MODELLING AND SIMULATION OF SIDE MILLING PROCESS USING FINITE ELEMENT ANALYSIS

WONG CHOON FUAN

BACHELOR OF ENGINEERING
UNIVERSITY MALAYSIA PAHANG
MODELLING AND SIMULATION OF SIDE MILLING USING FINITE ELEMENT ANALYSIS

WONG CHOON FUAN

Report submitted in partial fulfillment of the requirements
for the award of the degree of
Bachelor of Engineering in Manufacturing Engineering

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

June 2016
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering in Manufacturing.

Signature

Name of supervisor : Dr. Mebrahitom Asmelash Gebremariam

Position

Date
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotation and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : Wong Choon Fuan
ID Number : FA12058
Date :
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISORS’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Project Scope</td>
<td>4</td>
</tr>
</tbody>
</table>
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 5

2.2 Up Milling and Down Milling 5

2.3 Orthogonal and Oblique Cutting 6

2.4 Finite Element Analysis 8
 2.4.1 Approaches of Simulation 9

2.5 Cutting Parameter 13
 2.5.1 Influence on Cutting Speed 13
 2.5.2 Influence on Feed Rate 15
 2.5.3 Influence on Depth of Cut 20

2.6 Prediction of Cutting Force 21

CHAPTER 3 METHODOLOGY

3.1 Introduction 24

3.2 Milling Machine 26

3.3 Wire EDM Machine 27

3.4 Finite Element Analysis 29

3.5 Apparatus to Determine the Cutting Force 29

3.6 Workpiece Material 32

3.7 Methodology of Simulation 34
3.8 Design of Experiment

CHAPTER 4 RESULT AND DISCUSSION

4.1 Introduction

4.2 Result

4.2.1 Effects of Machining Parameters to Cutting Force
4.2.2 Cutting Force between Experimental and Theoretical Results
4.2.3 Stresses of Cutting Process

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Introduction

5.2 Conclusion

5.3 Recommendations

5.3.1 Cutting Force Measurement Experiment
5.3.2 Simulation of Side Milling Process

REFERENCE

APPENDICES

A Gantt Chart of FYP 1
B Gantt Chart of FYP 2
C 600 SFM Cutting Speed From Dyno-Ware
D 700 SFM Cutting Speed From Dyno-Ware
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Material properties, geometry and composition of ST 44</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Main cutting force and feed force</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Cutting Temperature vs Change of Cutting Speed</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Cutting Temperature vs Change of Cutting Depth</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Performance of milling machine</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Specifications of Wire EDM machine</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Advantages and disadvantages of ABAQUS</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Mechanical Properties of Aluminium 6061</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic diagram of cutting force</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Chip form classification</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Up milling and down milling</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Orthogonal cutting</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Oblique cutting</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Radial force and tangential force comparison between 2D and 3D model model</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Eulerian (ALE) method</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Eulerian (ALE) process model and example results</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Reduction of yield stress and stiffness of plastic material after damage initiation</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>Lagrangian process model</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>Chip form classification</td>
<td>14</td>
</tr>
<tr>
<td>2.10</td>
<td>Chip morphologies at different cutting speed</td>
<td>14</td>
</tr>
<tr>
<td>2.11</td>
<td>Chip morphologies at different cutting speed</td>
<td>15</td>
</tr>
<tr>
<td>2.12</td>
<td>Main cutting force vs feed rate</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Feed force vs feed rate</td>
<td>19</td>
</tr>
<tr>
<td>2.14</td>
<td>Chip morphologies with different feed rate</td>
<td>20</td>
</tr>
</tbody>
</table>
2.15 Chip sizes under different axial depth of cut 21
2.16 A Schematic Coordinate System Diagram 22
3.1 Flow chart 25
3.2 KE55 Vertical Machining Centre 26
3.3 Spark jump across the gap 27
3.4 Wire EDM machine 28
3.5 Three orthogonal direction 30
3.6 Multicomponent dynamometer 30
3.7 Dimension of dynamometer 31
3.8 4 channel charge amplifier 31
3.9 Aluminium block 32
3.10 Create raw material 34
3.11 Rectangular raw material 34
3.12 Dimension of raw material 35
3.13 Extrusion of raw material 35
3.14 Create cutting tool 36
3.15 Rectangular cutting tool 36
3.16 Dimension of cutting tool 37
3.17 Extrusion of cutting tool 37
3.18 Helix angle sketching 38
3.19 30 degree sketching 38
3.20 Rake angle 39
3.21 Clearance angle sketching 39
3.22 5 degree clearance angle 40
3.23 Extrusion of clearance angle

3.24 Material properties of Aluminium

3.25 Density of Aluminium

3.26 Elastic properties of Aluminium

3.27 Johnson Cook material properties

3.28 Johnson Cook damage failure model

3.29 Reference strain rate of Aluminium

3.30 Damage evolution of Aluminium

3.31 Material properties of high speed steel

3.32 Density of high speed steel

3.33 Elastic properties of high speed steel

3.34 Johnson Cook material properties

3.35 Johnson Cook material properties

3.36 Reference strain rate of high speed steel

3.37 Damage evolution of high speed steel

3.38 Aluminium section

3.39 Aluminium section

3.40 Steel section

3.41 Steel section

3.42 Create partition

3.43 Line of partition

3.44 Partition cell

3.45 Define it become Aluminium

3.46 Define both part become Aluminium

3.47 Define both part become Aluminium
3.48 Define steel material 53
3.49 Assembly workbench 53
3.50 Position the cutting tool and workpiece 54
3.51 Create step 54
3.52 Time period 55
3.53 Interaction properties 55
3.54 Friction coefficient between two materials 56
3.55 Interaction general contact 56
3.56 Attribute assignment 57
3.57 Create surface 57
3.58 Create rake surface 58
3.59 Create clearance surface 58
3.60 Create boundary condition 59
3.61 Fix the bottom surface of workpiece 59
3.62 Cutting tool boundary condition 60
3.63 Direction available of cutting tool 60
3.64 Distance of cutting tool moving 61
3.65 Time and amplitude 61
3.66 Global seed of the part 62
3.67 Edge local seed by using numbering method 62
3.68 Number of element for horizontal edge 63
3.69 Mesh and control the lower part 63
3.70 Explicit element type for element deletion 64
3.71 Mesh the part 64
3.72 After meshing 65
3.73 Global size of cutting tool
3.74 Mesh the part
3.75 Create the job
3.76 Status output for some failure and plasticity model
3.77 Job submission
3.78 Cutting workpiece material using wire cut
3.79 Complete workpiece material
3.80 Workpiece material on dynamometer
3.81 Dial test indicator
3.82 Experiment setup
3.83 12mm end mill
3.84 After the experiment
4.1 The chip formation of experiment
4.2 600 SFM metal cutting simulation
4.3 700 SFM metal cutting simulation
4.4 600 SFM radial force
4.5 700 SFM radial force
4.6 600 SFM tangential force
4.7 700 SFM tangential force
4.8 600 SFM axial force
4.9 700 SFM axial force
4.10 Stress distribution of 600 SFM
4.11 Stress distribution of 700 SFM
4.12 Simplified analytical model of the stress zone
LIST OF SYMBOLS

\(\gamma \) \quad \text{Rake angle}

\(\alpha \) \quad \text{Clearance angle}

\(\beta \) \quad \text{Wedge angle}
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer aided drafting</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>SFM</td>
<td>Square feet per minute</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>SKD</td>
<td>Alloy tool steel</td>
</tr>
</tbody>
</table>