UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND	COPYRIGHT
Author's Full Name :	
Identification Card No :	
Title :	
_	
Academic Session :	
I deqlare that this thesis is classified a	s:
	(Contains confidential information under the
CONFIDENTIAL	Official Secret Act 1972)
	(Contains restricted information as specified by
RESTRICTED	the organization where research was done)*
	I agree that my thesis to be published as online
OPEN ACCESS	open access (Full text)
I acknowledge that Universiti Malaysi	a Pahang reserve the right as follows:
1. The Thesis is the Property of U	University Malaysia Pahang. laysia Pahang has the right to make copies for the purpose
of research only.	
3. The Library has the right to m	ake copies of the thesis for academic exchange.
Certified by:	
(Author's Signature)	(Supervisor's Signature)
	(Supervisor 5 Signature)

MECHANICAL BEHAVIOUR OF POLYMER BASED BAMBOO COMPOSITE 1

IZZAT BIN NAZAR

Report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Engineering in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI MALAYSIA PAHANG

June 2016

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Manufacturing Engineering.

Signature	:
Name of Supervisor	: DR DEWAN MUHAMMAD NURUZZAMAN
Position	: ASSOC. PROF.
	FACULTY OF MANUFACTURING ENGINEERING
	UNIVERSITY MALAYSIA PAHANG
Date	:
Signature	:
Name of Co-supervisor	: DR RASMINA BINTI HALIS
Position	: HEAD OF DEPARTMENT
	FACULTY OF FORESTRY
	UNIVERSITY PUTRA MALAYSIA
Date	:

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duty acknowledge. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature:Name: IZZAT BIN NAZARID Number: FA12066Date:

TABLE OF CONTENTS

	Page
DECLARATION OF THESIS AND COPYRIGHT	i
TITLE PAGE	ii
SUPERVISOR'S DECLARATION	iii
STUDENTS'S DECLARATION	iv
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
LIST OF SYMBOLS	xxii
LIST OF ABBREVIATIONS	xxiii

CHAPTER 1 INTRODUCTION

1.1	Project Background	1
1.2	Problem Statement	4
1.3	Project Objective	5
1.4	Project Scope	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introd	uction	6
2.2	Bamb	00	7
2.3	Treatr	nent	9
2.4	Bamb	oo Fiber-Reinforced Polymer Composites	9
	2.4.1	Bamboo - Polypropylene Based Fibre Reinforced	10
		Composite	
2.5	Mecha	anical Properties of Composites	11
2.6	Water	Absorption	16
2.7	Extrac	ction Method of Bamboo	18
	2.7.1	Mechanical Extraction	18
		2.7.1.1 Steam Explosion Method	19
		2.7.1.2 Rolling Mill Method	19
		2.7.1.3 Grinding Method	19
		2.7.1.4 Crushing Method	20
		2.7.1.5 Retting Method	20
	2.7.2	Chemical Extraction	20
		2.7.2.1 Acid Retting or Alkali	21
		2.7.2.2 Degumming	21
		2.7.2.3 Chemical Retting	21
	2.7.3	Combined Mechanical and Chemical Extraction	22
2.8	Manu	facturing Processes	23
	2.8.1	Hand Lay-Up Technique	24
	2.8.2	Resin Injection Technique	24
	2.8.3	Hot Press Method	25
	2.8.4	Filament Winding	26

	2.8.5 Pultrusion	27
2.9	Summary	28

CHAPTER 3 METHODOLOGY

3.1	Introd	luction	30
3.2	Raw I	Materials	33
	3.2.1	Thermoplastic – Polypropylene (PP)	33
	3.2.2	Bamboo	33
3.3	Extra	ction Bamboo Fiber	34
3.4	Fabric	cate Method	34
3.5	Mach	ine	34
	3.5.1	Hammer Crusher Machine	34
	3.5.2	Internal Mixer Brabender Machine	35
	3.5.3	Hydraulic Compression Moulding Machine	36
3.6	Locat	ion of Experiment	37
3.7	Proce	ss and Procedure Involved	38
	3.7.1	Fabrication of Composite Hot Press Method	38
	3.7.2	Mechanical Testing of Composites	38
		3.7.2.1 Tensile Strength	38
	3.7.3	Microstructure of Bamboo Composite	40
		3.7.3.1 Video Microscope System	40
3.8	Exper	rimental Setup	41
	3.8.1	Experimental for Tensile Test	41
3.9	Exper	imental Method	43

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Introd	luction	59
4.2	Tensi	le Properties	61
4.3	Resul	t of Tensile Test to Average Mechanical Properties	63
	4.3.1	Tensile Test for 1mm/min	63
	4.3.2	Tensile Test for 6mm/min	71
4.4	Avera	age for 1mm/min and 6mm/min	79
	4.4.1	Average for Modulus of Elasticity	79
	4.4.2	Average for Tensile Stress at Maximum Load	80
	4.4.3	Average for Tensile Stress at Break	82
	4.4.4	Average for Tensile Stress at Yield	83
	4.4.5	Average for Elongation	84
4.5	Resul	t of Fracture	85
4.6	Resul	t of Surface Fracture	86
	4.6.1	Surface Fracture for 1mm/min Rate	86
		4.6.1.1 80% PP + 20% BF	86
		4.6.1.2 70% PP + 30% BF	87
		4.6.1.3 60% PP + 40% BF	88
	4.6.2	Surface Fracture for 6mm/min Rate	90
		4.6.2.1 80% PP + 20% BF	90
		4.6.2.2 70% PP + 30% BF	91
		4.6.2.3 60% PP + 40% BF	92
4.7	Discu	ssion	94

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Introduction	96
5.2	Conclusion	96
5.3	Recommendation for Future Research	98
REFE	RENCES	99
APPE	NDICES	101
А	Gantt Chart	101
В	Calculation for mixing	103
С	Graph and table of result (1mm/min)	104
D	Graph and table for result (6mm/min)	115
Е	Surface fracture results (1mm/min)	126
F	Surface fracture results (6mm/min)	128
G	ASTM D638 standard	130
Н	Specimens after testing and mounting	131

LIST OF TABLES

Table No.	. Title	Page
2.1	Comparison of few natural fibres	7
2.2	Bending and impact strength PLA and PLA/ Bamboo fiber composite.	12
2.3	Mechanical properties of BFcEC, BFEC and MAPP/ PP	12
2.4	Mechanical and physical properties of bamboo fibers based on the extraction procedures and their comparison with glass fibre.	22
3.1	Specification for the machine	39
3.2	Video measurement system, Econ series	41
3.3	Description for test result	42
4.1	Thermoplastic physical properties	61
4.2	Result of tensile stress vs tensile strain for 100% PP in 1mm/min rate	64
4.3	Result of tensile stress vs tensile strain for 100% PP in 1mm/min rate	65
4.4	Result of tensile stress vs tensile strain for 80% PP + 20% BF in 1mm/min rate	66
4.5	Result of tensile stress vs tensile strain for 80% PP + 20% BF in 1mm/min rate	67

Table No	o. Title	Page
4.6	Result of tensile stress vs tensile strain for 70% PP + 30% BF in 1mm/min rate	68
4.7	Result of tensile stress vs tensile strain for 70% PP + 30% BF in 1mm/min rate	69
4.8	Result of tensile stress vs tensile strain for 60% PP + 40% BF in 1mm/min rate	70
4.9	Result of tensile stress vs tensile strain for 60% PP + 40% BF in 1mm/min rate	71
4.10	Result of tensile stress vs tensile strain for 100% PP in 6mm/min rate	72
4.11	Result of tensile stress vs tensile strain for 100% PP in 6mm/min rate	73
4.12	Result of tensile stress vs tensile strain for 80% PP + 20% BF in 6mm/min rate	74
4.13	Result of tensile stress vs tensile strain for 80% PP + 20% BF in 6mm/min rate	75
4.14	Result of tensile stress vs tensile strain for 70% PP + 30% BF in 6mm/min rate	76
4.15	Result of tensile stress vs tensile strain for 70% PP + 30% BF in 6mm/min rate	77
4.16	Result of tensile stress vs tensile strain for 60% PP + 40% BF in 6mm/min rate	78

Table N	o. Title	Page
4.17	Result of tensile stress vs tensile strain for 60% PP + 40% BF in 6mm/min rate	79
4.18	Average of Modulus of Elasticity (1mm/min and 6mm/min)	80
4.19	Average of tensile stress at maximum load (1mm/min and 6mm/min)	81
4.20	Average of tensile stress at break (1mm/min and 6mm/min)	82
4.21	Average of tensile stress at yield (1mm/min and 6mm/min)	83
4.22	Average of elongation (1mm/min and 6mm/min)	85

LIST OF FIGURES

Figure N	o. Title	Page
1.1	Bamboo plantations in China	2
2.1	Bamboo	8
2.2	Bamboo fibres	8
2.3	Polypropylene	11
2.4	Tensile test method	15
2.5	Calculation for percentage of water uptake	16
2.6	Moisture content	18
2.7	Hand lay-up technique	24
2.8	Resin Transfer Moulding (RTM)	25
2.9	Injection moulding technique	26
2.10	Filament winding	26
2.11	Pultrusion process	27
3.1	ASTM D638	31
3.2	Methodology flow chart	32
3.3	Hammer crusher machine	35
3.4	Internal mixer brabender machine	36

Page

3.5	Hydraulic compression moulding machine	37
3.6	INSTRON-3369	39
3.7	Video Measurement System	40
3.8	Bamboo	43
3.9	Bamboo in smaller size	43
3.10	The hopper	44
3.11	Blade/cutting tool	44
3.12	The storage	45
3.13	Bamboo	45
3.14	Bamboo in smaller size	46
3.15	Hammer crusher machine	46
3.16	Screening	47
3.17	Mix the fiber and PP	47
3.18	Internal mixer brabender machine	48
3.19	Storage	48
3.20	Set temperature	49
3.21	Tensile mould plate	49
3.22	Clean the plate	50

Figure N	o. Title	Page
3.23	Arrange the material	51
3.24	Insert mould plate into machine	51
3.25	Hot press	52
3.26	Cold press	52
3.27	Tensile plate	53
3.28	ASTM D638	53
3.29	Accelerometer	57
3.30	Specimen fracture	57
3.31	Clamp	58
4.1	Tensile property testing	60
4.2	Closed-up view of fracture specimen	60
4.3	Stress-strain curve and tensile specimen	62
4.4	Tensile stress vs tensile strain graph for 100% PP	63
	in 1mm/min rate	
4.5	Tensile stress vs tensile strain graph for 100% PP	64
	in 1mm/min rate	
4.6	Tensile stress vs tensile strain graph for 80% PP +	65
	20% BF in 1mm/min rate	
4.7	Tensile stress vs tensile strain graph for 80% PP +	66

20% BF in 1mm/min rate

Figure N	No. Title	Page
4.8	Tensile stress vs tensile strain graph for 70% PP + 30% BF in 1mm/min rate	67
4.9	Tensile stress vs tensile strain graph for 70% PP + 30% BF in 1mm/min rate	68
4.10	Tensile stress vs tensile strain graph for 60% PP + 40% BF in 1mm/min rate	69
4.11	Tensile stress vs tensile strain graph for 60% PP + 40% BF in 1mm/min rate	70
4.12	Tensile stress vs tensile strain graph for 100% PP in 6mm/min rate	71
4.13	Tensile stress vs tensile strain graph for 100% PP in 6mm/min rate	72
4.14	Tensile stress vs tensile strain graph for 80% PP + 20% BF in 6mm/min rate	73
4.15	Tensile stress vs tensile strain graph for 80% PP + 20% BF in 6mm/min rate	74
4.16	Tensile stress vs tensile strain graph for 70% PP + 30% BF in 6mm/min rate	75
4.17	Tensile stress vs tensile strain graph for 70% PP + 30% BF in 6mm/min rate	76
4.18	Tensile stress vs tensile strain graph for 60% PP + 40% BF in 6mm/min rate	77

Figure N	No. Title	Page
4.19	Tensile stress vs tensile strain graph for 60% PP + 40% BF in 6mm/min rate	78
4.20	Bar chart for modulus of elasticity vs strain rate with 1mm/min and 6mm/min for the rate	80
4.21	Bar chart for tensile stress at maximum load vs strain rate with 1mm/min and 6mm/min for the rate	81
4.22	Bar chart for tensile stress at break vs strain rate with 1mm/min and 6mm/min for the rate	82
4.23	Bar chart for tensile stress at yield vs strain rate with 1mm/min and 6mm/min for the rate	84
4.24	Bar chart for elongation vs strain rate with 1mm/min and 6mm/min for the rate	85
4.25	Specimen of 80% PP + 20% BF before and after fracture for 1mm/min	86
4.26	Surface fracture of 80% PP + 20% BF composition for 1mm/min	87
4.27	Specimen of 70% PP + 30% BF before and after fracture for 1mm/min	87
4.28	Surface fracture of 70% PP + 30% BF composition for 1mm/min	88
4.29	Specimen of 60% PP + 40% BF before and after fracture for 1mm/min	89

Figure N	No. Title	Page
4.30	Surface fracture of 60% PP + 40% BF composition for 1mm/min	89
4.31	Specimen of 80% PP + 20% BF before and after fracture for 6mm/min	90
4.32	Surface fracture of 80% PP + 20% BF composition for 6mm/min	91
4.33	Specimen of 70% PP + 30% BF before and after fracture for 6mm/min	91
4.34	Surface fracture of 70% PP + 30% BF composition for 6mm/min	92
4.35	Specimen of 60% PP + 40% BF before and after fracture for 6mm/min	93
4.36	Surface fracture of 60% PP + 40% BF composition for 6mm/min	93

LIST OF SYMBOLS

W1	Initial weight of specimen g
W2	Specimen weight after N hours of water soaking, g
Wt	Weight of the specimen at the time, t
Wo	Weight of the initial specimen after drying

LIST OF ABBREVIATIONS

- BSPP Bamboo strips, polypropylene
- CAN Chemical Assisted Nature
- CMT Compression Moulding Technique
- RMT Roller Mill Technique
- PP Polypropylene
- ASTM American Society for Testing and Materials
- UTM Universal Testing Machine
- DTP Discretized turning point FE Finite element
- BF Bamboo Fiber
- APS Aminopropyltrimethoxy silane
- GPS Lycidoxypropyltrimethoxy silane
- MPS Methacryloxypropyltrimethoxy silane
- PEG Polyethylene glycol
- BFRP Bambo Fiber Reinforced Polypropylene
- PLA Polylatic acid
- BFEC Bamboo-fiber composite
- BFcEc Bamboo fiber cotton eco-composites
- FRP Fiber reinforced epoxy composites

- FGC Fiber length on the mechanical properties of green bamboo fiber reinforced composite
- NaOH Sodium Hydroxide
- MAPP Maleted polypropylene
- BGRP Bamboo-glass reinforced polypropylene
- RTM Resin Transfer Moulding
- PE Polyethylene
- PS Polystyrene
- IFSS Interfacial shear strength
- PLC Programmable Logic Controller

MECHANICAL BEHAVIOUR OF POLYMER BASED BAMBOO COMPOSITE 1

IZZAT BIN NAZAR

Report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Engineering in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI MALAYSIA PAHANG

June 2016

ABSTRACT

Polymer consist of the long chain molecules constructed of atoms (such as carbon and hydrogen) in the various arrangements with the different elements in the forming of basic building block of a polymer chain. Besides that, natural fiber reinforced polymer composite has a huge affinity to replace the composite made up of synthetic fiber. This is primarily because of the advantages like light weight, non-toxic, non-abrasive, easy availability, low cost and biodegradable properties. Bamboo fiber (BF) materials have attracted broad attention as reinforcement polymer composites due to their environmental sustainability, mechanical properties and recyclability and they can be compared with glass fiber. The main aim of this research was to study the feasibility of using a bamboo natural fiber as reinforcement in the development of partially biodegradable green and environmentally friendly composite. The reinforcement was bamboo fiber (BF) and the polymer matrix was polypropylene (PP). The composites were prepared by means of hot press with different weight percentages (20, 30 and 40). And then, the developed bamboo fiber (BF) reinforced polypropylene (PP) composites were then tested for their mechanical properties. On the basis of experimental results showed that the bamboo fibers (bundles) had a sufficient specific strength, which is equivalent to that of conventional glass fibers. The tensile strength and modulus of PP based composites using hot press, it is found that 20% of bamboo fiber mixed PP is giving optimum mechanical properties compare to 30% and 40%. But, there are also have some problem in process, which is need to consider in suitable extraction method, fiber length, resin application, moisture content and composite preparation techniques. From the experiments results, it can be concluded that using more bamboo fiber, the specimen become more brittle. Using "Video Measurement System", it shows that the poor interfacial bonding generates partial spaces between the fiber and matrix material, hence resulting in a weak structure.

ABSTRAK

Polimer terdiri daripada molekul rantai panjang dibina daripada atom (seperti karbon dan hidrogen) dalam pelbagai urusan dengan unsur-unsur yang berbeza dalam membentuk blok binaan asas rantaian polimer. Selain itu, serat semula jadi bertetulang polimer komposit mempunyai pertalian yang besar untuk menggantikan komposit yang terdiri daripada serat sintetik. Ini adalah terutamanya kerana kelebihan seperti ringan, bukan toksik, bukan kasar, mudah tersedia, kos rendah dan sifat-sifat mesra alam. Serat buluh (BF) bahan-bahan telah menarik perhatian luas sebagai tetulang komposit polimer kerana kebolehannya mengekalkan alam semulajadi, sifat mekaniknya dan boleh dikitar semula dan ia juga setanding dengan gentian kaca. Tujuan utama kajian ini adalah untuk mengkaji kemungkinan menggunakan gentian semulajadi buluh sebagai tetulang dalam pembangunan komposit separa hijau dan mesra alam "biodegradable". Tetulang adalah serat buluh (BF) dan matriks polimer adalah polypropylene (PP). Komposit telah disediakan melalui tekanan panas "hot press" dengan peratusan berat atau kuantiti yang berbeza (20, 30 dan 40). Kemudian, serat buluh (BF) bertetulang komposit polipropilena (PP) kemudiannya diuji untuk sifat-sifat mekanik mereka. Berdasarkan keputusan eksperimen menunjukkan bahawa serat buluh (BF) dalam bentuk "bundles" mempunyai kekuatan tertentu yang mencukupi, yang bersamaan dengan yang gentian kaca konvensional. Kekuatan tegangan dan modulus komposit berdasarkan PP menggunakan tekanan panas "hot press", didapati bahawa 20% daripada gentian buluh bercampur PP memberi sifat-sifat mekanik optimum berbanding dengan 30% dan 40%. Tetapi, terdapat juga beberapa masalah dalam proses, yang perlu mengambil kira dalam kaedah sesuai pengekstrakan, panjang gentian, penggunaan resin, kandungan kelembapan dan teknik penyediaan komposit. Daripada keputusan eksperimen, dapat disimpulkan bahawa menggunakan lebih banyak serat buluh, spesimen menjadi lebih rapuh. Menggunakan "Sistem Pengukuran Video", ia menunjukkan bahawa ikatan antara muka yang lemah menjana ruang separa antara gentian dan bahan matriks, oleh itu menghasilkan struktur yang lemah.

CHAPTER 1

INTRODUCTION

1.1 PROJECT BACKGROUND

Bambusa or we recognize as bamboo in the botanical features a range of about 7 to 10 sub families of group and there are 1575 kind variety of species ranging from the type of wood to bamboo herbs. Each particular species of bamboo have different types of properties and qualities. Bamboo is easily approachable globally, 64% of the bamboo plantation came from Southeast Asia, 33% is grown in South America, and the rest come from Africa and Oceania because it takes only several months to regrow. However, production that using a bamboo naturally was rich with traditional elements and suitable for variety. Bamboo also as a great potential to be used as a substitute for solid wood, especially in manufacturing, design, and construction applications (Suhaily et al., 2013).

Figure 1.1: Bamboo plantations in China

Source: Suhaily et al., (2013)

In the last few years, bamboo is increasingly recognized as it has gone to natural fibers. Bamboo fibers or know as a natural glass fibers have high strength with respect to its weight. However, it is often brittle compared with other natural fibers, because the lining will cover the fibres. There are several papers and journals have been published on the study of the bamboo fiber reinforced composites using polymers, which is thermoplastic and thermoset (Okubo et al., 2004).

The most common reinforcement bamboo fiber used today is a matrix of thermoplastic polypropylene because the bamboo strips have a high cohesive strength of bamboo fiber extracted. Bamboo strips, polypropylene (BSPP) composites have a better characteristics that including high bending, acoustic characteristics and high sound good moisture which makes them suitable raw material and ideal to replace glass fibres currently used for the substrate that renowned automotive (Suhaily et al., 2013).

Besides that, the potential and importance of the bamboo used in thermoset composites is expected to have the same trend as thermoplastic composites. Bamboo fiber reinforced epoxy composites are subject to wear and friction environment to achieve widespread acceptance for use in many applications. The bamboo strips available epoxy composite materials attractive for use in the marine sector around the world has resulted in a bamboo boat hulls using vacuum bagging and compression moulding processes (Suhaily et al., 2013).

Furthermore, there are several methods to extract the bamboo fibres, for example by mechanical extraction, chemical extraction or combined the mechanical and chemical extraction. First, the mechanical extraction method can take the form of different procedures such as steam or heating steam explosion, retting, crushing, grinding and roll mill. These methods have been used to produce fiber for the application of bamboo fiber reinforced composites in a variety of industries. Second, chemical extraction procedures using alkali or acid retting, chemical methods, chemical assisted nature (CAN), or degumming to reduce or to remove fibres lower lignin content. These treatments also have side effects on other components of the microstructure of bamboo including pectin and hemicellulose. Lastly, a combination of mechanical and chemical extraction method is the compression moulding technique (CMT) and roller mill technique (RMT) commonly removes the fibres after chemical and alkali treatment (Zakikhani et al., 2014).

The manufacturing process to fabricate bamboo fibres is the most commonly used was introduced, for example hand lay-up technique, resin injection technique, hot press method, filament winding and pultrusion. While many variations on these techniques exist, this view gives a good indication of the possibility of withdrawal.

REFERENCES

This thesis is prepared based on the following references;

- Banga, H., Singh, V. K., & Choudhary, S. K. (2015). Fabrication and Study of Mechanical Properties of Bamboo Fibre Reinforced Bio-Composites. *Innovative Systems Design and Engineering*, 6(1), 84-98.
- Biswas, S., et al., Physical, Mechanical and Thermal Properties of Jute and Bamboo Fiber Reinforced Unidirectional Epoxy Composites. Procedia Engineering, 2015. 105: p. 933-939.
- Chen, X. (1996). Bamboo fiber reinforced polypropylene composites: structure, morphology, and properties.
- Kumar, V., & Mohanty, S. HIGH PERFORMANCE MOLDABLE BAMBOO FIBER-EPOXY COMPOSITES.
- Karmarkar, A., Chauhan, S. S., Modak, J. M., & Chanda, M. (2007). Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group.*Composites Part A: Applied Science and Manufacturing*, 38(2), 227-233.
- Okubo, K., Fujii, T., & Yamamoto, Y. (2004). Development of bamboo-based polymer composites and their mechanical properties. *Composites Part A: Applied science and manufacturing*, 35(3), 377-383.
- Ochi, S. (2014). Mechanical properties of uni-directional long bamboo fiber/bamboo powder composite materials. *Materials Sciences and Applications*, 5(14), 1011.

- Olivato, J. B., Grossmann, M. V. E., Yamashita, F., Eiras, D., & Pessan, L. A. (2012). Citric acid and maleic anhydride as compatibilizers in starch/poly (butylene adipate-co-terephthalate) blends by one-step reactive extrusion.*Carbohydrate Polymers*, 87(4), 2614-2618.
- Phong, N. T., Fujii, T., Chuong, B., & Okubo, K. (2011). Study on how to effectively extract bamboo fibers from raw bamboo and wastewater treatment. *Journal of Materials Science Research*, 1(1), p144.
- Rassiah, K., & Ahmad, M. M. H. M. (2013). A review on mechanical properties of bamboo fiber reinforced polymer composite. *Aust J Basic Appl Sci*, 7(8), 247-253.
- Suhaily, S. S., Khalil, H. A., Nadirah, W. W., & Jawaid, M. (2013). Bamboo Based Biocomposites Material, Design and Applications. *Materials Science–Advanced Topics. InTech Europe, Rijeka, Croatia.*
- Sethia, A., & Baradiya, V. (2014). Experimental Investigation on Behavior of Bamboo Reinforced Concrete Member. *International Journal of Research in Engineering* and Technology, 3(02), 344-348.
- S.screenivasulu¹, Dr. A chennakeshava Reddy² (2014). Mechanical Properties Evalution of Bamboo Fiber Reinforced Composite Materials. Volume No.3 Issue No: Special 1, pp: 187-194.
- Zakikhani, P., Zahari, R., Sultan, M. T. H., & Majid, D. L. (2014). Extraction and preparation of bamboo fibre-reinforced composites. *Materials & Design*, 63, 820-828.