STUDY ON MECHANICAL PROPERTIES AND MICROSTRUCTURE OF AL-SiC COMPOSITE FABRICATED WITH DIFFERENT VOLUME FRACTION OF REINFORCEMENT

MUHAMMAD MUZZAMMIL BIN MOHD ZUKI

Thesis submitted in partial fulfillment of the requirements
For the award of the degree of
B. Eng (Hons) Manufacturing Engineering

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

June 2016
UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : MUHAMMAD MUZZAMMIL BIN MOHD ZUKI
Identification Card No : 931228-04-5375
Title : STUDY ON MECHANICAL PROPERTIES AND MICROSTRUCTURE OF AL-SiC COMPOSITE FABRICATED WITH DIFFERENT VOLUME FRACTION OF REINFORCEMENT

Academic Session : SEMESTER 2 2015/2016

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)

☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*

☐ OPEN ACCESS

I agree that my thesis to be published as online open access (Full text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of University Malaysia Pahang.
2. The Library of University Malaysia Pahang has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

_____________________________ _____________________________
(Author’s Signature) (Supervisor’s Signature)
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Manufacturing Engineering.

Signature:

Name of supervisor: Dr. AKM ASIF IQBAL

Position: Lecturer

Date:

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotation and summaries that have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :

Name : MUHAMMAD MUZZAMMIL BIN MOHD ZUKI

ID Number : FA12025

Date :
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of project 1
1.2 Problem Statement 2
1.3 Objectives 2
1.4 Significant of Research 3
1.5 Research Scopes 3
1.6 Research Organization 4
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 5
2.2 MMCs 5
2.3 Al-SiC 8
2.4 Volume Fraction 9
2.5 Particle Size 11
2.6 Methods 13
2.7 Powder Metallurgy 15
2.8 Summary 18

CHAPTER 3 METHODOLOGY

3.1 Introduction 19
3.2 Flowchart 19
3.3 Powder Metallurgy Process 21
 3.3.1 Raw material 21
 3.3.2 Mixing powder 24
 3.3.3 Compaction 25
 3.3.4 Sintering 26
3.4 Mounting 28
3.5 Grinding 29
3.6 Polishing 30
3.7 Microstructural analysis 31
CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 32
4.2 Sintering result 32
4.3 Density 34
4.4 Microstructure 36
4.5 Hardness result 37
4.6 Discussion 39

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Introduction 41
5.2 Conclusions 41
5.3 Recommendations for future study 42

REFERENCES 44
APPENDICES 46
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Differentiation of MMCs methods</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>MMCs fabricated procedures</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Percentage of composition</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>Before and after sintering</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Density before and after sintering</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Hardness test result</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Microstructure of long fibres, brief fibres and particulate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reinforcement</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Rig used to produce cast MMC</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanical properties of composites</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>Optical microstructure of composites with diverse volume fractions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of SiC particulate</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Microstructure with different particle size</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>SEM fractographs of composite with various volume fractions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of SiC particles</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Discontinues fibre, whiskers and particulate reinforced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>composite process routes</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Al-SiC composite sintered at exceptional temperature</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Density of SiC/Cu-Al composite vs sintering temperature</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Flowchart of the process</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart for specimen fabricating</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Al powder

3.3 SiC particle

3.4 Pestle mortar

3.5 Cylindrical steel die

3.6 Hydraulic press machine

3.7 Graph sintering for 580°C

3.8 Furnace

3.9 Sawing

3.10 Mounting sample

3.11 Sandpaper

3.12 Grinding process

3.13 Polishing process

4.0 Specimen for green compaction Al 90% + SiC 10%

4.1 Specimen for green compaction Al 80% + SiC 20%

4.2 Graph density before and after sintering

4.3 Microstructure Al 90% + SiC 10%
4.4 Microstructure Al 80% + SiC 20%

4.5 Hardness of MMCs
LIST OF SYMBOLS

\(\pi \) \quad \text{Pie}

\(\rho \) \quad \text{Density}

\(v \) \quad \text{Volume}
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMCs</td>
<td>Metal Matrix Composites</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>SiC</td>
<td>Silicon Carbide</td>
</tr>
<tr>
<td>PM</td>
<td>Powder Metallurgy</td>
</tr>
</tbody>
</table>