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ABSTRACT 

 

In the past few decades, several passive and active techniques to enhance the flow in 

pipelines have been suggested by scientists and implemented by the oil and gas industry. 

The most commercially feasible flow enhancement (drag reduction) technique is the 

injection of minute quantities of viscoelastic polymeric additives in the main flow 

stream. At the same time, this technique comes with a major disadvantage: the 

polymeric additives are resistant to the high shear forces exerted by the pumps and/or 

the turbulence inside the pipe. The present work addresses the said problem by 

proposing an alternative technique that involves the formation of polymer–surfactant 

complexes to create a highly shear-resistant additive through physical interaction with 

oppositely and similarly charged surfactants. Polyacrylic acid (PAA), Polyacrylamide-

co-diallyl-dimethylammonium chloride P(AAm-co-DADMAC), hydroxypropyl cellulose 

(HPC), and polydiallyldimethylammoniumchloride (PDADMAC) polymers are adopted 

as drag-reducing agents (DRA). Sodium oleate and Tween 20 surfactants are also used 

as DRAs and complex creation agents. One of the major objectives of the present work 

is to prove that complexes can be formed even with similarly charged ingredients (i.e., 

polymers and surfactants). The experimental work is divided into three major phases. 

The first phase tests the flow behavior and shear resistance of the polymeric, surfactant, 

and complex DRAs using a rotating disk apparatus (RDA). The second phase detects 

the morphology of the formulated complexes using transmission electron microscopy 

(TEM) and cryo-TEM. The third phase conducts a pipeline drag reduction test using a 

closed-loop liquid circulation system, in which the pressure drop and flow rate 

measurements are taken to evaluate the drag reduction performance of a selected 

complex and its initial polymeric and surfactant substances. The RDA results show that, 

when tested at 700 ppm concentration and Re = 816650, all the polymeric additives 

have drag reduction potential with a maximum %DR of 16%, 32%, 40%, and 12% for 

PAA, P(AAm-co-DADMAC), HPC, and PDADMAC polymers, respectively. Moreover, 

when tested at 700 ppm concentration and Re = 816650, most of the surfactant additives 

show an acceptable drag reduction performance with a maximum %DR of 16% and 

12% for sodium oleate and Tween 20 surfactants, respectively. The complexes created 

from the initial polymeric and surfactant additives significantly improve drag reduction 

performance and resistance to shear forces. The resistance of PAA is enhanced by 66% 

when tested at 500-ppm sodium oleate and Re = 489990. The resistance of PAA is 

massively enhanced by 203% when tested at 500-ppm sodium oleate and Re = 914648. 

The morphology of the formulated complexes is tested using TEM and cryo-TEM, and 

the results indicate that similarly charged polymer and surfactant molecules have the 

ability to form certain aggregates with the aid of the free counter ions in water. The 

TEM shows network-like aggregates that capture surfactant clusters in a network of 

polymers and small surfactant micelles. A similarly charged PAA–sodium oleate 

complex is tested in a pipeline system. The experimental results clearly indicate that the 

drag reduction performance of the polymers is massively improved by 51% when 

forming a complex with 1000-ppm concentration. In addition, the pressure drop reading 

results show that resistance to high-shear forces is highly modified when the complex is 

formed, and no detectable degradation is reported. It is believed that the same technique 

should be implemented using crude oil additives in the future due to the increasing need 

for such complexes in the oil and gas industry field.  
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ABSTRAK 

 

Beberapa dekad yang lalu, beberapa teknik pasif dan aktif untuk meningkatkan aliran dalam 

saluran paip telah dicadangkan oleh ahli sains dan dilaksanakan oleh industri minyak dan gas. 

Teknik peningkatan aliran yang paling ekonomik dilaksanakan secara komersil (pengurangan 

seretan) adalah suntikan sekuantiti bahan tambahan polimer viscoelastic didalam arus aliran 

utama. Pada masa yang sama, teknik ini datang dengan satu kelemahan utama: bahan tambahan 

polimer dapat metahan daya ricih yang tinggi yang dikenakan oleh pam dan / atau kegeloraan di 

dalam paip. Kajian yang dikatakan boleh menangani masalah tersebut dengan mencadangkan 

teknik alternatif yang melibatkan pembentukan kompleks surfaktan polimer untuk mewujudkan 

aditif yang sangat tahan ricih melalui interaksi fizikal dengan surfaktan yang bercas berlawanan 

atau sama. Asid Polyacrylic (PAA), Polyacrylamide-co-diallyl-dimethylammonium klorida P 

(AAM-co-DADMAC),selulosa hydroxypropyl (HPC), dan 

polydiallyldimethylammoniumchloride (PDADMAC) polimer yang digunakan sebagai agen 

pengurangan seretan (DRA). natrium oleat dan surfaktan Tween 20 juga digunakan sebagai 

DRAs dan ejen penciptaan kompleks. Salah satu objektif utama kajian ini ialah untuk 

membuktikan bahawa kompleks boleh dibentuk walaupun dengan bahan-bahan yang sama cas 

(iaitu, polimer dan surfaktan). Kerja-kerja eksperimen dibahagikan kepada tiga fasa utama. Fasa 

pertama menguji kelakuan aliran dan rintangan ricih polimer, surfaktan, dan kompleks DRAs 

menggunakan alat cakera berputar (RDA). Fasa kedua mengesan morfologi kompleks yang 

dirumuskan menggunakan mikroskop elektron penghantaran (TEM) dan Cryo-TEM. Fasa 

ketiga menjalankan ujian pengurangan seretan paip menggunakan sistem peredaran cecair 

gelung tertutup, di mana kejatuhan tekanan dan ukuran kadar aliran diambil untuk menilai 

prestasi pengurangan seretan kompleks terpilih dan bahan-bahan awal polimer dan surfaktan. 

Keputusan RDA menunjukkan bahawa, apabila diuji pada kepekatan 700 ppm dan 

Re = 816650, semua bahan tambahan polimer mempunyai keupayaan penurunan seretan 

dengan % DR maksimum sebanyak masing-masing pada 16%, 32%, 40%, dan 12% untuk PAA, 

P (AAM-co -DADMAC), HPC dan PDADMAC polimer. Selain itu, apabila diuji pada 

kepekatan 700 ppm dan Re = 816650, kebanyakan bahan tambahan surfaktan menunjukkan 

prestasi pengurangan seretan  dengan maksumim % DR masing-masing pada 16% dan 12% 

untuk natrium oleat dan Tween 20 surfaktan. Kompleks dicipta daripada bahan tambahan 

polimer dan surfaktan awal menunjukkan peningkatkan prestasi yang ketara pada pengurangan 

seretan dan rintangan kepada daya ricih. Rintangan PAA dipertingkatkan ke 66% apabila diuji 

pada 500 ppm kalium oleat dan Re = 489990. Rintangan PAA dipertingkatkan secara besar 

sebanyak 203% apabila diuji pada 500 ppm natrium oleat dan Re = 914648. Morfologi 

kompleks dirumuskan diuji menggunakan TEM dan Cryo-TEM, dan keputusan menunjukkan 

bahawa molekul-molekul polimer dan surfaktan bercas sama mempunyai keupayaan untuk 

membentuk agregat tertentu dengan bantuan ion pembilang bebas didalam air. TEM 

menunjukkan agregat rangkaian yang menangkap kelompok surfaktan dalam rangkaian polimer 

dan misel kecil surfaktan. PAA natrium kompleks oleat bercas sama diuji dalam sistem saluran 

paip. Keputusan eksperimen jelas menunjukkan bahawa prestasi pengurangan seretan daripada 

polimer meningkat secara besar sebanyak 51% apabila membentuk kompleks dengan kepekatan 

1000 ppm. Di samping itu, keputusan bacaan kejatuhan tekanan menunjukkan bahawa daya 

tahan terhadap kuasa-kuasa tinggi ricih diubahsuai apabila terbentuknya kompleks, dan tiada 

kemenurunan dilaporkan. 
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