DECLARATION OF THESIS AND COPYRIGHT

<table>
<thead>
<tr>
<th>Author’s Full Name</th>
<th>AZWAN BIN AIRUDDIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification Card No</td>
<td>930413-03-5027</td>
</tr>
<tr>
<td>Title</td>
<td>STUDY OF LIQUID CONTACT ANGLE IN DIFFERENT SOLID SURFACES</td>
</tr>
<tr>
<td>Academic Session</td>
<td>2015/2016</td>
</tr>
</tbody>
</table>

I declare that this thesis is classified as:

- [] CONFIDENTIAL
 (Contains confidential information under the Official Secret Act 1972)
- [] RESTRICTED
 (Contains restricted information as specified by the organization where research was done)*
- [] OPEN ACCESS
 I agree that my thesis to be published as online open access (Full text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of University Malaysia Pahang.
2. The Library of University Malaysia Pahang has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

_____________________________ _____________________________
(Author’s Signature) (Supervisor’s Signature)
AZWAN BIN AIRUDDIN DR NURRINA BINTI ROSLI

Date: _______________ Date: _______________
STUDY OF LIQUID CONTACT ANGLE IN DIFFERENT SOLID SURFACES

AZWAN BIN AIRUDDIN

Report submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Engineering in Manufacturing Engineering

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

June 2016
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering in manufacturing.

Signature :

Name of supervisor : DR NURRINA BINTI ROSLI

Position : SENIOR LECTURER

Date : 7JUNE 2016
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotation and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : AZWAN BIN AIRUDDIN
ID Number : FA12042
Date : 7 JUNE 2016
TABLE OF CONTENTS

SUPERVISOR’S DECLARATION i
STUDENT’S DECLARATION ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
ABSTRAK v
TABLE OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
1.2 Problem statement 4
1.3 Objectives of the research 4

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 5
2.2 methods of finding liquid contact angles 9
 2.2.1 Tilting plate method 9
 2.2.2 Wilhelmy plate method 10
 2.2.3 Telescope-goniometer 10
2.2.4 Capillary tube 11
2.2.5 Capillary penetration method for powders and granules 12
2.2.6 Sessile drop method 12

CHAPTER 3 METHODOLOGY

3.1 Introduction 13
 3.1.1 Step for sessile drop method 14
 3.1.2 Adobe photoshop 15
3.2 Experimental condition 18
 3.2.1 Aluminium 19
 3.2.2 Perspex 20
 3.2.3 Mild steel 21
 3.2.4 Wood 22
 3.2.5 Camera 23
3.3 Experiment setup 25
3.4 Flow chart of research activity 27
3.5 Experiment flow process 28
CHAPTER 4 RESULT AND DISCUSSION

4.1 Liquid contact angle result 29
4.2 Liquid shape result 36

CHAPTER 5 CONCLUSION

5.1 Conclusion 46
5.2 Recommendations 47

References i
Appendices ii

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Experiment condition use in experiment</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Specification review of Nokia Lumia 1020</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Data measurement of contact angle for aluminum</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Data measurement of contact angle for perspex</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td>Data measurement of contact angle for mild steel</td>
<td>33</td>
</tr>
<tr>
<td>4.4</td>
<td>Data measurement of contact angle for wood</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Average data of contact angle measurement</td>
<td>35</td>
</tr>
<tr>
<td>4.6</td>
<td>Data measurement of wettability of aluminum</td>
<td>37</td>
</tr>
<tr>
<td>4.7</td>
<td>Data measurement of wettability of perspex</td>
<td>38</td>
</tr>
<tr>
<td>4.8</td>
<td>Data measurement of wettability of mild steel</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>Data measurement of wettability of wood</td>
<td>40</td>
</tr>
<tr>
<td>4.10</td>
<td>Data of wettability on different material drop from 14mm height</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Definition of contact angle</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Description of Young’s modulus</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Description of hydrophobic surface</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Description of hydrophilicity surface</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Description of super-hydrophobic</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Tilting plate method</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Wilhelmy plate method illustration</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Illustration of telescope-goniometer</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Capillary tube illustration</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic view of experimental setup</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>Adobe photoshop software review</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>Right triangle definition</td>
<td>16</td>
</tr>
<tr>
<td>3.4</td>
<td>Illustration of calculating liquid contact angle in adobe photoshop</td>
<td>17</td>
</tr>
<tr>
<td>3.5</td>
<td>Aluminum plate</td>
<td>19</td>
</tr>
<tr>
<td>3.6</td>
<td>Perspex plate</td>
<td>20</td>
</tr>
<tr>
<td>3.7</td>
<td>Mild steel plate</td>
<td>21</td>
</tr>
<tr>
<td>3.8</td>
<td>Wood plate</td>
<td>22</td>
</tr>
<tr>
<td>3.9</td>
<td>Nokia Lumia 1020 smartphone</td>
<td>23</td>
</tr>
<tr>
<td>3.10</td>
<td>Experiment setup for contact angle measurement</td>
<td>25</td>
</tr>
<tr>
<td>3.11</td>
<td>Experiment setup for liquid shape measurement drop from 140mm</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Liquid contact angles for different material</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Diameter of spreading liquid for different material</td>
<td>43</td>
</tr>
</tbody>
</table>