THE EFFECT OF THERMOFORMING TEMPERATURE AND MOULD VENT HOLE TO THE THERMOPLASTIC CONTAINER MADE OF 0.5 MM POLYPROPYLENE (PP) SHEET

AZREE BIN MOHAMAD AZIZI

BACHELOR OF ENGINEERING
UNIVERSITI MALAYSIA PAHANG
THE EFFECT OF THERMOFORMING TEMPERATURE AND MOULD VENT HOLE TO THE THERMOPLASTIC CONTAINER MADE OF 0.5 MM POLYPROPYLENE (PP) SHEET

AZREE BIN MOHAMAD AZIZI

Report submitted in partial fulfilment of the requirements
For the award of degree of
Bachelor of Engineering in Manufacturing Engineering

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

June 2016
AUTHOR'S FULL NAME: AZREE BIN MOHAMAD AZIZI
IDENTIFICATION CARD NO: 931129-08-6403
TITLE: THE EFFECT OF THERMOFORMING TEMPERATURE AND MOULD VENT HOLE TO THE THERMOPLASTIC CONTAINER MADE OF 0.5 MM POLYPROPYLENE (PP) SHEET
ACADEMIC SESSION: 2015/2016

I DECLARE THAT THIS THESIS IS CLASSIFIED AS:

☐ CONFIDENTIAL
(Contains confidential information under the Official Secret Act 1972)

☐ RESTRICTED
(Contains restricted information as specified by the organization where research was done)*

☐ OPEN ACCESS
I agree that my thesis to be published as online open access (Full text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of University Malaysia Pahang.
2. The Library of University Malaysia Pahang has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

CERTIFIED BY:

__________________________________ ______________________________________
(Author's Signature) (Supervisor's Signature)
AZREE BIN MOHAMAD AZIZI DR. NOOR MAZNI BINTI ISMAIL

DATE: ___________________________ DATE: ___________________________
EXAMINER’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering in Manufacturing Engineering.

Signature :
Name of supervisor :
Position : Lecturer
Date :
SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering in Manufacturing Engineering.

Signature :
Name of supervisor : DR NOOR MAZNI BINTI ISMAIL
Position : Lecturer
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotation and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : AZREE BIN MOHAMAD AZIZI
ID Number : FA12034
Date :
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>SUPERVISOR’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
1.2 Problem statement 1
1.3 Project objective 2
1.4 Scope of the project 2

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 3
2.2 Thermoplastic 3
 2.2.1 Polypropylene (PP) 4
 2.2.2 History of polypropylene 4
 2.2.3 Properties of polypropylene 4
 2.2.4 Advantage of polypropylene 5
2.3 Thermoforming Process 6
 2.3.1 Type of thermoforming process 6
 2.3.2 Thermoforming process using polypropylene sheet 9
2.4 Mould for thermoforming
 2.4.1 Tool material
 2.4.2 Vacuum holes
 2.4.3 Depth of draw
 2.4.4 Mould shrinkage

2.5 Current Research plastic thermoforming
 2.5.1 The effect of material characteristics and mould parameters on the
 thermoforming of chick polypropylene sheet.
 2.5.2 Viscoelastic material models of Polypropylene from thermoforming
 applications.
 2.5.3 Study on the thermoforming of PC films used in mould
 decorations.
 2.5.4 Simulation of the plug-assisted thermoforming of polypropylene
 using a strain thermally coupled constitutive model.
 2.5.5 A numerical and experimental approach to optimize sheet stamping
 technologies: polymers thermoforming.

CHAPTER 3 METHODOLOGY

3.1 Introduction
3.2 Preparation of raw material
3.3 Design of mould and plastic container
3.4 Preparation to machine the mould
 3.4.1 Raw material aluminium block.
 3.4.2 Machining the mould using milling machine.
 3.4.3 Drilling the vent holes.
3.5 Thermoforming process
 3.5.1 Parameter control.
3.6 Vickers Hardness Test
CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 37
4.2 Result of experiment 38
 4.2.1 Design container and mould. 38
 4.2.2 The machining mould. 39
 4.2.3 Result for preliminary study. 40
 4.2.4 Result of temperature and vent holes parameter. 42
 4.2.5 Result for vickers hardness testing. 47
4.3 Discussion 49
 4.3.1 The design of mould. 49
 4.3.2 Heating element and mould effect. 49
 4.3.3 Number of vent holes effect. 51

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Introduction 52
5.2 Conclusions 52
5.3 Recommendations for the future research 53

REFERENCES 54

APPENDICES 54

A Aluminium block 56
B Polypropylene sheet 57
C Horizontal band saw 58
D Facing process using CNC milling machine 59
E Vent holes at mould 60
F Thermoforming machine 61
G Vickers hardness machine 62
H Gant chart FYP 1 and 2 63
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The difference material forming temperature datasheet</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Diameter vacuum hole for sheet gauge</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Depth of Draw</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Shrinkage range for thermoformed parts</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Datasheet polypropylene properties</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>View 2D and 3D of plastic container</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>View 2D and 3D of mould container</td>
<td>20</td>
</tr>
<tr>
<td>3.4</td>
<td>List of tool used to machine mould</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>Specification machine thermoforming</td>
<td>31</td>
</tr>
<tr>
<td>3.6</td>
<td>Procedure of thermoforming process</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Result for 1 vent hole</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Result for 4 vent holes</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Hardness Test for 1 vent hole mould container</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Hardness Test for 4 vent hole mould container</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Explanation for the Table 4.3 and 4.4</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Vacuum forming process</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Pressure forming process</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Plug assisted forming process</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Aluminium block</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Polypropylene sheet</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Horizontal band saw to cut the aluminium block</td>
<td>21</td>
</tr>
<tr>
<td>3.4</td>
<td>The facing process using milling machine</td>
<td>22</td>
</tr>
<tr>
<td>3.5</td>
<td>Roughing setting in Catia Software</td>
<td>23</td>
</tr>
<tr>
<td>3.6</td>
<td>Transferring file from computer to milling machine</td>
<td>23</td>
</tr>
<tr>
<td>3.7</td>
<td>The code already transfer into machine and run</td>
<td>24</td>
</tr>
<tr>
<td>3.8</td>
<td>The roughing surface on aluminum block</td>
<td>24</td>
</tr>
<tr>
<td>3.9</td>
<td>The vent holes for container mould</td>
<td>26</td>
</tr>
<tr>
<td>3.10</td>
<td>Important stage for this project</td>
<td>28</td>
</tr>
<tr>
<td>3.11</td>
<td>Flowchart that illustrate on prototype methodology</td>
<td>29</td>
</tr>
<tr>
<td>3.12</td>
<td>The idea for thermoforming process</td>
<td>30</td>
</tr>
</tbody>
</table>
3.13 Thermoforming machine

3.14 The torn occur at 165°C

3.15 The angle between vent holes

3.16 Vickers Hardness Machine

4.1 The full dimension of mould container

4.2 The container mould top and bottom

4.3 The polishing step using sand paper

4.4 The result for 160°C

4.5 The result for 165°C

4.6 Heating element

4.7 Stretch from grid temperature 150°C 4 vent holes

4.8 Torn already occur because of heating element

4.9 The plastic container with 4 holes
LIST OF ABBREVIATIONS

Al Aluminium
ASTM American Society for Testing and Materials
Avg Average
CAD Computer-aided drafting
Catia Computer Aided Three dimensional Interactive Application
CNC Computer Numerical Control
CAE Computer-aided engineering
G-code G programming language
Temp Temperature
PP Polypropylene