UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT			
Author's Full Name:Identification Card No:Title:Academic Session:	MOHD SHAHRIR ASHRAF BIN ABDUL WAHAB 930831-11-5345 STUDY OF SURFACE ROUGHNESS EFFECTS FO LIQUID CONTACT ANGLE ON SOLID SURFACE 2015/2016		
I declare that this thesis is classifi	ed as:		
CONFIDENTIA	(Contains confidential information under the Official Secret Act 1972)		
RESTRICTEI	Contains restricted information as specified by the organization where research was done)*		
OPEN ACCES	S I agree that my thesis to be published as online open access (Full text)		
 I acknowledge that Universiti Malaysia Pahang reserve the right as follows: The Thesis is the Property of University Malaysia Pahang. The Library of University Malaysia Pahang has the right to make copies for the purpose of research only. The Library has the right to make copies of the thesis for academic exchange. Certified by: 			
(Author's Signature)	(Supervisor's Signature)		
MOHD SHAHRIR ASHRAF BIN ABDUL WAHAB	DR NURRINA BINTI ROSLI		
Date:	Date:		

STUDY OF SURFACE ROUGHNESS EFFECTS TO LIQUID CONTACT ANGLE ON SOLID SURFACE

MOHD SHAHRIR ASHRAF BIN ABDUL WAHAB

Report submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Engineering in Manufacturing Engineering

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

June 2016

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering in Manufacturing.

Signature	:
Name of supervisor	: DR. NURRINA BINTI ROSLI
Position	: SENIOR LECTURE
Date	: 7 JUNE 2016

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotation and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:
Name	: MOHD SHAHRIR ASHRAF BIN ABDUL WAHAB
ID Number	: FA12024
Date	: 7 JUNE 2016

TABLE OF CONTENTS

Page

SUPERVISOR'S DECLARATION	i
STUDENT'S DECLARATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix

CHAPTER 1 INTRODUCTION

1.1	Introduction	\	1
1.2	Problem Statement		4
1.3	Objectives of the Research		4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	5
2.2	Contact angle and wetting	6
2.3	Surface roughness	10

2.4	Type of	f method measurement	11
	2.4.1	Direct measurement by telescope-goniometer	11
	2.4.2	Tilted plate method	11
	2.4.3	Wilhelmy balance method	12
	2.4.4	Capillary tube	12
	2.4.5	Capillary penetration method for powders and granules	13
	2.4.6	Sessile drop method	13
2.5	Drop sl	nape analysis	14

CHAPTER 3 METHODOLOGY

3.1	Introdu	ction	20
3.2	Materia	l, apparatus and software	21
	3.2.1	Test plate	21
	3.2.2	Water	21
	3.2.3	Syringe and needle	21
	3.2.4	Camera	22
	3.2.5	Photoshop	22
3.3	Experin	nental condition	23
3.4	Method	lology	24
	3.4.1	Prepared the material	24

3.4.2	Experimental setup	24
3.4.3	Software used	26

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction	35
4.2	Result	35
4.3	Discussion	38

CHAPTER 5 CONCLUSION

REFERENCES		54
5.3	Recommendation	52
		01
5.2	Conclusion	51
5.1	Introduction	51

LIST OF TABLES

Table No	. Title	Page
3.1	Specifications and properties of Lumia 1020	30
3.2	Experimental condition to conduct the experiment	31
4.1	Contact angle reading for 0.635µm	40
4.2	Contact angle reading for 3.353µm	41
4.3	Contact angle reading for 2.325µm	42
4.4	Contact angle reading for 0.321µm	43
4.5	Diameter reading for 3.353µm	44
4.6	Diameter reading for 2.325µm	45
4.7	Diameter reading for 0.635µm	46
4.8	Diameter reading for 0.321µm	47
4.9	Data measurement of average contact angle	48
4.1	Data measurement of liquid shape during dropping from 80mm height	49

LIST OF FIGURES

Figure 1	No. Title	Page
1.1	Illustration of advancing and receding angle from a droplet	3
1.2	Young's contact angle.	3
1.3	Description of contact angle on different roughness	3
2.1	Illustration of contact angle on solid surface	15
2.2	Droplet on hydrophilic and hydrophobic surface	15
2.3	Illustration on surface tension	16
2.4	Illustration of Young's, Wenzel's and Cassie-Baxter's model	16
2.5	Principal of measuring average roughness (Ra)	17
2.6	Ramé-hart contact angle telescope-goniometer	17
2.7	Illustration of tilted plate method	18
2.8	Process cycle for Wilhelmy balance method	18
2.9	Illustration of capillary tube method	19
2.10	Illustration of $\theta/2$ method	19
3.1	Schematic view of experimental setup	28

3.2	Raw material used: mild steel	28
3.3	Syringe and needle	29
3.4	Camera Nokia Lumia 1020	29
3.5	Adobe Photoshop software used to process image	29
3.6(a)	Bend saw machine	32
3.6(b)	Grinding/Polishing machine	32
3.6(c)	Surface roughness tester	32
3.7(a)	Liquid contact angle measurement	33
3.7(b)	Liquid shape measurement	33
3.8	Right triangle definition	34
3.9	Illustration of $\theta/2$ method	34
3.10	Illustration of spreading liquid	34
4.1	Liquid contact angle for different roughness	50
4.2	Diameter of spreading liquid for different roughness for drop experiment	50

STUDY OF SURFACE ROUGHNESS EFFECTS TO LIQUID CONTACT ANGLE ON SOLID SURFACE

MOHD SHAHRIR ASHRAF BIN ABDUL WAHAB

Report submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Engineering in Manufacturing Engineering

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

June 2016

ABSTRACT

This thesis deals with measurement of liquid contact angle with different surface roughness. The objective of this thesis is to measure the contact angle on different material of solid surfaces and to measure the effect of surface roughness to the shape of liquid drop from above view. Sessile drop method is used in this paper to determine the contact angle and drop shape of a liquid. The result is trustful and easy to apply. With this method, the intersection of three interface line and contact angle that state in Young's equation can be achieved. This method also has been shown to improve the contact angle measurement. The material used is mild steel with four different roughness, 0.321µm, 0.635µm, 2.325µm and 3.353µm. The surface roughness is very important to determine the contact angle. The increase the roughness of the surface, the larger the contact angle meanwhile the wetting properties become lower. As a result, liquid contact angle increased with increasing plate surface roughness and liquid dropped on higher roughness presents smaller diameter with more edge curve.

ABSTRAK

Tesis ini berkaitan dengan pengukuran sudut permukaan cecair dengan kekasaran permukaan yang berbeza. Objektif projek ini adalah untuk mengukur sudut permukaan pada bahan yang berbeza dan untuk mengukur bentuk titisan cecair dari pandangan atas. Kaedah sessile drop digunakan dalam kertas kerja ini untuk menentukan sudut kenalan dan titisan bentuk cecair. Kaedah ini sangat mudah dan bacaan data yang diperolehi sangat tepat. Dengan kaedah ini juga, persilangan garis tiga antara muka dan sudut permukaan cecair dalam persamaan Young dapat dicapai. Kaedah ini juga telah ditunjukkan dapat meningkatkan ukuran sudut permukaan. Bahan yang digunakan adalah empat keluli lembut yang berbeza kekasarannya, 0.321µm, 0.635µm, 2.325µm dan 3.353µm. Kekasaran permukaan sangat penting untuk menentukan sudut permukaan cecair. Semakin besar peningkatan kekasaran permukaan, semakin besar sudut permukaan cecair meningkat dengan peningkatan kekasaran permukaan dan titikan cecair pada kekasaran tinggi menyebabkan diameter lebih kecil dengan banyak lengkungngan.

CHAPTER 1

PROJECT BACKGROUND

1.1 INTRODUCTION

In our daily life, there are various phenomena of liquid droplet such as rain droplet, fingering pattern and splashing on solid surface. In industrial field, it application can be found in printing, adhesion, paints, textile processing, static dissipation, water and stain repellency, laundering and fuel injecting [3,4].

In recent years, the studies of wettability have become very important and interesting to study due to its application in producing hydrophilic surface and hydrophobic surface materials. The study of wettability is including the measurement of contact angle as the primary data. Contact angle can be defined as the angle with of a small drop of liquid that cause it to meet the surface. According to the theory, the small contact angle that mean bigger than 90° is correspond to low wettability and the surface is unfavorable, while large contact angle smaller than 90° is correspond to high wettability and the surface is favorable [4].

The contact angle of liquid droplet has some information about surface properties, wettability and surface energy. Usually, contact angles consist of two types of angle which are advancing and receding contact angle but contact angle hysteresis will appear between two main of the contact angle that state before. Figure 1.1 shows that the advancing and receding contact angle [2]. Figure 1.2 shows three balance phases of contact angle; solid, liquid and vapor that founded by Thomas Young without surface roughness consideration.

The surface roughness can be the major effect of the contact angle measurement. There is also new method and equation proposed by Wanzel to make a correction factor on rough surface which is known as Wanzel equation. He states that the surface roughness may increase the interfacial area between the interfaces but he assumes that there is no air trapping [1]. Then, another model is built, as known as Cassie and Baxter model to measure contact angle on rough surface. However, this time a measurement on the air trapping based on the droplet is considered and also following the Young's equation. Figure 1.3 shows the contact angle on different roughness as stated by Cassie and Baxter.

Figure 1.1: Illustration of advancing and receding angle from a droplet.

Source: [2]

Figure 1.2: Young's contact angle.

Figure 1.3: Description of contact angle on different roughness on (a) ideal surface (b) roughness surface.

REFERENCES

- 1. Zhang, Yilei, "The effect of surface roughness parameters on contact and wettability of solid surfaces" (2007). Retrospective Theses and Dissertations. Paper 15934.
- X.B. Zhou and J. Th. M. De Hosson (1995) "Influence of surface roughness on the wetting angle".
- Schuster, J. M., Schvezov, C. E., & Rosenberger, M. R. (2015). Influence of Experimental Variables on the Measure of Contact Angle in Metals Using the Sessile Drop Method. Procedia Materials Science, 8, 742-751.
- Erbil, H. Y. (2014). The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surface Science Reports, 69(4), 325-365.
- 5. Yuehua Yuan and T. Randall Lee, (2013), "Contact Angle and Wetting Properties".
- Das, A. K., & Das, P. K. (2010). Equilibrium shape and contact angle of sessile drops of different volumes — Computation by SPH and its further improvement by DI. Chemical Engineering Science, 65(13), 4027-4037. doi:10.1016/j.ces.2010.03.043.

- Kubiak, K. J., Wilson, M. C. T., Mathia, T. G., & Carval, P. (2011). Wettability versus roughness of engineering surfaces. Wear, 271(3-4), 523-528. doi:10.1016/j.wear.2010.03.029.
- A. S. H. Moita and A. L. N. Moreira (2003). Influence of Surface Properties on the Dynamic Behavior of Impacting Droplets. Instituto Superior Técnico, Dep. Mech. Eng., Lisbon, PORTUGAL.
- Jaroslaw Drelich, Emil Chibowski, Dennis Desheng Meng, & Konrad Terpilowski (2011). Hydrophilic and Superhydrophilic Surfaces and Materials. Soft matter, 7(21), 9804-9828.
- 10. S. Banerjee (2008). Simple derivation of Young, Wenzel and Cassie-Baxter equations and its interpretations — Surface Physics Division, Saha Insitute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India, arXiv:0808.1460v1.
- 11. Grundke, K., Pöschel, K., Synytska, A., Frenzel, R., Drechsler, A., Nitschke, M., Welzel, P. B. (2015). Experimental studies of contact angle hysteresis phenomena on polymer surfaces Toward the understanding and control of wettability for different applications. Advances in Colloid and Interface Science, 222, 350-376. doi:10.1016/j.cis.2014.10.012.
- Chen, H. Tang, T., & Amirfazli, A. (2015). Effect of contact angle hysteresis on breakage of a liquid bridge. The European Physical Journal Special Topics, 224(2), 277-288. doi:10.1140/epjst/e2015-02359-1.

 Li C., Tang X., Ayello F., Cai J., Nešić S., "Experimental Study on Water Wetting and CO2 Corrosion in Oil-Water Two-Phase Flow", NACE CORROSION/06, Paper No. 06595, San Diego, CA, 2006.