be 

improved. However, increase the number of neurons will also causes more fitting to be 

done and potentially lead to overfitting [33].  
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Table 4.14: Neural network setting 

 

Parameters Description 

Data division Dividerand 

Training function Trainlm 

Hidden layer transfer function Tansig 

Output layer transfer function Purelin 

Maximum number of epochs to train 1000 

Maximum training time Infinity 

Performance MSE 

Performance goal 0 

Minimum performance gradient 1e-7 

Maximum validations failure 6 

 

 Table 4.14 shows the settings of the neural network during the training process. 

The data was divided randomly using the dividerand function before it was used as the 

input to train the network. The training function used was trainlm which was based on the 

Levenberg-Marquardt algorithm. Tan-sigmoid transfer function was used in the hidden 

layer and the purelin linear transfer function was used at the output layer for the fitting 

purpose. The model was set to train for a maximum of 1000 epochs and no restriction was 

given on the training time so it can be trained for an infinity time. 

 The performance criteria was based on the mean squared error (MSE) where it 

was set to zero as the best performance goal. Moreover, the performance gradient will 

become smaller during the training process as the model reaches the minimum 

performance and the training process will stop when the gradient is less than 1e-7. The 

maximum validation failure was the successive iterations where the performance in the 

validation failed to reduce. The maximum continuous failure was set to 6 and the training 

will stop if this limit was exceeded [34].  
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Table 4.15: Mean Square Error and regression of the model 

 

Subset Samples MSE Regression 

Training  34 2.76062 0.983495 

Validation 8 1.98153 0.971191 

Testing 8 3.14558 0.981849 

 

 Table 4.15 shows the result for Mean Square Error value and the regression fit of 

the three subsets. The subsets are the training set, validation set, and training set. It is a 

general practise to separate the data into these three subsets. In the training set, the data 

are used to calculate the gradient and revise the weights and biases continuously. In the 

validation subset, the error was being observed in the training phase. Normally, the error 

for both the training and validation will reduce at the beginning of the training process. 

The validation error will start to increase when the data has been over fitted in the network. 

During the minimum validation error, the weights and biases were recorded and saved 

[35]. 

 According to table 4.15, both training, validation, and training data have a small 

MSE value. This means that the network has a good performance and the performance 

will be best when the MSE is zero. Figure 4.16 below shows the line graph plotted using 

the MSE of both training, validation, and testing data. The graph shows that the validation 

error reached a minimum value at the 3 epochs with a value of 1.9815. The training 

process was continued for 6 more epochs before it was stopped. The graph for the testing 

and validation data have the similar shape and this shows that there were no big problems 

occurred during the training process. If the test curve had increased significantly before 

the validation curve increased, then it is possible that some overfitting might have 

occurred [36]. 
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Figure 4.16: Mean Square Error 

 

 

 

Figure 4.17: Regression plot 
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 Figure 4.17 shows the regression plot for the training, validation, testing, and 

overall data. The R value is same as the regression value in the table 4.15. The dashed 

line in each plot represents the perfect result – outputs = targets. The solid line represents 

the best fit linear regression line between outputs and targets. The R value is an indication 

of the relationship between the outputs and targets. If R = 1, this indicates that there is an 

exact linear relationship between outputs and targets. If R is close to zero, then there is 

no linear relationship between outputs and targets [36]. 

 

 

 

Figure 4.18: Comparison between actual wear and predicted wear of neural network 

 

 The result of actual wear and the predicted wear from the Support Vector Machine 

Regression model is shown in the figure 4.18. There was a total of 50 cuts performed 

using the end mill and the respective actual tool wear after each cut was recorded. The 

blue colour line graph was the progression of actual tool wear while the red colour line 

graph was the progression of the predicted tool wear.  
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The actual wear showed a smoother curve while the predicted wear contained 

some deviation from the actual wear and has more fluctuation at the beginning and the 

final of the cutting process. This was due to some prediction error in the neural network. 

The predicted wear using the Artificial Neural Network is less accurate than the Support 

Vector Regression model. This can be seen from the figure 4.15 and figure 4.19 where 

the predicted wear is more alike as the actual wear from the support vector regression 

model. The values for the actual wear and predicted wear were later used for the 

prediction of remaining useful life. 

 

4.8 REMAINING USEFUL LIFE (RUL) PREDICTION 

 

 The predicted tool wear was used to predict the remaining useful life. The 

remaining useful life can be calculated using the following formula: 

 

𝑅𝑈𝐿(𝑡) = 𝑡𝑓 − 𝑡 

 

 The 𝑡𝑓 is the final time where the end mill cannot be used anymore. In this project, 

we assumed the end mill will reach the threshold value or its end of service life at the end 

of 50 cuts. On the other hand, 𝑡 is the actual time where the remaining useful life was 

computed. A graphical illustration for the calculation of remaining useful life is shown at 

the figure 4.19 [3]. 

 

 

 

 

(4.1) 



107 

 

 

 

 

 

Figure 4.19: Illustration for remaining useful life calculation [3] 

 

Source: Predicting remaining useful life of high speed milling cutters based on 

                      Artificial Neural Network 

 

 

 

Figure 4.20: Comparison between actual RUL and Support Vector Regression RUL 
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Figure 4.21: Comparison between actual RUL and Artificial Neural Network RUL 

 

 Figure 4.20 and figure 4.21 show the graph of actual tool life versus the predicted 

wear acquired from the Support Vector Regression model and the neural network model. 

The predicted RUL from the Support Vector Regression model is better as it can give a 

result nearer to the actual RUL. This meant the Support Vector Regression model trained 

in this project has the better performance compared to the neural network model trained. 

 

4.9 PERFORMANCE ASSESSMENT 

 

 The performance assessment process is important to determine whether the train 

RUL prediction model is suitable for the real life application or not. The prognostic 

measures used to determine the performance for models were the accuracy, precision, and 

Mean Absolute Percentage Error (MAPE). 
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 Accuracy is the measure of worthiness for the prediction result. The result of the 

accuracy will be near to 1 if the prediction is accurate and vice versa. The formula for the 

accuracy is shown as following: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑ 𝑒

−
|𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙(𝑛)−𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑛)|

𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙(𝑛)

𝑁

𝑛=1

 

 

Where the 𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙(𝑛) is the real RUL of the cutter, 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑛) is the predicted 

RUL acquired from the prediction model at cutting process  𝑛, and the 𝑁  is the total 

number of prediction. 

 Precision is the measure of the distribution for the prediction error around the 

mean. The formula to calculate the precision is shown as following: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = √
∑ (𝜀(𝑛) − 𝜖)2𝑁

𝑛=1

𝑁
 

 

Where the 𝜀(𝑡) is the 𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙(𝑛) − 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑛) and 𝜖 is equal to 
1

𝑁
∑ 𝜀𝑁

𝑛=1  

 Mean Percentage Absolute Error (MAPE) calculate the average error in 

percentage. It is calculated using the following formula: 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

100. 𝜀(𝑛)

𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙(𝑛)

𝑁

𝑛=1

| 

 

  

 

(4.2) 

(4.3) 

(4.4) 
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Table 4.16: Performance assessment for models trained 

 

 Support Vector 

Regression 

Neural Network 

Accuracy 0.90 0.83 

Precision 1.90 3.73 

MAPE 12.59 28.68 

 

 Table 4.16 shows the performance of the trained SVR model and neural network 

model. They were compared against each other. The accuracy is better if the value is 

nearer to 1 while the precision and MAPE symbolise a better performance with a smaller 

value. According to the table, the Support Vector Regression model has a slightly better 

accuracy than the neural network model as it was 9% more accurate. The precision and 

the MAPE of the Support Vector Regression model are also better than the neural network 

model. The precision was 1.83 better and MAPE was 16.09 better. It possess a better 

overall performance than the neural network model. 

 The performance of the support vector regression model and the neural network 

model are affected by its data. Some data set will perform better with the neural network 

but some will perform better with the support Vector Regression model. This means the 

performance of the model will be affected by the suitability of datasets. However, the 

average performance for both the Support Vector Regression model and neural network 

model are the same [37]. 

 The neural network has two main disadvantages when compared with Support 

Vector Regression. The first one is that the neural network will normally converge at the 

local minima instead of the global minima. Sometimes, this will cause the model to have 

the problem that it cannot get the full picture of the situation. The other disadvantage that 
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causes the Support Vector Regression to perform better than the neural network in the 

real practise is that neural network is more susceptible to overfitting, where this is the 

biggest problem in neural network [38]. 

 According to the work done by Yang Shao and Ross S. Lunetta in “Comparison 

of support vector machine, neural network, and CART algorithms for the land-cover 

classification using limited training data points”, it has shown that the performance of the 

Support Vector Machine with limited training data is better than the Neural Network. It 

can achieve a higher accuracy. The performance gap between these two methods will be 

narrowed when the number of training data has been increased. This also shows the 

performance of the Support Vector Machine is less prone to the influence of the training 

data available [39]. 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 INTRODUCTION 

 

 This chapter will conclude the finding acquired from this project. The limitation 

of the project will be discussed and recommendations will be proposed for future work to 

improvement this project. 

 

5.2 CONCLUSION 

 

 In conclusion, the remaining useful life of the end mill cutter has been predicted 

in this project. Different prediction methods were also been implemented and compared 

using the MATLAB software.  

 The Support Vector Regression model has a slightly better accuracy than the 

neural network model as it was 9% more accurate. The precision and the MAPE of the 

Support Vector Regression model are also better than the neural network model. The 

precision was 1.83 better and MAPE was 16.09 better. It possess a better overall 

performance than the neural network model. 
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 According to the project, both of the prediction methods are suitable for the 

prediction of remaining useful life as both of them are having an accuracy of over 80%. 

However, Support Vector Machine Regression method is the best method for prediction 

of remaining useful life. 

 

5.3 RECOMMENDATIONS 

 

The scope of the project was limited to determine the remaining useful life on and 

end mill cutter. However, there are times in the industries where the tool cutter will still 

be continued to use even when it has exceeded the wear threshold limit. The tool will be 

used until the products produced are below the minimum requirement for quality 

assurance. 

Therefore, a surface roughness test can be included as the future work for this 

project. By doing this, the surface finish of the workpiece can be determined and whether 

a tool can be used exceeded its remaining useful life can be discovered. Sometimes the 

surface finish roughness of the workpiece after the end of RUL for the cutter will still be 

within the limits of quality and specifications limits. This can prevent the wastage of the 

tool cutter since industries are more concern about the most cost effective solution 

available.  
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APPENDICES 

 

A BUDGET PLAN 

 

No Equipment/Material Supplier 

Price per 

Unit 

(RM) 

Unit 
Sub Total 

(RM) 

1 Cast iron YG 60 1 60 

2 Stainless Steel 

Yuh Field 

OEM  114 1 114 

3 Vibration Sensor Sparkfun 13.2 2 26.4 

4 

Acoustic emission 

sensor Soundwell 1318 2 2636 

5 Current Sensor Sparkfun 44 1 44 

6 High Pass Filter Eagle 13.2 2 26.4 

7 Low Pass Filter Drake 27 1 27 

8 Amplifier Omega 368 1 368 

9 Data Acquisition Board MC 439 1 439 

10 Milling Electricity Cost TNB 50 1 50 

11 Two Flute End Mill Ouke 2.2 16 35.2 

    

Total 
(RM) 3826 
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Gantt Chart for Final Year Project 2 
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C CAD PROGRAM 

 

% 

O0000(SEOW FKP) 

(DATE=DD-MM-YY - 12-01-80 TIME=HH:MM - 23:37) 

(MCX FILE - C:\USERS\CNC\DESKTOP\SEOW FKP.MCX-5) 

(NC FILE - C:\USERS\CNC\DESKTOP\SEOW FKP.NC) 

(MATERIAL - ALUMINUM MM - 2024) 

( T23 |    12. FLAT ENDMILL | H23 ) 

N100 G21 

N102 G0 G17 G40 G49 G80 G90 

N104 T23 M6 

N106 G0 G90 G54 X51. Y38.5 A0. S4510 M3 

N108 G43 H23 Z15. 

N110 Z2. 

N112 G1 Z-.1 F300. 

N114 Y-38.5 F270. 

N116 G0 Z15. 

N118 X46. Y38.5 

N120 Z2. 

N122 G1 Z-.1 F300. 

N124 Y-38.5 F270. 

N126 G0 Z15. 

N128 X41. Y38.5 

N130 Z2. 

N132 G1 Z-.1 F300. 

N134 Y-38.5 F270. 

N136 G0 Z15. 

N138 X36. Y38.5 

N140 Z2. 

N142 G1 Z-.1 F300. 

N144 Y-38.5 F270. 

N146 G0 Z15. 

N148 X31. Y38.5 

N150 Z2. 

N152 G1 Z-.1 F300. 

N154 Y-38.5 F270. 
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N156 G0 Z15. 

N158 X26. Y38.5 

N160 Z2. 

N162 G1 Z-.1 F300. 

N164 Y-38.5 F270. 

N166 G0 Z15. 

N168 X21. Y38.5 

N170 Z2. 

N172 G1 Z-.1 F300. 

N174 Y-38.5 F270. 

N176 G0 Z15. 

N178 X-49. Y38.5 

N180 Z2. 

N182 G1 Z-.1 F300. 

N184 Y-38.5 F270. 

N186 G0 Z15. 

N188 X-44. Y38.5 

N190 Z2. 

N192 G1 Z-.1 F300. 

N194 Y-38.5 F270. 

N196 G0 Z15. 

N198 X-39. Y38.5 

N200 Z2. 

N202 G1 Z-.1 F300. 

N204 Y-38.5 F270. 

N206 G0 Z15. 

N208 X-34. Y38.5 

N210 Z2. 

N212 G1 Z-.1 F300. 

N214 Y-38.5 F270. 

N216 G0 Z15. 

N218 X-29. Y38.5 

N220 Z2. 

N222 G1 Z-.1 F300. 

N224 Y-38.5 F270. 

N226 G0 Z15. 

N228 X-24. Y38.5 

N230 Z2. 
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N232 G1 Z-.1 F300. 

N234 Y-38.5 F270. 

N236 G0 Z15. 

N238 X-19. Y38.5 

N240 Z2. 

N242 G1 Z-.1 F300. 

N244 Y-38.5 F270. 

N246 G0 Z15. 

N248 M5 

N250 G91 G28 Z0. 

N252 G28 Y0. A0. 

N254 M30 

% 


