DESIGN AND DEVELOPMENT OF MOTION AND THERMAL CONTROLLER FOR THERMAL FATIGUE MACHINE

MOHAMAD RIDHWAN SHAHRIL BIN BAHARUDIN

Thesis submitted in partial fulfillment of the requirements
For the award of the degree of
B. Eng (Hons) Mechatronic Engineering

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

June 2016
UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : MOHAMAD RIDHWAN SHAHRIL BIN BAHARUDIN

Identification Card No : 930803-03-5153

Title : DESIGN AND DEVELOPMENT OF MOTION AND THERMAL CONTROLLER FOR THERMAL FATIGUE MACHINE

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)

☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*

☐ OPEN ACCESS I agree that my thesis to be published as online open access (Full text)

I acknowledge that University Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of University Malaysia Pahang.
2. The Library of University Malaysia Pahang has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Manufacturing Engineering.

Signature :
Name of supervisor : Dr. IZWAN BIN ISMAIL
Position : Lecturer
Date : 21/6/2016
STUDENT’S DECLARATION

I hereby declare that the work in this project is my own except for quotation and summaries that have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature:

Name: MOHAMMAD RIDHWAN SHAHRIL BIN BAHARUDIN

ID Number: FB12012

Date: 21/6/2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Project Background 1
1.2 Problem Statement 2
1.3 Objectives of the Research 3
1.4 Project Scope 3
CHAPTER 2 LITERATURE REVIEW

2.1 Thermal Fatigue Testing Method 4

2.2 Programmable Logic Controller (PLC) 5
 2.2.1 Ladder Diagram 8
 2.2.2 PID Controller 9

2.3 Pneumatics System 9
 2.3.1 Advantages and Disadvantages of Pneumatics System 10
 2.3.2 Pneumatic Cylinder 11

2.4 Electrical Component 12
 2.4.1 Temperature Controller 12
 2.4.2 Solid State Relay (SSR) 13
 2.4.3 Heating Element 15

CHAPTER 3 METHODOLOGY

3.1 Introduction 17

3.2 System Requirement Analysis Method 19

3.3 Design Thermal Controller and Pneumatic System 19
 3.3.1 Pneumatic System Design 19
 3.3.1.1 Linking Pneumatic System to The PLC 22
 3.3.1.2 CX-Programmer 23
 3.3.2 Thermal Controller Design 23
 3.3.2.1 Lamp Pushbutton with Indicator 23
 3.3.2.2 Ready Lamp 24
CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Hardware

 4.2.1 Pneumatic System
 4.2.2 Furnace Design
 4.2.3 Heating Element
 4.2.4 Furnace control Design
 4.2.4.1 Temperature control
 4.2.4.2 Furnace Circuit
 4.2.4.5 Omron PLC

4.3 Software

 4.3.1 CX-Programmer

4.4 Determination of Furnace Power

4.5 Pneumatic Cylinder Calculate Value

 4.5.1 Actuator Cylinder
 4.5.2 Rotary Cylinder
4.6 Performance Evaluation for Thermal Fatigue Testing Machine 47
 4.6.1 Testing Machine with Real Experiment 47
 4.6.2 Pneumatic System Testing 49

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion 48
5.2 Recommendation 49

REFERENCES 50

APPENDICES 51
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Advantages and Disadvantages of Pneumatic System</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Temperature controller specification</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison between KANTHAL and NIKROTHAL</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Systems Parameters for Thermal Fatigue Testing Machine</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Kanthal AF Specification</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>List of input</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>List of output</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Actuator cylinder specification</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Rotary actuator specification</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of Furnace and coil temperature Controller Reading</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison between two ladder diagram</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic diagram of experimental test set-up</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>A programmable logic controller</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>The overall model for a PLC controlled in manufacturing system</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>The Block Diagram of Typical Component of a PLC</td>
<td>7</td>
</tr>
<tr>
<td>2.5</td>
<td>Ladder Logic Diagram</td>
<td>8</td>
</tr>
<tr>
<td>2.6</td>
<td>Pneumatic System</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Temperature Controller</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>Temperature Controller Connection</td>
<td>13</td>
</tr>
<tr>
<td>2.9</td>
<td>Relay Operation Circuit</td>
<td>14</td>
</tr>
<tr>
<td>2.10</td>
<td>Photo-Coupled SSR</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Methodology Flow Chart</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Cascade Method</td>
<td>20</td>
</tr>
<tr>
<td>3.3</td>
<td>Pneumatic Circuit</td>
<td>20</td>
</tr>
<tr>
<td>3.4</td>
<td>Electrical Block Diagram for System</td>
<td>21</td>
</tr>
<tr>
<td>3.5</td>
<td>5/3 way valve in normally closed</td>
<td>22</td>
</tr>
</tbody>
</table>
3.6 Solenoid valve Connection to PLC 25
3.8 On/off Controller commonly used in Furnace 25
3.9 Proportional Controller Commonly used in Furnace 26
4.1 Pneumatic Circuit 29
4.2 Solenoid Valve 29
4.3 Furnace Design 30
4.4 Furnace Controller Box 32
4.5 Furnace Circuit 33
4.6 PLC Ladder Diagram 35
4.7 Cylinder Actuator Schematic 40
4.8 Rotary Cylinder 42
4.9 Furnace and Coil Characteristic of Heating 45
4.10 Machine Performance Result 47
LIST OF SYMBOLS

π Pie

ρ Density

v Volume

p Pressure

f Frequency

w Angular Velocity

V Velocity
LIST OF ABBREVIATIONS

PLC Programmable Logic Controller

SV Setting Point

Al Aluminum

PID Proportional Integral Derivative

SSR Solid State Relay

TRIAC Bidirectional Triode Thyristor

I/O Input/Output

NO Normally Open

NC Normally Closed

TM Fr

IC Internal combustion

LG Linear generator