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ABSTRACT 

 

The development of exoskeleton robotic device (ERD) is one of the most 

applicable devices for rehabilitation purposes and human-assistance. Unlike other 

control methods applied to industrial robotic systems in the sense of giving specific 

trajectory to be tracked, ERD physically interacts alongside with the user. To attain high 

cognitive interaction and safe human-machine system, there is a need to detect the 

user‘s movement intention. One of the bio-signals that have been found to reflect 

directly the individual‘s motion intention is the Electromyography (EMG). Although 

these signals are to some extent insulated by myelin, with the remarkable advancement 

in bio-sensors technology and standard recommendations in signal acquiring 

processing, it becomes affordable to acquire, analyze, interpret and use them to control 

robotic devices. Surface Electromyography (sEMG) signal measured by surface 

electrodes has become of great interest among researchers in both clinical and 

engineering aspects. To ensure high cognitive user-robotic system, sEMG signal is 

implemented as control command for ERD. However, this signal is highly sensitive to 

noises and exhibits additional measurements (crosstalk) contaminated on the signal of 

interest.  In order to add to this area of knowledge, recording and analyzing these 

signals may give an optimum and safe control performance for ERD. Particular 

experiments were conducted on the rising from a chair and walking tasks. The 

experiments were conducted on five subjects where the sEMG signals were recorded 

over four major muscles of the lower limb (Biceps Femoris (BF), Rectus Femoris (RF), 

Gastrocnemius (Gas) and Soleus (Sol) muscles) along with the kinematics recordings. A 

novel algorithm to determine the overlapped crosstalk recordings was developed along 

with a modified low pass filter that adaptively removes these recordings. A parametric 

model based on Hill Muscle Model (HMM) to estimate the knee joint moment is 

developed for both experiments protocols. The parametric model involves the mapping 

of the sEMG signals to the knee joint moment. Obviously, selecting four muscles to 

attain a full joint moment and motion is not sufficient, therefore we introduced the net 

joint moment obtained from the inverse dynamics to optimize the predicted joint 

moment. Initial estimate of the model is obtained from literature review while the 

Levenderg-Marquardt (LM) method is applied to solve the nonlinear least squares 

optimization problem.  Results showed that the filter parameters selection could 

significantly affect the amplitude of the sEMG as well as it may conceal the exact 

onset/offset time of the signal. The developed algorithm for the crosstalk recordings 

detection shows ability in determining the presence of the overlapped measurements 

period.  The results of the modified Butterworth filter showed good suppression of the 

crosstalk and brought the signal of interest into its baseline state. This will increase and 

ensure the safety of the users of the ERD.  For both experiment protocols, the R
2
 

between the net and the predicted joint moment showed good agreement in the chair-

rise protocol (0.99), while the in the walking task the R
2
 was (0.91). The RMSE for both 

protocols were relatively low varying between 6.88 and 8.31.  This means the model 

can accurately predict the knee joint moment.       
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ABSTRAK 

 

Pembangunan peranti robotik exoskeleton (ERD) adalah salah satu alat yang 

paling digunakan untuk tujuan pemulihan dan manusia-bantuan. Tidak seperti kaedah 

kawalan yang lain digunakan untuk sistem robotik industri dalam erti memberi 

trajektori tertentu yang akan dikesan, ERD fizikal berinteraksi bersama-sama dengan 

pengguna, dan oleh itu terdapat keperluan untuk mengesan pergerakan niat pengguna. 

Salah satu bio-isyarat yang telah ditemui untuk mencerminkan langsung gerakan niat 

individu adalah Electromyography (EMG). Walaupun isyarat ini adalah dalam beberapa 

jenis terlindung oleh Myelin, dengan kemajuan yang luar biasa dalam teknologi sensor 

dan cadangan standard dalam pemprosesan, ia menjadi berpatutan untuk memperoleh, 

menganalisis, mentafsir dan menggunakan mereka untuk mengawal peranti robotik. 

Surface Electromyography (sEMG) isyarat diukur dengan elektrod permukaan telah 

menjadi kepentingan besar di kalangan penyelidik dalam kedua-dua aspek klinikal dan 

kejuruteraan. Untuk memastikan sistem pengguna-robot kognitif yang tinggi, isyarat 

EMG dilaksanakan sebagai arahan kawalan untuk ERD. Walau bagaimanapun, isyarat 

ini sangat sensitif kepada bunyi dan mempamerkan ukuran tambahan (crosstalk) yang 

tercemar pada isyarat yang menarik. Dalam usaha untuk menambah ke kawasan ini 

pengetahuan, rakaman dan menganalisis isyarat-isyarat ini boleh memberi prestasi 

kawalan optimum dan selamat untuk ERD. eksperimen tertentu dijalankan ke atas yang 

semakin meningkat dari kerusi dan berjalan tugas. Kajian ini telah dijalankan ke atas 

lima mata pelajaran inilah isyarat sEMG dicatatkan lebih empat otot utama anggota 

badan yang lebih rendah (Biceps Femoris (BF), Rectus Femoris (RF), gastrocnemius 

(Gas) dan soleus (Sol) otot) bersama-sama dengan kinematik rakaman. algoritma untuk 

menentukan rakaman crosstalk bertindih telah dibangunkan bersama-sama dengan 

penapis laluan rendah diubahsuai yang adaptif membuang rakaman ini. model 

parametrik berdasarkan Hill Muscle Model (HMM) untuk menganggarkan lutut masa 

ini bersama dibangunkan untuk kedua-dua eksperimen protokol. Model parametrik 

melibatkan pemetaan isyarat sEMG lutut masa ini bersama. Jelas sekali, memilih empat 

otot untuk mencapai masa bersama penuh dan gerakan adalah tidak mencukupi, oleh itu 

kami memperkenalkan masa bersama bersih diperolehi daripada dinamik songsang 

untuk mengoptimumkan masa bersama yang diramalkan. anggaran awal model yang 

diperolehi daripada kajian literatur manakala Levenberg-Marquardt (LM) method 

digunakan untuk menyelesaikan masalah-kurangnya dua pengoptimuman tak linear. 

Hasil kajian menunjukkan bahawa pemilihan parameter penapis ketara boleh 

menjejaskan amplitud sEMG dan juga kerana ia boleh menyembunyikan bermulanya 

tepat / masa yang mengimbangi isyarat. Algoritma dibangunkan untuk mengesan 

rakaman crosstalk menunjukkan keupayaan dalam menentukan kehadiran tempoh 

ukuran yang bertindih. Keputusan penapis Butterworth yang diubah suai menunjukkan 

penindasan baik crosstalk dan membawa isyarat faedah ke dalam keadaan asas itu. Ini 

akan meningkatkan dan memastikan keselamatan pengguna ERD. Bagi kedua-dua 

protokol eksperimen, R
2
 antara bersih dan masa bersama yang diramalkan menunjukkan 

perjanjian yang baik dalam protokol kerusi bertingkat (0.99), manakala dalam tugas 

berjalan R
2
 adalah (0.91). The RMSE untuk kedua-dua protokol yang agak rendah yang 

berbeza-beza di antara 6.88 dan 8.31. Ini bermakna model yang tepat boleh meramalkan 

lutut masa ini bersama. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1    Introduction  

 

Assistive devices are a particular category of assistive technology (AT). 

Examining some definitions given for assistive technology reported in (Hersh and 

Johnson, 2008a, Digiovine et al., 2007 and Pasha and Pasha, 2006), assistive technology 

is an inclusive term which covers technologies, products, services and systems that 

could be used by disabled and/or elderly people. Assistive technology could also be 

defined based either on social use (Barnes, 1994 and Johnstone, 2001) or medical use 

(WHO, 1980, 2001). Furthermore, the definition of assistive technology could be based 

on overcoming the barriers/deficits faced by the user him/herself for instance, knee 

assistive device, and ankle prosthesis. Particularly, assistive technology could be 

categorized based on its function (Hersh, 2010) 

 

i. Assistive devices, in which are designed to remove barriers faced by disabled and 

elderly people. 

ii. Rehabilitation devices designed to restore the functioning of disabled and/or 

elderly people experiencing lower or upper extremities impairment. 

iii. Medical devices, which are designed to support a range of health care practices and 

promote healing in people experiencing illness or other forms of ill-health and who 

may be categorized as patient.
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            The difference between assistive devices and rehabilitation devices is that 

assistive devices modify the interaction between the user and the environment in order 

to remove certain obstacles such as cranks/braces used by elderly and prosthesis used by 

amputees, whereas rehabilitation devices such as powered exoskeleton alters directly on 

the individual/patient to overcome some limitations (Hersh and Johnson, 2008a, b). 

Exoskeletons are intermingled assistive devices in terms that they can be assistive 

device until the individual recover back his/her motor skill.  

 

The presence of exoskeleton robotic devices in the rehabilitation field and 

assistive technology opened new direction of interest in the study of their control 

strategies. Unlike other control methods applied to industrial robotic systems in the 

sense of giving pre-programmed trajectory to be followed, assistive devices 

(exoskeletons/orthoses) technologies require parallel physical interaction and close 

cognitive between the user and the device. In order to ensure a safe physical interaction 

with high cognitive, there is a need to detect the user‘s movement intention.  

 

Biology signals are the only means that detect the user‘s movement intention 

such as Electroencephalography (EEG), Electromyography (EMG), Mechnanomyogram 

(MMG), and Electrocorticogram (ECoG) signals. One might refers to the evidence that 

the first intention can be detected from the central nervous system (CNS) through EEG 

recordings. However, due to the complexity/analysis in recording/analyzing the EEG 

signal and the traveling time of the signal pulse from the CNS to the motor nerve of the 

muscles, researchers are more towards the investigation of the use of EMG signal. This 

latter seems to enclose the meaning and explanation of a motion generated by the 

muscles activities. In human skeleton there are about 640 muscles acting as actuators in 

order to give an amazing flexible motion to human being (―Muscle,‖ 2016). 

Particularly, there are about 32 major group muscles in the lower extremities that allow 

human being to move flexibly (Ward et al., 2009).  

   

Advances in assistive robotics together with clinical neuroscience have greatly 

expanded the development of machines to improve functioning and mobility for 

individual with disability. These devices can be used during therapy to retrain motor 

abilities or during every day activities to assist individuals with disabilities (Schulze et 

al, 2012). 
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           Many promising rehabilitation technologies have to some extent partially failed 

to achieve successful recovery for the patient due to maybe late intervention, less 

intensively rehabilitation task and other reasons. It is important then to involve different 

disciplines in order to complete a successful therapeutic rehabilitation robotic device. 

Engineers, physiologists and neuroscientists should take part and conduct a close 

collaboration to design a safe, robust and human friendly machine. Rehabilitation 

devices are not merely operated by a person, but they must work in concert with the 

patient as a system. Current researches on designing exoskeletons for rehabilitation 

purposes have given slightly important enhancement to the patients plying the role of 

therapist and have push forward the clinician‘s productivity. As mentioned, using bio-

signals are the only interfacing approach to design friendly human-machine.   

 

Despite these advances, capabilities and potentials, still biological signals based 

control have a long way to go before reaching the realm of professional and commercial 

applications.   

 

Several researchers such as (Pons, 2010 and Kiguchi and Hayashi, 2012) have 

significantly deepening our understanding and open interest on the use of surface 

electromyography to control assistive devices meant to be used as therapeutic robots.

  Yet, extracting sufficient neural information using sEMG signal at the 

peripheral nervous system (PNS) is not mature enough and needs more advanced 

algorithm.  

             

1.2   Motivation and Significance of the Research 

 

The motivation of this research comes from the fact that elderly are having 

difficulties in their daily life activities for example standing up/sitting down and their 

severe impaired gait. With the remarkable increase in the ageing population (United 

Nation, 2010 and WHO, 2013), spinal cord injury, traumatic brain injury and stroke 

cases often result in a mobility impairment.  With the hope for this population to regain 

and restore their mobility skills,   assistive devices designated for rehabilitation 

purposes are in high demand. Particularly, powered exoskeletons robots are motivated 

from the notion that they would give significant assistance to individuals with mobility 

impairment to be able to walk properly and/or to regain their skills.  
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1.3    Problem Statement   

 

For less than two decades, Electromyography signals have been started used in 

controlling assistive devices in the field of rehabilitation due to the evidence that these 

signals could give an intuitive understanding on the individual‘s movement intention. 

This therefore guarantees safety and highly cognitive assistive device.  Moreover, these 

signals could practically estimate the moment generated by muscles in which causes a 

movement.  

 

Electromyography signal processing techniques have been studied and 

developed widely for clinical purposes (offline processing). However, this signal is 

acquired and processed in real time in order to use it as control input for assistive 

device. Besides, the usability of this signal as control command for 

rehabilitation/assistive devices has not been sufficiently investigated (Pons, 2010 and 

Singh et al., 2012). Unwise processing of these signals may give higher probability for 

the exoskeleton robot to behave differently from the user. Electromyography 

measurement for a specific muscle is often inevitably full of noises and may be a result 

of mixtures of signals generated by different active muscles during performing a 

specific task (Farina et al., 2004). Generally these mixture signals overlapped in time 

and frequency. This contaminated mixtures need to be identified and removed from the 

signal of interest.  

 

As the main aim of using sEMG as a control input for ERD is to detect the 

motion‘s intention of an individual, the onset/offset parameter of the sEMG signal is 

crucial and important (Micera et al., 2001 and Kornard, 2006). This parameter could be 

concealed by the background noises and the effect of low pass filter output (Conforto et 

al., 1999 and Lee et al., 2007). Thus, designing an optimum filter is required. 

Furthermore, sEMG signal differs between individuals and even within the same 

individual in terms of magnitudes and pattern repeatability, delay between recordings, 

waveform of the signal and accordance with the person motion. Therefore, a rigorous 

and precise analysis scheme for sEMG signal processing is needed.  
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The below characteristics are a breif of the sEMG properties:    

 

i. It is hard to obtain similar signals to achieve same task even within the same 

individual.  

ii. Activity level (magnitude) of the sEMG signal keeps changing even within one 

individual from time-to-time.  

iii. sEMG may exhibit a deferent behave as an interfere muscle measurements 

contaminated on the signal of interest.   

 

1.4    Research Objectives  

 

The main aim of this study is to obtain a suitable surface Electromyography 

signal for the control of lower extremity exoskeleton robot. For this purpose, several 

objectives were identified which needed to be tackled to achieve the main aim of the 

research. These objectives are as follows: 

 

i. To design an optimum digital filter that cleans the noises in surface 

Electromyography signals. 

ii. To detect and eliminate the presence of unwanted/crosstalk recordings from the 

signal of interest. 

iii. To develop a mathematical based on Hill‘s Muscle Model (HMM) that relates 

the muscle activities with the joint moment for chair-rise and walking protocols. 

iv. To implement the algorithm into a real time system as a preliminary application 

to an exoskeleton system. 

 

1.5    Overview of the Thesis    

 

The thesis is divided into six chapters. Chapter 1 introduces the use of surface 

electromyography patterns in control strategies of assistive devices sEMG-based 

control. It explores the nature and the challenges of using sEMG as control input to the 

assistive device.   
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Chapter 2 concentrates on the literature review of the research. In the literature 

review, sufficient information about the previous research on the field of rehabilitation 

engineering and the use of sEMG signals in controlling assistive devices is detailed, 

compared and reviewed.  

 

Chapter 3 covers the research methodology. The chapter provides details on the 

methods used to identify the recording process of sEMG signals from lower limb 

muscles; material used to acquire the sEMG/kinematics data and the implementation in 

real time process using one link exoskeleton.  

 

Chapter 4 reveals the sEMG signal processing part from pre-processing the 

measured data, filtering effects on the sEMG, normalization of the sEMG in amplitude 

and time as function of movement range.    

 

Chapter 5 presents the results and discussions. The chapter presents the results of 

both chair rise and walking experiments in details. The influence of the filter parameters 

on the sEMG in term of magnitude and time is addressed.  The efficiency of the RLS 

technique in reducing and eliminating the unwanted/crosstalk recordings contaminating 

the signal of interest is presented.  Mathematical model based HMM is developed to 

relate the sEMG signals with the joint moment. The joint moments is then optimized 

with the net moment measured from the inverse dynamic of the system.     

 

Chapter 6 contains the conclusion and recommendations for further research. It 

summarizes the overall findings of the research and highlights the significance of the 

achieved methodology.  

   



CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

2.1    Introduction  

 

Assistive technology development is aimed for both mental and physical 

disabilities. Most often, aging population is the largest population subjected to be 

affected by these disabilities. In fact, according to United Nations Population Division, 

the world‘s population aging is growing at a rate of 2.6 % per year, (United Nations 

2010). Population of elderly above the age of 65 years old was 4.9% in 1950, 20% in 

2007 and is expected to reach 35% in 2050 due to increasing quality of living and 

healthcare (Dellon et al., 2007). In particular, 8% of Malaysian‘s Population is well 

above 60 years old (WHO, 2013). 

 

Physical disability could be classified into two major groups, one is known as 

Musculo Skeletal Disability (MSD), that is when the person is unable to perform a 

distinctive activities associated with movements of the body parts. The second is known 

as Neuro Musculo Disability (NMD), which is defined when the person is not able to 

perform a controlled movement of affected body parts due to disorder of the nervous 

system.  NMD could be classified into four main categories (cerebral palsy, stroke, 

traumatic brain injury and spinal cord injury). For instance, in Malaysia, 11% of 

children aged between 0 to 18 years old were diagnosed with cerebral palsy disabilities 

according to Malaysia, 2011. All of these disease categories yield a severe abnormality 

posture and limited range of movement with retardation.
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Healthcare providers/caregivers reported that early and appropriate intervention 

with an intensive rehabilitation task could greatly lessen the time for the patient to 

recover/rehabilitate the impaired movement or to prevent the patient from being in an 

obsession state of a permanent disease. This type of intervention is called ‗rehabilitation 

medicine‘ which is the care given to the patients. According to the world health 

organization (WHO), the demand for rehabilitation services is increasing, (1.5% of the 

total population requires rehabilitation services at any country).  With the advancement in 

technology, a new discipline called rehabilitation engineering is increasingly being 

incorporated into the field of rehabilitation medicine to assist the patient as well as to 

reduce some of the burden imposed on caregivers. This symbiotic relationship depends 

on the patient situation and the stage of the disability.  

In the next section, we briefly define the rehabilitation process in both disciplines of 

medicine and engineering.    

            Figure 2.1 summarizes the general application of the assistive robotic device. It 

contains the reasons for using exoskeleton and/or assistive devices, to whom the robotic 

device is developed, and who are the developers.   

 

 

 

 

 

 

 

 

 

 

Figure ‎2.1. Assistive robotics device application overview   

 

2.1.1   Engineering Rehabilitation Definition  

 

The term rehabilitation has a wide range of meaning and it depends on the setting 

or the place of usage. The word rehabilitation is originally a Latin word, which means, 

Assistive robotic 

device 

Why  

Who  

Assist  

Rehab   

Engineers   Physio- 

therapist     
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―to make fit again‖. In health-care, rehabilitation provides the interventions that go 

beyond the medical treatment to give care for those who have injuries, strokes, spinal 

cord injuries and elderly with lower/upper extremities impairment in order to re-establish 

themselves back to previous level of health. For physical rehabilitation, physiotherapists 

are involved in this service.   

Physiotherapy is a healthcare profession that provides services to individuals and 

public to maintain and restore maximum movement and functional ability throughout 

their lifespan. This includes providing services in circumstances where movements and 

functions are affected by aging, injury, disease and environmental factors. Physiotherapy 

is concerned with identifying and maximizing quality of life and movement potential 

within the spheres of promotion, prevention, intervention and rehabilitation. Even though 

physiotherapists are well skilled, professionals and well-practiced, with the increase of 

incidents with different stages of disability, the demand for them is increased. 

Commonly, one patient may require more than one therapist to aid him/her during the 

rehabilitation process and also depending on the level of disability with regards to the 

recovery prediction time (Tilling et al., 2001). Therefore, there is a need to induce 

engineering technologies into physiotherapist services in order to shorten the impaired 

motor skill recovering time and give help to the physiotherapists.  

   

From an engineering standpoint, physical rehabilitation is often utilized after 

major surgery, an accident, or any event that robs the individual mobility. Rehabilitation 

engineering has been emerged recently with rehabilitation medicine in which could be 

defined as a systematic application of engineering science to design, develop, adapt, test, 

evaluate, apply, and distribute technological solutions to problems confronted by 

individuals with disabilities in functional areas and activities associated with 

employment, independent living, education, and community integration. 

With the remarkable advances in technology, assistive robotics is taking place to 

playing the role of therapist. Assistive robotics devices are classified as passive, semi-

active and active robotic systems (Burgar et al., 2010). In each type of the above 

mentioned classes, the designed assistive device is categorized as prosthesis, orthosis or 

exoskeletons robotic system. From the mechatronics standpoint, active prostheses, 

orthoses, exoskeletons robot are similar at the functional level, but they are slightly 

different in the control objectives. Orthosis and prostheses are different in the hardware 

configuration. Orthosis are worn on the existing but impaired limb, and the device weight 
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is added to the limb weight. Prosthesis is a device that replaces a missing limb. Table 1 

may break the difference between robotic devices used in assistive technology for 

physical disabilities. The objective in rehabilitation devices is the reproduction of motion 

sequences to facilitate the patient‘s functional skill recovery. Trajectory-tracking 

controller is a commonly employed strategy to improve repetitive motion pattern.  

 

Table 2.1  

Comparison of prosthesis, orthosis and exoskeleton 

Prosthesis Orthosis Exoskeleton 

 Replace a missing 

limb 

 

 Worn on an existing 

limb 

 Worn on an existing limb 

 Passive, semi-active 

and active 

 Passive, semi-active and 

active 

 Passive, semi-active and 

active 

 

 Replacing closely to 

the weight of the 

missed limb 

 

 Used for assistive 

purposes.  

 

 

 

 

 

 The weight is added to 

the limb.  

 

 

 Used for assistive, 

augmenting ability 

rehabilitation purposes 

 

 Reproducing the motion 

sequences 

 

 The weight is added to the 

limb. 

 

 

 Used for assistive, 

augmenting ability and 

rehabilitation purposes 

 

 Reproducing the motion 

sequences 

 

2.2       Brief History  

 

The history of assistive technology for physical disabilities can be traced back to 

the evidence of prosthetic usage dating back as early as the Ancient Egyptians. In one 

case, it was found that a mummy‘s big toe had been amputated during its life and 

supplanted with a carefully crafted wooden toe, which was attached by a series of 

wooden plates and leather strings. The oldest known leg prosthesis from 300 BCE was 

discovered in Capua, Italy, and was made out of copper and wood. In the 16th century, 

prostheses were created from iron for soldiers by the same blacksmiths who crafted their 

suits of arms. An iron arm had the ability to flex a fully digital hand. By the 19th century, 

James Potts created a leg with artificial tendons to lift the toe when bending the knee 

(Dellon and Matsuoka, 2007). It is also reported that some inventions had been done for 

soldiers (prosthesis equipment) immediately after the World War II. By the early 1970‘s, 
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rehabilitation engineering had increasingly taken a wide place in research (Bogue, 2009). 

Variety aspects of rehabilitation robotics can be found in (Messier, 2010).  

 

In the following section, rehabilitation robotics is discussed to understand the 

control strategies, methods and techniques that have been applied. The review is not 

confined only to the lower limb exoskeleton but also various types of 

prosthesis/exoskeleton.    

 

2.2.1    Exoskeletons  

 

Exoskeletons are wearable devices with close cognitive and physical interaction 

with the user operator. They are rigid robotics moving in parallel with human limbs 

mainly used to enhance the ability of human being. Robotic exoskeletons for decades 

were meant to enhance human power capabilities. Since early 1970‘s, engineers have 

started working on the development of exoskeletons to augment human power (Hughes, 

1972; Seireg and Grundman, 1981; Ruthenberg et al., 1997 and Zoss et al., 2006). 

Wearable robotic exoskeletons initially were built to improve the soldier‘s endurance, 

speed and load carrying ability.  

 

         The Defense Advanced Research Project Agency (DARPA) funded the Berkeley 

Lower Extremity Exoskeleton (BLEEX) project in 2000 (Figure 2.2). This project has 

helped renew interest in the development of robotic exoskeletons to assist human 

locomotion (Sawicki, 2007).   
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Figure 2.2. Berkeley Lower Extremity Exoskeleton 

  

Source BLEEX, Sawicki 2007 

 

With the advances in actuation technology, control engineering and material 

sciences have propelled the state-of the art quickly forward (Guizzo and Goldstein, 

2005). The benefits and applications of exoskeletons are not limited only for soldiers in 

military sector. Civilian laborers such as disaster relief workers, wildfire fighters and 

other personnel emergency could also use exoskeletons to reduce the physical demands 

of climbing, heavy lifting, or long periods of sustained locomotion. 

 

 Recently, exoskeletons are increasingly becoming more accepted in the field of 

rehabilitation medicine. Typically, robots use trajectory or pattern trajectory to follow 

(pre-programmed trajectory). However, in human-machine robotics system, the device is 

more likely to follow the nature of the operator locomotion. To attain a friendly human-

machine, an appropriate alternative solution is to connect the control system to biological 

signals of the operator that is directly linked to the desire of movement.  

 

Obviously, the movement‘s intention is firstly relayed to the brain (Central 

Nervous System) level which can be represented by EEG signal. It is known that muscles 

are the tissues responsible to provide human with locomotion during their contraction. 

Therefore, researchers are attempting to understand the muscles behavior during 

movement by examining the sEMG signals.  
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Before we state the previous work on the use of sEMG as control input for 

assistive devices, a brief description on the sEMG signal, recording methods and 

techniques are given first.  

 

2.3    Electromyography  

 

ELECTROMYOGRAM (EMG) is a combination of three words: ELCTRO 

stands for electric, MYO stands for Muscle and GRAM stands for recording. 

Electromyography is a collective electric signal (negative and positive values) from 

muscles produced during their contraction.  It is also defined as the summation of the 

motor unit action potentials occurring during the contraction measured at a given 

electrode location which is often expressed in millivolts. 

 

The EMG measurement is based on two recording techniques one is known as an 

invasive technique, which uses intramuscular electrodes (needle electrodes), and the 

second technique is by using surface electrodes (non-invasive technique). The attribute 

and the quality of the EMG signal depend on the internal structure of the subject, 

including the individual skin formation, blood flow velocity, measured skin temperatures 

and the tissue structure (muscle, fat, etc.).  

 

Compared with the needle-based process, surface EMG technique (surface 

electrodes-EMG-based) is used more frequently because it is preferred by the subjects 

and because it is a non-invasive and painless technique (Pullma et al., 2000 and 

Rodríguez-Carreño et al., 2006). Surface electromyography (sEMG) signal represents the 

characteristics of the muscle function and provide information on the muscle activities. 

sEMG signal is highly prone to noise interference that may reshape and alter the signal 

such as baseline drift, skin artifacts, processing errors, and interpretation problems, for 

example: 

 

i. Inappropriate contact of the surface electrode to the skin could distort the 

recording signal.  

ii. Inadequate amplification of the signal could cause a recording detection problem.  
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iii. Selecting wrong filter parameters could efface some of the desirable information 

of the recorded sEMG signal.  

 

Moreover, there are other factors such as the distance between electrodes, the 

electrode placement over the muscle, the skin preparation as well as the recording times 

used in the experiment and the type of the experiment. The device/sensors utilized in 

acquiring the signal must also be considered since low-level input into a recording device 

could affect data and yield inaccurate results. 

 

2.3.1    sEMG Recording Concept  

 

When skeletal muscle fibers contract by the stimulation of the nerve fiber (neural 

activation), they conduct electrical activity (action potentials, APs). APs can be measured 

by bipolar surface electrodes affixed to the surface of the skin above the belly of the 

muscle along its long axis. As the APs pass by the electrodes, spikes of electrical activity 

are observed and pulses of muscle fiber contractions are produced. Small functional 

groups of muscle fibers, termed motor units (MUs), contract synchronously, resulting in a 

motor unit action potential (MUAP). To sustain the force produced by the muscle fiber 

(Muscle activation force), an MU is repeatedly activated by the central nervous system 

several times per second. The repetition or the average of firing rate is often between 5 to 

30 times per second. More details on the muscle physiology can be found in Malmivuo   

and Plonsey. (1995).  

 

Figure 2.3 summarizes the concept of the sEMG signal recordings using surface 

electrode. The placement of the surface electrodes are based on standard 

recommendations. Theses alectrodes measure the potentioal differences between two 

points in which they produce a signal to be implemented into an amplifier resulting into 

the known sEMG signal.   
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Figure 2.3. Schematic representation of the muscle fiber, the nerve fiber, the resultant 

activations and the concept of surface EMG recording, m1, m2 is the sEMG signal and n 

represents the noise model, d is the delay between neural activation and muscle activation 

schematically  

 

Source Disselhorst-Klug et al. 2009 

 

2.3.2    Crosstalk Phenomenon  

 

 For years, researchers have attempted to remove/reduce the so-called 

crosstalk/unwanted contaminated measurements from the sEMG signal. These 

measurements occur mainly when using surface electrodes over the muscle of interest. 

They are a mixture of signals from the neighbouring or underlying muscles caused by un-

wise placing of the surface electrodes. Higher chance of the crosstalk to contaminate the 

signal of interest is in the dynamic contraction compared to isometric muscle contraction 

and other types of contractions. Indeed, the electrical potential generated by the muscle 

fibres propagates through the volume conductor over the placed electrodes on the 

targeted muscle. Obviously, this mix recording will lead to miss-interpretation of the 

sEMG especially when the signal intended for controlling assistive devices (Kuiken et al., 

2001; Lenzi, 2012 and Khushaba et al., 2012).  To obtain a signal free of crosstalk, 

careful efforts had been taken into consideration inline with the abovementioned 

suggestions and recommendations, such as selecting the appropriate electrode size, inter-
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electrode distance and location of recordings over the muscle (Van Vugt and Van Dijk, 

2001; Rainoldi et al., 2004; Sacco et al., 2009 and De Luca et al., 2011).  

 

Despite all of these efforts, it is often difficult to selectively record the signal from 

a single muscle in practice, especially when recording signals from dynamic contractions. 

Thus, caution should be taken since the signal recorded from the muscle of interest may 

not reflect exclusively its intrinsic activity (Mezzarane et al., 2009). sEMG signals may 

overlapped in time with another muscle source i.e. the bursts of the targeted muscle 

followed by other bursts (Farina et al., 2004).  

 

           Crosstalk in sEMG has been investigated by several researchers for the purpose of 

providing an insight into muscle physiology, neuromuscular disease, investigation and 

ergonomics diagnosis (Mezzarane et al., 2009 and Kong, et al., 2010). In particular, 

intensive studies on the forearm to quantify the crosstalk between the muscles have been 

conducted because of closely located muscles (Mogk et al., 2003 and Victor et al., 2012). 

In contrast, the lower limb muscles have been investigated by few researchers to examine 

the crosstalk issue. There are two methods to reduce/detect crosstalk contamination: i) 

when the measurement is already recorded (offline data) and ii) before any measurement 

has been performed.  

 

The most common technique used to determine the presence of crosstalk is known 

as blind source separation (BSS). This technique is essentially based on principal 

component analysis (PCA) and independent component analysis (ICA) as reported by 

(Farina et al., 2004 and Rubana et al., 2013), which assumes that a number of sources are 

separated based on the number of recordings and it is a more successful technique when 

these sources include different frequencies, such as ECG and MMG contaminated on 

sEMG signal. However, it is difficult to use ICA when attempting to separate the 

activities of neighbouring muscles from the signal of interest due to the similar electrical 

properties between muscles. Cross correlation is also a widely used tool to identify the 

common component between two signals (Madeleine et al., 2003 and Mogk et al., 2003). 

Nevertheless, this latter is only useful when the two signals are known.  
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Figure 2.4. Example of mixture signal (crosstalk) adapted from Shaded area represent the 

crosstalk or the interfere signal (top figure), bottom figure is the corresponding force. 

  

Source Farina et al., 2004.   

 

As mentioned earlier, sEMG recordings are mainly based on skin-electrodes using 

the differential amplifier technique (differentiation process), as reported by (Merlo et al., 

2010). Slight modifications at this level, i.e., skin-electrode-amplifier, could reduce the 

crosstalk recording. One result of this modification is presented in spatial filters that can 

reduce the crosstalk in sEMG signal (Van-Vugt et al., 2001 and Farina et al., 2003).  

 

These techniques i.e. BSS and spatial filter can only reduce the level of the 

crosstalk in the signal of interest (Figure 2.4) and does not sufficiently reduce it until the 

the background noise (rest period of the muscle activity). This obviously will conceal the 

true determination of the onset/offset of the sEMG signal. The onset/offset detection 

technique is a useful parameter in sEMG to detect the rising time and the falling time of a 

sEMG signal bursts (Özgünen et al., 2010).  

 

2.4    Usability of sEMG Signal in the Control of Assistive Devices  

 

 In this section, we state briefly the history of sEMG signals used as control inputs 

for assistive devices. The early stage of the sEMG signal implementation as control input 
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could be referred to the second half of the last century. The usability of the sEMG signal 

to control prosthesis device possibly was first implemented by Jerard  (1974) to control 

an electro-pneumatic hand followed by the Utah artificial arm developed by Jacobson in 

1982 (Figure 2.5).  

 

As mentioned earlier, active exoskeletons were invented as early as the World 

War II ended, exoskeletons by then were meant only to augment the ability of human 

being. The use of these devices for rehabilitation purposes or as therapeutic robotic 

devices is a new application which requires a thorough insight on the physiology of the 

user in order to provide safe and close cognitive human-machine interaction. 

   

With the new direction and purpose towards the exoskeletons, the use of sEMG 

signal gets its slot in controlling orthosis/exoskeletons not before 2000 (Pons, 2010).   

 

 

 

Figure 2.5. Utah prosthesis assembly 

  

Source Jacobson 1982 

  

Recent studies have begun to examine adaptations in electromyography and 

kinematics during walking with lower-limb powered assistance robots in both healthy and 

impaired populations (Dietz et al., 2004; Emken and Reinkensmeyer, 2005; Sawicki et 

al., 2005; Gordon and Ferris, 2007; Sawicki and Ferris, 2008 and Jimenez-Fabian et al., 

2012).  
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Nowadays, a number of exoskeleton models based sEMG control exist (Rosen et 

al., 2001; Lucas et al., 2004 and Aguirre-Ollinger et al., 2007). The complexity of the 

designed exoskeleton model mainly depends on the purpose and the applications that the 

system is developed for. Indeed, more complex system requires more incorporation of the 

muscles in order to obtain smooth movement. Each of these models has limitations and 

qualities that require further investigation.  

 

The exoskeleton device is mainly developed with regards to the user‘s need and 

the body segment that needs treatment; therefore, their mechanism could be one link 

exoskeleton and could be full suit exoskeleton. Variety models of exoskeletons have been 

developed for upper limb starting from hand exoskeleton, forearm exoskeleton and full 

upper limb exoskeletons. Similarly, for the lower limb, one can see advancement in 

different models from the ankle exoskeleton, knee exoskeleton and complete lower limb 

exoskeleton mechanisms. Yet, the DOF of these mechanisms are still very limited 

compared to the human limbs flexibility and number of DOF.  

 

Our concern in this study is on the control techniques and strategies of the 

exoskeletons. Particularly, the use of sEMG signals as control inputs. In this review, we 

cover the techniques, implementation strategies and qualities of the used sEMG signals as 

control commands.  

 

           Saga University in Japan conducted a project on the upper limb exoskeleton for 

over a decade as their first work was published in 2001(Kiguchi et al., 2001). The 

exoskeleton was particularly designed for the elbow joint movement restricted to one 

degree of freedom (1DOF). Their early control strategy was detecting sEMG from two 

muscles named biceps and triceps group muscles. In each muscle group, two signals were 

extracted. The extracted feature was the waveform length (WL) for all channels with 

down sampling the signal by 100 samples. On the other hand, the force generated by the 

wrist is also introduced as a control input. Both signals (force and sEMG) were digitized 

at 2 kHz. These signals are then fed to fuzzy rules to estimate the impedance control 

equation‘s coefficients.   This control scheme suffers from i) the down sampling of the 

WL which led to an unsynchronized input with generated wrist force fed to the fuzzy 

system. ii)   Down sampling the WL signal doesn‘t guarantee the removal of the noises, 

spikes and artifacts which may be counted within the linguistic roles in the fuzzy system.  
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This latter then alters the control system. The graphs shown in Figure 2.6 seem to be high 

frequency signals in which certainly increase the computation time during the iteration. 

Furthermore, the WL signal, i.e. the muscle appears likely to be close to a random 

activation in which doesn‘t guarantee the repeatability of the signal pattern.  

 

 

Figure 2.6. One channel of the WL with the corresponding angle  

 

Source Kiguchi et al. 2001.  

 

Work by Kiguchi and Hayashi (2012) from the same University describes a 

control strategy of an upper limb exoskeleton with slight difference compared to the 2001 

work. The complexity of the system is upgraded to 7DOF upper limb exoskeleton, the 

number of the selected muscle channels had increased and the system seems more 

promising. However, the extracted feature is changed to the use of RMS feature with 

same sampling rate of 2 KHz. The segment to calculate the RMS was set to 400 samples.  

That is to say, in each iteration, the algorithm outputs one (RMS) value every 0.2s. Both, 

the force sensor and the sEMG signals were normalized in amplitude and compared. The 

higher signal in amplitude was selected as input signal for the controller. Again, this 

approach has no way to guarantee that the compared sEMG signal to the force signal is 

the pure free-noise signal. Moreover, taking 16 sEMG channels has certainly a 

considerable effect in delaying the execution time. Caution should be taken when 

comparing the muscle activities with the force as the force itself is a resultant of the 

muscle activity. Taking the Figure 2.7 (Figure 10 (c)) from the same article that assessed 

the correlation of the sEMG channel with the motion patterns shows acceptable 

correlation for example channel.6 with the elbow motion. In this particular motion, the 
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researcher could limit the inputs of the controller to one channel only since it shows good 

correlation.  

 

 

Figure 2.7. sEMG with elbow motion  

 

Source Kiguchi et al. 2012 

 

From the same lab at Saga University, a lower limb exoskeleton was also 

investigated (He and Kiguchi, 2007). The control strategy is similar to the one 

implemented in the upper limb exoskeleton.  

 

In (Lenzi et al., 2012), the exoskeleton robot was used to assist the user while 

achieving certain upper limb movements. The device was designed to be adaptive to the 

sEMG recorded over the biceps and triceps muscles. This means the robot gives torque to 

a joint in order to reduce the efforts given by the muscle. That is to say, to keep the 

muscles un-fatigue even for long term exercises.  This method doesn‘t require the 

estimation of the torque and moment produced by the muscles. The researcher assumes 

that the forces in muscles level are weighted with some factors (Kbic , Ktric) into the 

processed sEMG represented by linear envelope (LE) Fflx=Kbic*LEbic and fex=LEtric*Ktric, 

(Figure 2.8).  
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Figure 2.8. Simplified control strategy for elbow assistance  

 

Source Lenzi et al. 2012 

 

Furthermore, specifying only the biceps and the triceps muscles as responsible for 

the flexion and extension of the elbow joint might be not sufficient enough due to many 

muscles involve in the motion.   

 

A more specific objective for exoskeleton model is the design of a robotic ankle 

exoskeleton controlled by one sEMG channel. Kinnaird and Ferris et al., (2009) had 

addressed the use of the medial gastrocnemius muscle activities measured by sEMG as an 

input control for an ankle robotic device. Their study intended to evaluate the muscle 

activities after the training with the powered exoskeleton. This method is similar to the 

method in (Lenzi et al., 2012) in which the output of the muscle was not investigated.  

 

2.5    Butterworth Filter for sEMG Smoothing   

 

Numerous researchers simply used moving average filter such as (Dehail et al., 

2007; Song et al., 2013 and Yamamoto et al., 2014). Very few researchers used 

Chebychev I such as (Lu et al., 2009). However, the most acceptable filter used is the 

Butterworth filter due to its less ripples and fast response compared to other classical 

filters. Due to these advantages, it is often recommended in the biomechanics field for the 

purpose of data smoothing. Particularly, Butterworth filters have gained wide acceptance 

for sEMG filtering by several researchers. 

  

In Table 2.2, we briefly give an overview of thirteen researchers that have used 

low-pass and high-pass Butterworth filter for sEMG signal smoothing. The table includes 
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the sampling frequency, the filter order and the cutoff frequency. The slash means they 

are not mentioned. 

 

Table 2.2 

Butterworth Filter usability for surface Electromyography filtering 

References 
Sampling 

frequency 

Filter 

order 

Cutoff frequency 

   low-pass   high-pass 

1-  Sawicki, (2007) 

2-  Olree, S. Kenneth (1995) 

3-  Shao  et al. (2009) 

4-  Lloyd and Besier (2003)  

5-   Fleisher and  Hommel  (2008) 

6-  Lenzi et al. (2012) 

7-  Kinnaird and ferris (2009) 

8-  Anne K. Silveman et al. (2012) 

9-  Manal and  Buchanan (2003) 

10-De Luca et al. (2010) 

11-Cappelini et al. (2010) 

12-Neptune et al.(2008) 

13-Panagiotis et al. (2008) 

1200Hz 

1000Hz 

/ 

   2000Hz 

1000Hz 

1000Hz 

1200Hz 

1200Hz 

1000Hz 

/ 

1000Hz 

/ 

  1000Hz 

4
th

 order  

2
nd

 order 

4
th

 order    

3
th

 order  

2
nd

 order  

2
nd

 order  

2
nd

 order  

4
th

 order  

     / 

2
nd

 order 

4
th

 order  

4
th

 order  

4
th

 order 

       10Hz       20Hz 

       3Hz         30Hz 

       4Hz         50Hz 

       6Hz         30Hz 

       1.6Hz         / 

       3Hz            / 

       6Hz         20Hz 

       4Hz         40Hz 

       4Hz         30Hz 

         /             20Hz 

       10Hz          / 

       10Hz          / 

          /              / 

 

Over the past few decades, some recommendations and standards (Konrad, P., 

2005) on the prior use of sEMG have been put forth to reduce low frequency noises as 

listed below 

 

i. The recommendation of the international society of electromyography and 

kinesiology (Kadefors et al., 1980) recommended a high-pass corner frequency of 

20 Hz to remove artifact. 

ii. Standards for reporting EMG data (Merletti, 1999), which recommended using a 

high pass filter at 5Hz cutoff frequency. 

iii. The requirements of the journal of electromyography and kinesiology, which 

requires a corner frequency of 10Hz for a report to be published.  

iv. The surface EMG for non-invasive Assessment of muscles (SENIAM) 

recommendations (Hermens, 1998) recommends 10-20Hz for low frequency 

elimination. 

 

           Form the above table (Table 2.2) and the given recommendations we conclude that 

there is no uniform methodology to smooth the surface sEMG signal in order to obtain 

signals with high fidelity. Particularly, the filter parameters could significantly affect the 
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true information of signal. One of the effects of the low pass filter on the signal is that it 

overshoots/undershoots and delays and conceals the onset of the sEMG (Robertson et al., 

2003 and Kerem et al., 2010)  

 

          Moreover, the use of different hardware and data acquisition systems leads to some 

extent to a different measurements and different embedded noises due to the difference in 

hardware and electronic systems, which causes thermal noises. In addition to the thermal 

noises, electro-chemical noises originate from the interface between the skin and the 

electrodes are also considered.    

 

From the previous studies and the facts in sEMG we conclude that there are two 

major issues in sEMG that are not investigated carefully in order to use these signals as 

control input. One is the background noises in which it can mask the exact rising time of 

the muscle activities (onset/offset). The second issue is known as the crosstalk (unwanted 

recordings) which actually contaminates and overlaps in time on the signal of interest. 

Therefore, there is a need to analyzing the sEMG for the use as control inputs for 

assistive devices.  

 

In this study, we intend to conduct a precise study on the use of sEMG in driving 

lower limb exoskeletons. Since bio-signals are sensitive to noise, contaminated artifact, 

crosstalk interference and many other noise sources, careful signal processing of the 

sEMG is addressed in this thesis. Standards, recommendations, experiment ethics and 

techniques on the way of recording sEMG signals were first accomplished prior to the 

experiments. Data acquisition, setting the sampling frequency recommendations with 

regards to the sensors frequency ranges were carefully selected due to the fact that it may 

distort the signals. Synchronizing the kinematics sensors with the sEMG sensors was 

even more important as prerequisite in order to avoid the de-correlation problem in the 

signals. 

 

The assumption in this work is to detect the start and the end of the individual 

motion simultaneously with the sEMG recordings onset/offset detection parameter. The 

muscle activities that do not belong to the movement interval is categorised as crosstalk 

or un-expected recordings (unwanted recordings). Therefore, this latter recording needs 

to be determined and eliminated. Prior to this, the filtering stage in term of finding the 
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optimum filter parameter is conducted. An algorithm is developed to detect the 

onset/offset of the sEMG and the individual‘s motion onset/offset along with the filter to 

reduce the noises. The algorithm is used to detect the presence of the crosstalk in the 

sEMG. In order to suppress these recordings, Recursive Least Squares (RLS) method in 

employed. 

 

Further process is accomplished, based on HMM; we develop a mathematical 

model to relate the muscles activities with knee joint moment for two protocols. The net 

joint moment was obtained using the inverse dynamic model of the lower limb for both 

experiment protocols. Whereas, the moment generated by the muscles is compared and 

optimized with the net moment.    

 

2.6      Summary 

 

            In this chapter, the importance of the study in the field of rehabilitation medicine 

is addressed.  The chapter reveals the related studies; a statement of a brief history on 

exoskeleton is addressed followed by the concept of muscle activities measured by means 

of sEMG, ways of measuring these activities along with the processing of the signals. 

And lastly, the chapter states the use of sEMG as input control for different types of 

assistive devices. 

  

           From the literature, there is no uniform methodology to filter the sEMG as the 

filter‘s parameters significantly alter the true amplitude of the signal.  The issue of the 

overlapped and contaminated crosstalk/unwanted measurements on the signal of interest 

is extremely important as it certainly affect the behavior of the assistive device which 

leads to un-safe human-machine interaction. Two methods are considered in using sEMG 

as control input for the assistive device. One is sEMG based neuro-fuzzy method and the 

second is the sEMG driven model method. The first method is limited if the sEMG signal 

is not carefully processed as it alters the fuzzy logic linguistic. In this study we choose to 

investigate the second method. 
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Based on the above research gaps, we propose to clarify the effect of the filter‘s 

parameters on the sEMG smoothing and design the optimum filter. In order to determine 

and remove the overlapped crosstalk measurements in real time process, a pattern 

(sEMG-Kinematics) recording is conducted.  Based on certain lower limb muscles, we 

propose the hill muscle model to predict the joint moment for chair rise and walking 

protocols.  

 



CHAPTER 3  

 

 

METHODOLOGY 

 

 

3.1       Introduction 

 

In this chapter, we first describe the processing of the sEMG signals recorded 

over some selected muscles of the lower limb from recording phase through data 

acquisition to the produced forces. The muscle forces forms an insight into the moment 

generated in a joint to cause a movement. To use the sEMG as signal input, there should 

be an output that measures the motion of an individual.  

It is known fact that bio-signals are highly sensitive to noises, therefore 

obtaining an optimum filter is important. The use of Butterworth filter is widely 

accepted in biomechanics and bio-signal filtering (Erer, 2007). Pre-processing 

techniques of the sEMG signal is also addressed in this chapter. 

 

The overall concept of the study is summarized in the block diagram below 

(Figure 3.1). The system consists of the user and the exoskeleton in which both of them 

interacts. The human-machine is supplied by kinematics sensor and sEMG sensors. The 

kinematics sensor returns the angular velocity which then can be calculated as angles 

and angular accelerations. During the chair-rise test, the sEMG sensors records data 

over the Biceps Femoris (BF) and Rectus Femoris (RF) muscles. These two signals are 

processed, filtered and transformed to muscle forces. These resultant forces will lead to 

the knee joint moment. In addition to the RF and BF muscles, two more muscles have 

been selected; Solues (Sol) and Gastrocnemius (Gas) in the walking case. In a similar 

way these muscles activation are converted to forces. These forces are then transformed 

into the moments in the joints (hip and knee joints). The actuator‘s torque are controlled
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by the obtained joint moment from the muscles. The net joint moment is calculated 

using the inverse dynamics. An optimization method is used to optimize the estimated 

joint moment generated by the muscle to the measured net joint moment. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Overview block diagram of the study.  

 

3.2    Materials  

 

3.2.1    Software  

 

In this study, MATRIX LABORATORY. Inc was the core software that have 

been used to record and analyse data. Most of the data analyses either offline or online 

(real time) was also done using MATLAB software. In addition, Real-term hyper-

terminal software was used to capture the Bluetooth-based serial port data into 

MATLAB.  

 

           MATLAB  

 

MATLAB is a strong numerical computing environment and a user friendly 

high-level programming language that enables researchers to perform computationally 

intensive tasks correctly and quickly. The name MATLAB stands for matrix laboratory. 

MATLAB was originally written to provide easy access to matrix software developed 
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Exoskeleton  Actuators  
Optimization 
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3.2.2    Synchronized Biomechanics Software 

 

Shimmer Discovery Motion (www.shimmersensing.com, Dublin, Ireland) is a 

company found in 2006 that develops a number of biological sensors (EMG, ECG, etc) 

along with motion sensors such as Gyro sensing module, accelerometer sensor. The 

company also provides software to record data either biological signals or movement 

signals. This software is limited to at most two channels at a time using MATLAB and 

with regards to the required channels (combination between sEMG and kinematics 

measurements) used in this experiment, a synchronized recording and measurement 

system was developed based on MATLAB. Inc. Shimmer MATLAB Instrument Driver. 

v1.1 which allows for six (6) channels recordings (see Appendix A).  

 

The block diagram in Figure 3.3 represents the structure of the developed 

software.  The physical sensors are set on the human body in order to acquire data from 

the muscles and the movement of the limbs. From the user interface, the user could 

select the number of sensors and set the sampling frequency. The communication 

between the sensor and the host laptop is Bluetooth based communication using the 

Real-term hyper terminal. Further processing is accomplished such as data calibration 

and filtering.  

 

 

  Physical Sensors  

 

 

 

 

 

 

 

Figure 3.3 Block Diagram for the developed software  

 

An example of one sEMG channel is given in Figure 4.3. The advantage of the 

software is the recording of two physical measurements (Kinematics and sEMG) in the 

same interface which help in correlating the two measurements. 

Kinematic 

sensors 

sEMG 

sensors 

 

User Interface, 

Data acquisition  

Bluetooth 

communication  

 

Data disply  

Data 

processing  
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Figure 3.4.  sEMG Recording user interface using MATLAB. Inc. an example of sEMG 

raw with the corresponding rectified-filtered signal streamed in real-time from Biceps 

Femoris muscle.  
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3.2.3 Hardware  

 

The experimental protocol necessitates motion sensors (Gyro) and EMG based-

surface electrode sensors to record the muscle activities during-chair rise and walking 

experiments.  

 

            EMG Sensor Specification  

 

Electromyography (EMG) sensor is considered the centerpiece of the 

experiment since the main focus in this work was on analyzing the sEMG signals for the 

use in control schemes and strategies of assistive devices such as exoskeleton. In this 

research, a Shimmer EMG expansion module from Shimmer Discovery in Motion 

Company is used (Figure 3.5). This module is highly economical using surface 

electrode and Bluetooth based communication (wireless) (specification as in Table 3.1). 

It has three leads (positive, negative and neutral) in which each lead is connected to a 

disposal electrode. 

 

 

 

 

 

 

 

 

 

Figure 3.5. Shimmer EMG sensor 

 

Table 3.1  

Shimmer EMG sensor specification  

Size 53 x 32 x 23 mm 

Frequency range 5-482Hz 

Maximum signal range  4.4 mV 

Gain 682 

Max Current Drawn  180 µA 
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           Gyroscope Sensor Specification  

 

From the same company (Shimmer Discovery in Motion, Shimmer Technology, 

Dublin, Ireland), a Gyro expansion sensor is used in this work to measure the motion of 

the individual. It is a wireless instrument that provides three axis angular rate sensory 

(gyroscope). From the angular rate measurement, one can calculate the angles along 

with the angular accelerations.  

 

 

 

 

 

 

 

 

Figure 3.6. Gyro sensor 

 

           Disposal Surface Electrodes  

 

 Disposal surface electrodes were used rather than using needle electrodes. This 

latter is an invasive or intramuscular technique to measure muscle activities which is 

maybe painful for individual. Two types of electrodes have been used in this experiment 

one with 3cm and 1.5cm in diameter (Figure 3.7). It has a gel part and metallic part: Ag-

AgCl; manufacturer: Shenzhen Amydi-med Electronics Tech Co., Ltd.) 

 

 

 

 

 

 

 

 

Figure 3.7. Disposal electrodes (b) and the leads (a) used to connect the sensor with 

surface electrodes 

b a 
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            Arduino Uno Board 

 

Arduino is an open source electronics platform enhanced with both software and 

hardware. Arduino is a programmable microcontroller based board with multi digital 

and analog input/output (I/O) pins (Figure 3.8). It has one USB serial port; it has access 

to many other peripheral boards such as the motor drive Adafruit board (see Figure 3.8). 

The Arduino / MatLab software/hardware together with the Adafruit motor shield were 

used to link the digital (I/O) system prototyped with an external actuator (one link 

exoskeleton) during real-time implementation.  

 

 

 

Figure 3.8. Arduino Uno and Adafruit motor shield boards 

 

3.3      Experimental Protocol    

 

             Five healthy young adult subjects in total with (age ranging from 20 to 24 years 

old) volunteered in this study. The mean height of the subjects was 1.70±0.7 and the 

weight was 72±4 kg. Before conducting the experiment, the subjects were informed of 

the nature of the experiment and the purpose of the study and they have been provided 

with written informed consent. 

           Chair-rise and walking tasks are two important mobility skills in our daily life. 

Therefore, we choose to conduct an experiment on these tasks as it may give an insight 

to the movement and help in developing assistive devices for individuals with lower 

limb disabilities.   Figure 3.9 shows the schematic representation to clarify the motion 

coordinates and experiment conditions. In the chair rise protocol, only the hip angle 2 

is taken in consideration with range between 0
0
 and 90

0
 at chair-off and up-right 

Adafruit Board 

Uno Board 
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positions, respectively. In the walking experiment, the hip and the knee angles are taken 

into consideration.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. chair rising and walking protocols  

 

Figure 3.10 presents the schematic representation of one gait cycle during walking task. 

It divides the the gait into two phases one is known as the stance phase and the other is 

known as the swing phase.  

 

 

 

 

 

 

 

 

 

Figure 3.10. Representation scheme of human walking gait for one cycle, the gait 

begins and ends at heel strike.  

 

Figure 3.11 depicts the actual set-up experiments for both chair-rise and walking 

experiments.   
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Figure 3.11. Experiment set up for chair rising and walking protocols                        

 

3.4       Data acquisition   

 

Data acquisition is mainly the task of capturing the analog data from 

sEMG/kinematics sensors and encoding this data to a computer. Recording data from a 

sensor is often by means of analog signals or voltages that are analogous to the physical 

signal; its magnitude also varies through time. This is accomplished by a method called 

analog to digital conversion (A/D). The A/D conversion plays a crucial role in 

recordings, especially sEMG signal due to its high frequency nature.  

 

            A/D converter is a device that transforms a continuous time signal to a digital 

signal. It can be done by a series of two operations i) sampling and ii) quantization. 

Sampling is where the continuous signal converted into one that is only defined by 

discrete time, but whose amplitude is taken arbitrary values. The sampling operation is 

particularly critical if we want to avoid loss of information in the conversion. If the 

sampled signal could approximate closely the original signal, then the conversion from 

continuous to digital time is sufficient. The Nyquist sampling theory states that, if a 

signal x(t) contains no frequency components higher than original frequency of the 

analog signal w then it can be exactly reconstructed from samples taken at sampling 

frequency Fs >2w. 

Quantization is in which a continuous amplitude signal is converted into a digital signal 

that can only take a finite set of values. 

Surface electrodes 
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3.4.1    Sensor Placement  

 

A number of lower limb group muscles contribute to the movement of sit to 

stand and stand to sit as well as walking task. For the chair rising experiment procedure, 

two muscles were identified as suitable to detect the sEMG signals. The two selected 

muscles were the BF and RF muscles, which originate at the thigh section of the human 

body. Whereas, in the walking experiment, the Sol and Gas muscles which originate at 

the leg section (refer to figure 3.11) were chosen in addition to the BF and RF. The 

kinematic sensors were placed on the mid-thigh of the subject for the hip joint motion 

measurement during chair rise task. Another kinematic sensor was placed on the back 

upper side of the heel in order to measure the knee joint motion during the walking task 

(refer to Figure 3.11). 

 

3.4.2      Pre-Recording Data Protocol 

 

The experiment is divided into two pairs; one is the chair rising task and the 

second is the walking task. For the chair rising experiment, the subjects were seated on 

a standard chair and were asked to rise from the chair at a self-selected speed. The 

initial posture of the subjects and position conditions is presented in Table 3.2. During 

each trial, each subject was asked to perform two times the sit to stand and stand to sit 

task successively.  

 

Table 3.2  

Task specification for chair rising experiment protocol.  

Label Description (sit to stand task) 

S00 

H10 

R20 

S30 

S40 

Sitting on a chair with 90° knee flexion 

Hands free, neither from the chair nor on the subject‘s thighs. 

Chair off at self-selected speed  

Standing upright to obtain 0° knee flexion 

Sitting again with normal speed to the same position (S00) 
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During the walking task, each subject was asked to stand upright and was 

encouraged initially to keep the posture at heel strike (refer to Figure 3.10) throughout 

the experiment for each trial.  In each trial, the subject performs two strides. All subjects 

(five subjects) performed two trials at self-selected speed.  

 

3.4.3 Skin Preparation and Surface Electrodes Placing  

 

Over the selected muscles, the skin was cleaned using alcohol swab prior to the 

placement of the surface electrodes. The surface electrodes were carefully placed 

according the aforementioned recommendations in order to minimize the crosstalk 

measurements to reduce the movement artifact. The locations of the surface electrodes 

were approximately marked on the skin and pictures were taken (Figure 3.10).  

 

3.5       Real Time Implementation    

 

To validate the proposed methodology, a real-time prototype of an exoskeleton 

robot is developed (Figure 3.12). The algorithm is developed in MATLAB environment 

and launched into the Arduino board. The data or commands transmission between the 

host computer and the Arduino board are performed via a USB serial port. As the 

stepper motor requires a driver, the Adafruit motor shied is chosen as an I/O interface 

and has mounted on the Arduino board.  

 

In this implementation, we seek to correlate the motion range of the human limb 

with the motion of one link exoskeleton in a natural way. On the other hand, the sEMG 

and the gyro sensors were positioned similar to the previous setup during recording data 

for both experiment protocols i.e. walking and chair rise test. As discussed earlier, both 

sEMG data and kinematics data were sampled at 1024 Hz. As an application in real-

time processing, the down-sampling is one way to lessen the execution time. In the 

recording software, the reading function receives the data every 0.1s. Therefore, the 

hardware processing time of sEMG/Kinematic sensors is 0.1s. 
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However, the muscle activities require low sampling time as we set it to (1/1024 

sec). This means in each 0.1 sec, a packet of data is streamed into the computer 

(Laptop). Referring to the sampling time and requesting time, a packet should contain 

about 100 samples. But, the actual packet of the data turns to do not always contain 100 

samples; this is may be due Bluetooth communication and the Windows operating 

system. A buffer of the streamed packet‘s size is set to receive each packet with its size. 

This packet data is then processed individually i.e. removing the DC offset, high-pass 

filtered, fully rectified then low-pass filtered. This result is then averaged to provide one 

value which is the mean absolute value for the actual packet segment. As the data is 

streaming-in, the same process is accomplished to the following packets. The previous 

and the current MAV values are then compared with regards to the mean of the actual 

segment data and its standard deviation to detect the onset/offset time of the sEMG. 

Similar procedure is applied to the kinematics data. Further process is needed on the 

level of the obtained results from sEMG streaming data to be transformed to neural 

activation by implementing equation (4.34) and equation (4.36) presented in the next 

chapter to obtain the muscle activation. The muscle activation is used as an input to the 

Hill‘s model in order to obtain the generated force by the muscles. To this end, the force 

to moment model is implemented in order to obtain the joint moment.    

 

 

 

Figure 3.12. Hardware Configuration 

 

A summary of the implementation scenario is shown in Figure 3.13. Similar 

experimental setup to the recording of the sEMG is accomplished, i.e. placement of the 

Stepper motor    
Adafruit Motor shield  

Arduino board   
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sensors on the individual limb. A second gyro sensor is mounted on the exoskeleton link 

for confirmation purposes.     

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Real Time Implementation Scenario.  

 

3.6       Summary   

  

In order to examine muscle activities and clarify how they can be used in 

producing motion, we propose to divide the experiment into two folds; one is the chair-

rise and the other is the walking tasks.  

As summary for this chapter, to obtain a suitable sEMG signal that can be used 

as input control for exoskeleton robot meant for rehabilitation and/or assistance, the 

given recommendations to record sEMG is achieved in addition to the proposed 

kinematics measurement that could reduce the effect of undesirable recording in sEMG. 
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Software is developed in order to capture multi-channels of sEMG with 

accordance to the motion of the individuals.  This will help in finding the true 

correlation between motion and the muscle activities. One link exoskeleton is 

prototyped to be executed in real time verification.  

 

In the following chapter, we focus only on the sEMG signal processing part, 

starting from filtering stage to the force produced by muscles.  The obtained forces will 

be further analyzed to obtain the joint moment.  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4  

 

 

sEMG SIGNAL PROCESSING 

 

 

4.1        Introduction 

 

In this chapter, the analysis of the sEMG in term of noise filtering, 

crosstalk/unwanted removal, normalization of the signals in terms of amplitude and 

time (with accordance to the motion range of the individual‘s motion) is addressed.  

 

4.2        Data Analysis Procedure  

 

4.2.1     sEMG Normalization  

 

To compare the activity level between muscles and between subjects, 

normalization of the surface EMG signal is performed. sEMG normalization is the 

process by which the electrical signal values of the muscle activity are expressed as a 

percentage of that muscle‘s activity during a calibrated test contraction (Lehman and 

McGill, 1999). Aiming to improve absolute EMG reliability and to provide an 

expression of relative muscle activation, the normalization of EMG data requires the use 

of a standardized and reliable reference value against which experimental data are 

measured (Burden et al., 2003). From literature review, a number of methods have been 

used to normalize the sEMG signal such as maximal voluntary contraction (MVC), 

mean value of the signal, peak value. The normalization method usually depends on the 

recorded sEMG nature (isometric, isokinetic or dynamic muscle actions). In this study, 

since the experiment protocol was on the chair-rise and walking tasks, which 
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resulted in dynamic muscle contractions, we have chosen the common method used in 

dynamic contraction. Dynamic muscle contraction is often normalized to the peak of the 

signal (Winter et al., 1987; Marras et al., 2001a, b; Sausa et al., 2012 and Halaki et al., 

2012).  

 

                               n_EMG(k) = EMG(k)/max(EMG)                    (4.1) 

 

where, n_EMG (k) is the normalized sEMG. 

In real time application, the normalization is achieved by taking pre-trials i.e. recording 

the sEMG signal and measuring the peak values firstly. 

 

4.2.2    Baseline Wander   

 

Baseline wander (drift) is the effect on the zero line of the signal by shifting the 

amplitude up and down. This is due to the movement of electrodes and leads of the 

sensors. Baseline wander appears highly in bio-signals such as ECG, sEMG (Blanco-

Velasco et al., 2008; De Luca et al., 2010; Pal and Mitra, 2012). The presence of the 

unbalanced baseline could alter and made the determination of the onset/offset of the 

signal difficult. There are several methods and techniques to reduce the baseline drift, 

one is by applying a fitting polynomial to the signal and subtracting it from the signal. 

The second method is known as the empirical mode decomposition (Blanco-Velasco et 

al., 2008) and the cubic spline method is also used to remove the baseline drift 

(Clifford, D.G, 2009). In this study, we used the cubic spline algorithm.  

 

4.2.3    DC Component   

 

DC component is the mean value of a signal or a constant that is added to a 

periodic waveform. It is usually undesirable as it causes signal saturation and signal 

distortion when for example integrating or differentiating a signal. For both kinematics 

and sEMG signal the zero-mean algorithm is applied.  By taking the average of the 

signal and subtract it from the signal (zero-mean the signal), this component is removed. 

The average of a segment of a signal is given by the following formula 
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where, G
~

M
~

E
~

s  represent the resultant sEMG signal after DC component being 

removed. N is the segment samples.  

Similarly, for kinematic data, the raw data is segmented and averaged in order to 

remove the DC offset.   

 

4.2.4     sEMG Features Extraction  

 

             To obtain a better performance for sEMG application, several common features 

are widely used.  sEMG features are classified into three classes; time domain features, 

frequency domain features and time-frequency features. Several researchers prove that 

time domain features showed better performance in control applications (Zardoshti-

Kermani et al., 1995, Phinyomark et al., 2009 and Rubana et al., 2013).  Among these 

features are the integrated EMG (IEMG), mean absolute value (MAV), Modified mean 

absolute value1 (MMAV1), Modified mean absolute value 2 (MMAV2), simple square 

integral (SSI), Variance (VAR) and root mean squares (RMS).  Table 4.1 summarizes 

the mathematics formulas for each of the above-mentioned features and a brief 

description on the features. From the mathematical expressions of the sEMG features, it 

is clear that most of these features are related to each other and therefore the extracted 

EMG feature preserves the waveform of the signal. For further validation, we used the 

cross correlation to quantify the relationship between the extracted features.  
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Table 4.1  

Brief description and the mathematical equations for some of sEMG applicable 

features. 

Extracted Feature   Mathematical formula  

- Integrated EMG (IEMG) is a method to 

measure the total muscular effort. IEMG is 

important for quantitative EMG relationships 

(EMG vs work, EMG vs force). IEMG is 

obtained by calculating the summation of the 

absolute values of the EMG raw.  

 





N

1i
ixIEMG  

- Mean Absolute Value (MAV): is the moving 

average of full-wave rectified EMG signal.  

 

 

- Modified Mean Absolute Value (MMAV1): 

Is an extension of the MAV with slight 

modification in the weight segment of the 

EMG.  

 

 

 

 

- Modified Mean Absolute Value (MMAV2): 

similar to the MMAV1, with the continuous 

weighting segment function wn is improved.  

 

 

 

- Simple Square Integral (SSI): Is the energy 

or the power of the sEMG.  

 

- Root Mean Squares (RMS) is obtained by 

calculating the mean value of the square of 

all values of the EMG signal and dividing it 

by the length of the vector N and then the 

root of this result is calculated.  

 

 

 

- Variance (VAR) is the mean value of the 

square of the deviation.     
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            Cross-Correlation 

 

In order to quantify the linear relationship between sEMG features, one of the 

most widely used technique, is the cross-correlation defined by the following equation. 

 

  
(4.4) 

 

where, cov is the covariance, σx and σy are the variance of the x and y features of the 

sEMG signal. In this study, we extracted the sEMG features and we quantify them using 

cross-correlation technique. Table 4.2 illustrate that there is a strong correlation between 

the IEMG and other features. Therefore, we have chosen to use the MAV feature for 

further analysis and in the implementation of the system in real time.    

 

Table 4.2 

Correlation between sEMG features. 

EMG Features  R
2
 

Integrated EMG vs Mean Absolute Value  1.0000 

Integrated EMG vs Root Mean squared EMG 0.9971 

Integrated EMG vs Simple square Integral (SSI) 0.9227 

Integrated EMG vs Modified  Mean Absolute Value1 0.9996 

Integrated EMG vs Modified  Mean Absolute Value2 1.0000 

Integrated EMG vs Variance  0.8764 
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4.2.5    High Pass Filtering  

 

Low frequency artifacts induced with the sEMG could be removed using high 

pass filter with a cutoff frequency between 2Hz to 20Hz. One of the low frequency 

signals is the cardiography signal (ECG).  

 

Many methods have been proposed to reduce the effect of the heart beat (ECG) 

signal on the sEMG signal. One of the methods is known as the independent component 

analysis (ICA) in which it separates the original source from additional noises 

(Chritiaan et al., 2015).  Other techniques such as wavelet de-noising method, hybrid 

wavelet-neural network are also widely used. Q-R-S (ECG complexes) detection 

method is an alternative method used to determine these complexes. As ECG is a low 

frequency signal, the frequency corner of a filter is highly concerned.  Redfern et al. 

(1993) investigated the influence of adjusting the cutoff frequency of a high-pass filter 

and suggested that a cutoff frequency of approximately 30Hz seemed optimal in 

balancing ECG removal with excessive sEMG degradation (Redfern et al., 1993). In 

this study, we apply Redfern‘s method using a high pass-third order Butterworth filter 

with a cutoff frequency of 30Hz. 

 

4.2.6    Low Pass Filter  

 

Digital low-pass filter is an essential procedure for noisy signals such as sEMG. 

Low pass filter for sEMG is considered the closest representation for the muscle activity 

and leads to the correct force produced by the muscles group in which they provide the 

required moment to the joint. Therefore, unwise choice of the filter and its parameters 

may thwart the anticipated results.  

 

Two types of filters are used in this work to ensure free sEMG distortion and 

reduced noises, one is the Butterworth filter and the second is the wavelet filter. A 

comparison between the two filters is accomplished. The mathematical recursive model 

of a low-pass digital filter is described by the following difference equation  
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)n-(n.ya - ... - 1)-(ny.a -  )n -(n  x.b  +

 ... + 1)-(nx.b + (n)x.b =  (n).ya

a1+an2b1+bn

211
 (4.5) 

 

where, a1=1 , x(n) the actual sEMG at sample time n, a‘s and b‘s terms are constant 

coefficients, y(n) is the output of the filter.   

 

            Based on the recursive equation of a second-order Butterworth digital filter 

developed by Roberson and Dowling (2003), and after performing many tests using 

MATLAB. Inc., software, the b’s term of the filter coefficients from order N to order 

N+1 follow Pascal‘s triangle, as illustrated in Figure 4.1  

 

 

 

 

 

 

Figure 4.1. Determination of Butterworth coefficients  

 

  As a result, a third-order recursive Butterworth digital filter could be defined as 

follows: 

 

 yn = b0 (xn + 3xn-1 + 3xn-2 + xn-3) - a1yn-1 - a2yn-2 – a3yn-3                              (4.6) 
 

      The term yn refers to the current filtered data point, which is determined by the 

preceding three points (yn-1 yn-2 yn-3), n is the sample index. The coefficients of the 

Butterworth filter are a function of the frequency corner, and their number depends on 

the filter order. 

The angular cut-off frequency can be modelled as reported by Roberson and Dowling, 

(2003) )
2

tan(
s

c
c

f

f
w


 where, fc and fs are the cut-off frequency and the sampling 

frequency, respectively. 

 

2
nd

 order                 b0  2b0  b0 

3
rd

 order              b0  3b0 3b0  b0 

4
th

 order          b0  4b0 6b0  4b0 b0 

5
th

 order    b0  5b0 10b0  10b0 5b0 b0 
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      In most cases, the bilinear transform is used to translate an IIR filter from the s plane 

to the z plane (Lam, 1979). The bilinear transformation operator is defined as  

s1

s1
z




 . 

 

To obtain a zero-lag filter, filtering forward and backward was achieved.  

A third-order system for a digital filter can be represented in the z domain by the 

following: 

 

 3
3

2
2

1
1

3
0

2
0

1
00

za+za+za+1

zb+zb3+zb3+b
=)z(G  (4.7) 

 

Frequency Response  

 

The behavior of a filter can be summarized by the so-called frequency response 

function, Hc. The frequency response function of the Butterworth low-pass filter has the 

following formula 

 

 
2N

2

)(1

1

s

c
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f

f
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(4.8) 

 

    For low-pass filter, the inequality fs˃fc has to be satisfied. where, fs, fc are the 

sampling frequency and the cutoff frequency respectively. Let;  
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c

c  (4.9) 

 

       

when, Hc =1, the filter will pass all the signal frequency component and if Hc= 0 

doesn‘t pass any frequency components. Corresponding to the normalized Nyquist 

frequency, the ratio 
s

c

f

f should be within the range of 0 to 1. 



 

 

50 

 

 Wavelet Approach for Filters   

 

The de-noising algorithm based wavelet for sEMG filtering has been 

investigated by many researchers (Conforto et al., 1999; Khezri and Jahed, 2008 and 

Phinyomark et al., 2009). In this work, the wavelet approach for filter is used as 

comparative and validation tool with the abovementioned Butterworth filter. 

 

 Classical Fourier analysis has some limitations compared to wavelet analysis 

which unfolds a time series system not only in frequency but also in time; this is more 

adequate when the signal is high frequency which may be difficult to model it using 

Fourier transform. 

 

The wavelet analysis block transforms the signal into different time-frequency 

scales. The wavelet transform(WT) uses the wavelet function and scaling function to 

perform simultaneously the multiresolution analysis (MRA) decomposition and 

reconstruction of the measured signal.  

The scaled wavelet by λ and shifted by a could be written as the following 

 

 




)(
.)(,

at
ta


  (4.10) 

 

where, ψ(t) is the Daubechies3 mother wavelet (the waveform is presented in Appendix 

C. Fig.C.1) . 

Similar, to the Fourier concept, wavelet could be considered as special case from the 

Fourier transform by taking a scaling function.   The coefficients can be estimated as 

follow, 

 

    )t().t(xc a,a,  (4.11) 

 

and the signal can be reconstructed by the formula  
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The signal at level N can be expressed by the following formula  

 

 )t(D....)t(D)t(D)t(A)t(x 12N1NN  
 (4.13) 

 

where, AN  is called the approximation at level N, and D1, D2,….,‎DN are the details of 

the wavelet. 

 

Signal to Noise Ratio  

 

Signal to noise ratio (SNR) is a quality measure used in science and engineering 

to characterize the strength of the signal to the noise. SNR can be calculated in term of 

different physical measurements such as the power, voltage (Root Mean Squares), the 

variance and the peak level.  In this study, we choose to quantify the variance between 

the de-noised and actual sEMG signal. The sEMG is defined as the combination of the 

clean signal sEMGc and the noise model sEMGn i.e. 

 

 sEMG(k) = sEMGc(k) + sEMGn(k)                               (4.14) 

 

with k is the signal‘s sample.  

The filtered sEMGc is defined as the difference between the input to the filter and the 

output of the filter. However, the filter used herein is the Butterworth filter.  

The signal to noise ratio is defined by the following formula,   

 

  
(4.15) 

 

where, var is the variance operator. 
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4.3       Onset/Offset of sEMG (Offline Detection)   

 

In this section, the recorded data from the selected muscles are analysed offline. 

The absolute values of the recorded sEMG were used to indicate the muscle activities for 

all selected muscles in this study. We first considered a recorded raw EMG signal as x(n) 

signal (rectified and low-passed filtered). The onset/offset algorithm takes the average 

between two points a and b before the first sEMG burst and an average between two 

other points c and d  later after the first sEMG burst i.e. at the baseline level. These 

averages result into two points, which are defined by the following equations and are 

considered as the references or threshold points for the detection of the onset and offset, 

respectively:  
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where, xa , xb  xc and xd are the sEMG values at points (a, b, c and d), Nab and Ncd is the 

number of samples of the [a, b] and the [c, d] segments, respectively (Figure 4.2). This is 

also done when one wants to detect the onset/offset of the second, third, and so forth 

bursts of the sEMG. The following equations search for the index points (the sample 

index) of the onset/ offset along the rectified-filtered sEMG signal. 
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 (4.18) 

 

where, ind1 , amp1 and ind2, amp2 are the coordinates of the sEMG signal. If the current 

point of the EMG is greater than twice the average of the set segment, then this point is 

counted as an onset point. Contrary, with offset detection, if the current value of the 

signal is less than twice the segment [c,d], then the this point is an offset.  
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Figure 4.2. Example of Onset/Offset of sEMG (Offline Detection)   

 

However, the baseline of the kinematics recording data is usually centred 

approximately on the zero line after filtering and removing the DC offset. In this study, 

we consider an angular velocity point of 7
0
/s (standard deviation) as a threshold point to 

detect the individual beginning of the movement.  

 

 

4.4    Modified Butterworth Filter for crosstalk/unwanted Measurements Removal 

 

As mentioned earlier, the sEMG may exhibit additional interference 

measurements in which the discussed Butterworth filter fails to overcome this problem, 

nor the wavelet for filter. Correlating the kinematics data with the sEMG might give an 

insight on when the muscle should be activated. Since the onset/offset of the sEMG and 

the kinematic data are detected, one can compare both results to define the crosstalk 

measurements.  

 

Figure 4.3 shows a block diagram of the stages taken for the application of the 

adaptive filter. The first step involves streaming the sEMG/kinematics data to be filtered 

using a 3
rd

 order Butterworth filter with cutoff frequency of 6Hz. The smoothed data is 

then employed into a system that detects when the sEMG is at rest and when it is 

bursting along with kinematics data onset/offset detection. These index points 

(onset/offset of both sEMG and kinematics raw data) are then compared. If the sEMG 

burst corresponds to a movement, the raw data is smoothed using a conventional 3
rd

 

order Butterworth filter at cutoff frequency of 6Hz. However, if the sEMG 
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onsets/offsets do not correspond to any movement represented by the kinematic sensor, 

the Butterworth filter adaptively decreases its cut-off corner to eliminate this 

contaminated burst.  

 

 

 

 

 

 

 

 

 

 

Figure 4. 3. Adaptive Butterworth filter stages. 

 

4.4.1    Recursive Least Squares 

 

The recursive least squares algorithm minimizes the sum of the squares of the 

error at each index point along the sEMG signal. The general model is given by    

 

 ŷ(n)= w
T
X(n)                                                                                       (4.19) 

 

where w
T 

is the weight vector, which contains the a’s and b’s terms of the previously 

defined Butterworth digital filter. Because the selected filer was a third-order filter, the 

weight vector w is modelled by the following vector form: 

 

 w
T
 = [b0   3b0    3b0   b0   a1  a2  a3]

T
   (4.20) 

 

The regression vector was defined as 

 

X(n)=[xn  xn-1  xn-2  xn-3   ŷn-1  ŷn-2  ŷn-3], and the error vector was defined as 
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∑‎e(n) = ∑d(n)- ŷ(n) = ∑d(n) -  w
T
X(n), where d(n) is the desired baseline vector which 

is defined in this study as the previous filtered baseline of the sEMG signal. 

The sum of the squares of the errors is then 

 

 w
T
 = [b0   3b0    3b0   b0   a1  a2  a3]

T
   (4.21) 

 

 ∑‎e(n)
2
 = ∑(d(n) - w

T
X(n))

2
                                                                       (4.22) 
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2
 = ∑(d(n)

2
 +w X(n)X(n)

T
 w

T
) - 2∑(d(n). w

T
X(n)                                                    (4.23) 

 

 

The introduction of a factor λ to reduce the effect of the previous data, 0 << λ‎<1, called 

the ―forgetting factor‖ to the above sum of the squares of the errors led to the following: 

 

 ∑‎λ‎e(n)
2
 = ∑ λ (d(n)

2
 +w X(n)X(n)

T
 w

T
) - 2∑ λ (d(n). w

T
X(n)                                 (4.24) 

 

To minimize the error, setting the derivatives of the ∑‎λ‎e(n)
2
 term with respect to the 

weight w to zero,  
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   )n(d)n(X2)n(X)n(X)n(w T  (4.26) 

 

The following terms were then defined:  )()()( nXnXnR T and  )()(2)( ndnXnR   

This leads to R(n)w(n) = P(n), which generates the optimal coefficients  

 

 )()()( 1 nPnRnw   (4.27) 

 

The weight vector w is updated recursively based on the recursive R
-1

(n) and P (n). The 

matrix P(n) could be defined recursively as 



 

 

56 

 

 

 P(n+1) = λ P(n) + X(n+1)d(n+1).                                                       (4.28) 

 

In contrast, the inverse matrix of R(n) is recursively updated based on the lemma 

inversion reported by Rowell (2008), which is given by 
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To further abstract the above equation, the so-called Kalman gains is defined by 

 

 

)1+n(X)n(R)1+n(X+λ

)1+n(X)n(R
=)1+n(k

1T

1

 (4.30) 

 

Equation (4.29) can then be re-expressed as 

 

  (n)1)R(n1)Xk(n(n)Rλ1)(nR 1T111    (4.31) 

 

The updated weight w can then be expressed as )1()1()1( 1   nPnRnw by substituting 

equation (4.31) and equation (4.28) into equation (4.27). With further calculation, the 

updated weight can be defined as 

 

  w(n)1)X(n1)d(n1)k(nw(n)1)w(n   (4.32) 

 

              Another factor, δ may be introduced for the initialization of the matrix R
-1

(n) to 

avoid the risk of singularity. This factor is usually defined by R
-1

(0) = δI, where I is the 

identity matrix. 

The cutoff frequency could be then relatively easy to compute based on the updated 

weight w,   
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4.5       sEMG Signal to Muscle Activation Model 

 

 When a muscle contracts, the result of this contractions will produce the so-

called muscle force. However, the generated force usually is delayed by about 10ms to 

100ms (Buchanan et al., 2004). 

 

A recorded raw sEMG signal is a voltage that is both positive and negative, 

whereas muscle activation is expressed as a number between 0 and 1; the zero value 

refers to a deactivated muscle, while 1 refers to a full activated muscle.   The muscle 

activation needs a well smoothed or filtered to be accounted for the way that sEMG is 

related to force.  

 

           As mentioned earlier, there exists a time delay d for the muscle to be activated; 

this process is called ―muscle activation dynamics‖ (Zajac, 1989). Figure 4.4 illustrates 

the process of the sEMG being transformed to a force generated by a specific muscle.  

 

 

 

Figure 4.4. Schematic representation of the steps involved to transform sEMG signal to 

the muscle force. 

 

The neural activation has the following recursive model   

 

 u(k) =‎α.‎e‎( k – d) – β1.u(k-1) – β2.u(k-2) (4.34) 

 

u(k) is the neural activation, d is the electromechanical delay which usually taken as 

d=40ms (Lloyd and Besier, 2003 and Han et al., 2015), e(k) is the normalized-rectified-

filtered sEMG signal.   
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β1 , β2 and α are coefficients defining the second order dynamics. To ensure the stability 

of the above equation, a set of constraints were implemented.  

 

 β1 = ϓ1 + ϓ2 , β2 = ϓ1 . ϓ2 and α‎-β1 - β2 =1 (4.35) 

 

 with, |ϓ1| < 1, |ϓ2| < 1. 

 

The arithmetic model that relate the neural activation with muscle activation is proposed 

by (Buahanan et al., 2004) 
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1e
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


  (4.36) 

 

where, A is a factor between -3 and 0. Having A= -3, the muscle force activation is 

highly exponential with the neural activation. When A=0, the relationship between the 

neural activation u(k) and the force activation a(k) is closely to a linear relationship 

(Figure 4.5) (Shao et al., 2009 and Manal et al., 2003). 

 

  

 

 

 

 

 

 

 

Figure 4.5. A-model: neural activation to muscle activation 

  

Source Manal et al. 2003  
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       In the following section; we present the hill‘s model that simulates the muscle force 

from the muscle activation.  

 

4.6    Hill’s Muscle Model   

 

The common models used in biomechanics to represent the muscle forces during 

various movements are the Hill‘s type models (Hill, 1938). These models have the 

ability to predict the muscle force on the level of the muscle organ. The output of the 

Hill type model is a one dimension force which is applied to a skeletal model. However 

the inputs to the model are muscle length, or more precisely muscle–tendon-complex 

(MTC) length, MTC contraction velocity and neural muscle stimulation, (Figure 4.6) 

(Zajac, 1989; Van Soest and Bobbert, 1993; Winters, 1995; Günther and Ruder, 2003; 

Kistemaker et al., 2006 and Haeufle et al., 2014).  

 

Hills muscle type model consists of two main elements, one is the contractile 

element (CE) used to produce the active muscle force (FA
m 

). Whereas, the second 

element which is connected in parallel with the contractile element, is a passive elastic 

element (PE) used to produce passive force (FP
m ). 

 

 

 

 

 

 

 

 

    

Figure 4.6. Hill‘s muscle type model   

 

   It is assumed that the total muscle force is the sum of the active and passive 

forces.  

 

 F
m
 = FA

m
 + FP

m
 (4.37) 
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Figure 4.7. Relationship between the muscle forces to the fiber length  

 

Source Lloyd et al., 2003 

 

The tendon is modeled in series with muscle fiber (Figure. 4.6).  It is noted from Figure 

4.6 that the total muscle-tendon force can be expressed as     

 

 F
mt

 = Fm
 .cos ()  

 (4.38) 

and the muscle-tendon length can be calculated as   

 

 l
mt

= l
t
 +l

m
.cos()  (4.39) 

 

where,  is the pennation angle at which the muscle fiber connect to the tendon, i.e the 

angle between the muscle fiber and the tendon. Zajac (1989) results showed that the 

pennation angle has less effect on the produced force if it is less than 20 degrees (Table 

4.3), therefore in this study we choose to neglect the pennation angle for the selected 

muscles. l
t 
is the total length of the tendon.  

The active muscle force and the passive force can be described as  

 

 FA
m
 =fA (l). fv (v). a(k). F0

m
 (4.40) 
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 FP
m 

= fP (l). F0
m 

(4.41) 

 

where, fA (l),  fv (v) and fP (l) represent the normalized active force-length relationship, 

force-velocity relationship and the passive elastic force-length relationship respectively 

(Figure 4.3).   

The resulted muscle-tendon force F
m
 is then modeled as  

 

  Fi
m 

= [fA (l). fv (v). a(k)+ fP (l)] . F0
m
  (4.42) 

   

 

F0
m
 is the maximum isometric muscle force, l is the normalized muscle fiber length and 

v is the normalized muscle fiber velocity during muscle contraction and i denotes a 

specific muscle. 

The coupling between the muscle activation and the optimal fiber length is given by  

 

 1)))(1(()(  kaηlkl m

0

m

0  (4.43) 

 

where, η is the percentage change in the optimal fiber length, it was calibrated at 15% 

according to Lloyd et al., 2003. l
m

o is the optimal fiber length at maximum activation. 

l
m

o(k) is the optimal fiber at sample time k with muscle activation a(k).   

With some simplification on the level of fA (l), f(v) and fP (l) proposed in the literature 

review we have  

 

     fA (l) =C0 + C1.l  + C2.l
2
 , 0.5 ≤ l ≤ 1.5 

 fA (l) = 0.                           otherwise 

                              fp(l)  = e
10.l -15

          

                             fv(l)  =1. 

 

(4.44) 

 

 

where, l is the normalized muscle fiber length, C0, C1 and C2 are constants.  

Substituting equation (4.43) into (4.44) gives 

 

   fA (l) =C0 + C1. 1)))(1((  kaηlm

0
+ C2. 1)))(1((  kaηlm

0
2
,  0.5 ≤ l ≤ 1.5 

 fA (l) = 0.                           otherwise 

 fp(l)  = 
15-1)))(1((10  kaηm

0
l.

e           

 fv(l)  =1. 

 

 

(4.45) 
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Recent study (Ward et al., 2009) on lower limb muscles architecture reveals the 

following fiber length, muscle length and pennation angle for the RF, BF and Gas 

muscles. In table 4.3, the optimal length and the maximum forces for the selected 

muscles obtained from (Raasch et al., 1997)  

 

Table 4.3 

Properties of the selected muscles (Ward et al., 2009 and Raasch et al., 1997) 

Muscle 
Muscle length 

l
m

 (cm) 

Fiber length 

l(cm) 

Pennation 

angle (
0
) 

Max 

force(N) 

Optimal length 

l
m

0 (cm) 

RF 36.28±4.73 7.95±1.28 13.9±3.5 974 8.400 

BF 34.73±3.65 9.76±2.62 11.06±5.5 1312 10.09 

Gas 

Sol 

26.94±4.65 

40.54±8.32 

5.10±0.98 

4.40±0.99 

9.9±4.4 

28.3±10.1 

2225 

3529 

4.500 

3.000 

 

Once the parameters l
m

0, F0
m
 are given, one can calculate the active force. The 

initial values of the coefficients C0, C1 and C2 are also given to fit a piecewise parabola 

(Qichuan et al., 2011), C0=-2.06, C1=6.16 and C2 = -3.13. Substituting equation (4.44) 

into (4.42) will form the total force generated by a specific muscle 

 

 

m
0

kaηm
0
l

m
0

m
0

m
i

F

kakaηlkaηlF

].e

 )( ).1)))(-(1(C 1)))(-(1(C + C[(

15-1))(-(1(10.

2
210




 

 

 

 

(4.46) 

 

Let the general equation of the muscle force as the following  

 

 ]eK)( K )(K )([K)(
)(5K

4
3

3
2

210
kiai

iiiiiii
mm

i kakakaFkF   (4.47) 

  

where, K1i, K2i , K3i, K4i and K5i are constants. K3i, K4i , and K5i can initially calculated 

since 
ml0 and η are known see (Table 4.3). The subscript i refers to a specific muscle. 

The coefficients K4i seem to be very close to zero (0). Therefore, we ignore the 

exponential term in the above equation. 

Further simplification and expansion of the coefficients can be found in Appendix B.  
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On the other hand, a study done by Visser et al. (1990) proposed that the length 

of a muscle (tendon-muscle length) is related to the knee and hip angles by a second 

order polynomial.   

 

 l
mt

=A0+A1j + A2(j)
2 (4.48) 

 

where, A0, A1 and A2 are constant. j =1, 2 and j is the hip and the knee angles. The 

experiment was conducted on five human cadavers.  

The moment arms is calculated by the derivation of the muscle tendon length  

 

 M.Ai = A1 + 2. A2 (j) (4.49) 

 

In this study, we use the estimated coefficients in (Visser et al., 1990) for the BF, RF 

and Gas muscles as illustrated in Table 4.4.   

 

Table 4.4  

Estimated coefficients of the equation (4.45) 

  Constants 

Joint Muscle A0 A1 A2 

Knee RF -0.02346 0.24222 -0.00059 

Hip RF -0.01966 -0.15041 0.00044 

Knee BF 0.19826 -0.04600 0.00000 

Hip  BF 0.16644 0.31078 0.00061 

Knee Gas -0.08268 -0.08028 -0.00013 

 

The joint moment is estimated by the sum of the forces generated by a group of muscles 

given by 

 

 MJ = M.Ai x Fi
m

 (4.50) 

 

where, J =1,2 is denoting the knee and hip joints, i denotes a specific muscle. 

 As we have used two muscles for the chair-rise experiment, two terms of the force for 

both BF and RF is addressed in a matrix form (eq. 4.51). This means the total joint 

moment can be expressed by two variables which are the sEMG for BF and sEMG for 

RF.  
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Similarly for the walking task, the Gas muscle force is introduced; this yield to to the 

following matrix form which obtains the knee joint moment, 
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 (4.52) 

 

where, )(and)()( kFkFkF m
Gas

m
BF

m
BF are the forces of the BF, RF and Gas muscles 

respectively. The equations of these forces are further explained in appendix B.  
m
BFF0 , 

m
RFF0  and 

m
GF as0  are the maximum forces of the BF, RF and Gas muscles summarized 

previously in Table 4.3.    

 

4.7       Inverse Dynamics Method  

 

Inverse dynamics is a method that calculates the moment or the joint from the 

dynamic equation of motion. In this study, the positions of the limbs are measured using 

a gyroscope sensor that returns the angular velocity. The angular velocity is then used to 

obtain the angles and the angular accelerations. Inverse dynamics requires the masses, 

moment of inertia and the length of each link segment i.e. the hip and the knee joints.  

During chair rise task, we consider the movement about the knee joint only in order to 

lift the whole body. We assume also that the lower leg is fixed at vertical posture. 

Initially, we assume that the knee angle was 0
0
 and the hip was 45

0
. For more definition 

of the variables on each joint segment, a schematic model is presented in Figure 4.8. 

Moments of inertia, centre of gravities were calculated according to the anthropometric 

data given by (Winter D. A., 2009). Using Lagrangian formalism, the joint moment is 

calculated from  
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




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dt

d
M inv

J  (4.53) 

                
 

where, JJ θ,θ   are the joint angle and is the angular velocity respectively, and L = Ek – 

Ep with  Ek and Ep are the kinetic and the potential energies, respectively.  

The general equation of motion is given by the following; 

 

 )(θG)θ,(θCθ)(θDM JJJJJ
inv
J  

J  (4.54) 

 

where, D is the inertia matrix, C is the Coriolis vector and G is the gravity vector; 

JJJ θθθ  ,,  are the angles, angular velocities and angular accelerations, respectively. 

 J =1, 2 refers to the hip and the knee joints. 

 

 

 

 

 

 

 

 

 

 

Figure‎4.8. Segmental model of the chair-rise, the movement is about the knee joint.  

 

The hip angle is modelled as a function of the knee angle by the following  

 

2 = - 31 /2 + 3/2. 

 

where, m1, m2, I1, I2, l1, l2 are the masses, the moments of inertia and the lengths of the 

upper leg (thigh) and the trunk segments, respectively. Mk and Mh, are the net knee and 

hip joint moments.   

m2, I2 

m1, I1  

1, Mk 

2, Mh 

l1 

l2 

y 

x 



 

 

66 

 

 

Segment 1: the thigh segment  

Let d1=0.567 a percentage from the total length to represent the CoG of segment 1 and 

d2 = 0.903 is percentage from the total length to represent the CoG of segment 2. 

 

 2
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2
111,k
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θIld mE    

 
 

)cos()( 11111,p  ldgmE  (4.55) 

 

Segment 2: the hip segment 

 

 2
212

2
22,k )

2

1
v

2

1
θθ(ImE           

))cos(.)cos( 21221122,p  ldg(lmE  

(4.56) 

 

 where, 𝑣 = 𝑥̇ + 𝑦̇ , with x and y the CoG of the hip segment coordinate. 

‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎x‎=l1sin (1) + d2 l2sin (1+2)                                    (4.57) 

‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎y‎=l1cos (1) + d2 l2cos (1+2)                                    (4.58) 

 

Substituting (4.57), (4.58), into (4.56) and (4.55) into (4.54), the knee joint moment can 

be derived as 
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(4.59) 

 

         Similarly, using the Lagrangian method for the walking task gives the following 

dynamics system for the knee joint moment.  The two segments herein are the leg and 

the thigh with d0 = 0.433 is the CoG of the leg segment. 
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(4.60) 

 

In this study, we emphasize to optimize only the knee joint moment variables i.e. 

the moment obtained from the inverse dynamic and the moment obtained from the 

muscles.      

            To optimize the knee joint moment by the muscles Mk, we used LS (Least 

Squares) optimization method that minimizes the sum of the squared errors between the 

Mk and
inv
kM

 
(Rogers et al., 2007).  

 

 min  (MJ‎‎-
inv
kM )

2
 (4.61) 

 

This leads to the estimation of the coefficients (C0, C1, C2) presented in equation (4.46). 

From the dynamics of human gait addressed in (Vaughan, et al., 1999, pages 20-

25), some of the individual‘s anthropometry parameters can be predicted from basic 

data such as the segment‘s length and the circumference of the limb with the total 

weight of the body. Since the equation of motion requires the mass and the moment 

inertia, we have calculated these two parameters for one subject. 

  

The following table (Table 4.5) includes some of the parameters in order to 

calculate the moment in a joint.  

 

Table 4.5 

Anthropometric‎data‎of‎one‎subject‎with‎weight‎of‎71kg 

Segment Mass (kg) Length (m) Moment of inertia (kg.m
2
) 

Thigh  7.1 0.460 0.138 

Leg 3.3 0.430 0.049 

HAT 48.15 0.297 1.14 
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4.8       Summary 

 

The chapter discussed the sequence of the sEMG signal processing. It includes 

the pre-filtering part by analysing the DC offset in sEMG, the baseline wander, low 

frequency noises filtering. As it is known that the true muscle activities could be 

represented by the output of the low pass filter, it was essential to search for the 

optimum digital low pass filter that guarantees signal free distortion and free noise.  The 

onset/offset of the sEMG was essential to detect the rising and the falling time of the 

sEMG signal. To this end, implementing the algorithm of the detection of the 

onset/offset for both sEMG and kinematic measurements could determine the cross-talk 

recordings. A discussion on how to remove these additional measurements (cross talk) is 

stated. We propose to integrate the Hill Muscle Model in order to obtain the force 

generated by a muscle. From the latter generated force, one can calculate the moment 

provided to the joint by a specific muscle. Since one or two moments generated by 

specific muscles cannot achieve full motion, we implement the inverse dynamic for 

optimization purposes. In the next chapter, we present the all the findings of the 

research.  



CHAPTER 5  

 

 

RESULTS AND DISCUSSION 

 

 

5.1    Introduction  

 

This chapter presents the findings of the study; it clarifies the behavior of the 

sEMG signal of lower limb with accordance to certain daily life tasks. The analysis of 

the data includes the pre-processing part which addressed the DC offset effect, the 

baseline wander, low frequency noises such as ECG signal.  

 

The filter parameters influences on the amplitude of the sEMG is presented and 

discussed in details. This led to a search for the optimal parameters of the filter by 

comparing two types of filters. To scale the sEMG signals to a uniform scale, the data 

were normalized to the peak and the standard deviation. To check the correlation of the 

EMG patterns with the movement, all the data were normalized to the motion range of 

the individual. The crosstalk phenomena are also addressed in this chapter. Then the 

transformation of the muscle activity to the generated force based on Hill‘s model is 

presented. The summation of all muscle forces output is then used to predict the 

moment in a joint. In the last subsection, we present the predicted moment generated by 

the muscle to achieve a complete task.  
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5.2     Pre-Processing 

 

In this section, a summary of the pre-processing results i.e. treating the DC 

offset component, the baseline wander, designing the optimum filter is presented.    

Figure 4.1 presents an example of sEMG signal recoded during performing a chair rise 

experiment. 

 Initially the recorded sEMG raw was not centered at the zero line axis as shown in 

Figure 5.1 (blue).  Similarly, the kinematics data was also zero-mean.   

 

 

 

Figure 5.1. Example of a sEMG raw with DC component being removed. (blue) is the 

original sEMG raw, (red) is the sEMG raw with DC being removed. 

 

Ideally, the gyroscope should output a zero angular velocity when there is no 

movement. But the Gyro output measurement tends to give values sporadically near 

zero (Figure 5.2, blue line). This bias directly affects the resulted angle by drifting its 

values. Many researchers choose to calibrate the Gyro by recording data at rest then 

taking the mean of this recording to be used as threshold point in the experiment. 

Similarly, to the sEMG procedure, in this study, we subtract the mean values (baseline 

segment) from the actual angular velocity (Figure 5.2, black line). Figure 5.3 shows one 

example of the resulting angle from angular velocity measurements achieved during 

performing a chair rise task for two trials. It is clear that the range of the motion is 

approximately from 0
0
 while sitting until 80

0
 at the up-right posture.   
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Figure 5.2. Example of a measured angular velocity achieved during chair rise task for 

two trials, (blue) is the original angular velocity, (black) is the angular velocity with DC 

bias being removed. 

 

 

 

Figure 5.3. Example of a resulted hip angle during chair rise task for two trials. 

 

Figure 5.4 depicts an example of an original sEMG raw recorded over the BF 

and RF during chair-rise experiments for two trials. Prior to any processing, the signals 

contain positive and negative values which reflect the positive and negative leads of the 

sensor. Visual inspection may approximately determine the onset/offset of the signal 

(presented in red and black arrow respectively), but the accuracy would be suspicious.     
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Figure 5.4. Example of sEMG raw over RF (top Figure) and BF (bottom Figure) 

muscles during chiar rise protocol for two trials. Red arrows represent the onset timing 

of the sEMG and black arrows represent offset timing the sEMG.   

 

5.3    Butterworth Filter Performance    

     

In this section, the effect of the cutoff frequency on the sEMG is presented. An 

example of raw sEMG recorded from one volunteer over the Biceps Femoris muscle 

during sit to stand task is processed. Note that in all the following results, we applied 

zero-lag Butterworth filter. For simplicity, we showed only the results of the 

Butterworth filter at the following selected cut-off frequencies [2, 5, 6, 8] Hz 

respectively at filter‘s order varies from 1 to 7.  

 

           Figure 5.5 shows the rectified filtered sEMG using the Butterworth filter at a cut-

off frequency of 2Hz with the filter‘s orders varies from 1 to 7. By enlarging the first 

and the third bursts of the signal, it is clear that the Butterworth filter undershoots the 

data with all filter‘s order except the first order. Emphasizing on the first order output, 

the result shows that the filter maybe is responding earlier than the original signal which 

may lead to a false interpretation in determining the rising time of the burst (onset time). 

It is also noticeable that the amplitude of the signal varies significantly between all the 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

m
V

-0.2

-0.1

0

0.1

0.2

0.3

m
V

sit to stand stand to sit

Biceps Femoris EMG raw

Rectus Femoris EMG raw
EMG Onset 

EMG Onset 

EMG Offset 

EMG Offset 



 

 

73 

 

outputs of the Butterworth filter. However, the falling time (offset time) show 

agreement with all filter‘s orders.  

  

           Figure 5.6 compares the outputs of the Butterworth filter at cut-off frequency of 

5Hz with the same filter‘s order mentioned above. Apart from the output of the first 

order filter which shows considerable ripples, all other outputs are in strong correlation 

with less undershooting of the data in the first burst. However, in the second burst, the 

5
th

, 6
th

 and the 7
th

 order filter outputs showed slight undershoot in the data below zero 

line (Figure 5.6 (c)). These results might not be suitable and applicable for further 

investigation.   

 

           Figure 5.7 depicts the Butterworth filter outputs at cut-off frequency of 6Hz with 

different filter‘s order. Similarly, the outputs of the filter shows no difference between 

them with close similarity in amplitude apart from the first order output in which the 

result appears in a rippled waveform. It is clear from Figures 5.7 (b) and (c) that the 

undershoot level in this case is very minor compare to the previous cases.  

 

           Figure 5.8 presents the output of the Butterworth filter at different filter‘s order 

with a cutoff frequency of 8Hz. With 8Hz cutoff frequency, it seems that the 

Butterworth filter outputs the same results with significant ripples at the 1
st
 order. 

However, all other outputs tend to be ripples also compared with the above cutoff 

setting.   
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Figure 5.5. Butterworth Filter Performance at wc = 2Hz. a) and b) are the original and 

the rectified sEMG raw.  Example of a filtered sEMG raw using Butterworth filter at 

different orders with cut-off frequency wc = 2Hz (c)). (d) and (e) enlargement of the first 

and the third bursts of the sEMG raw where they show a remarkable undershoot of the 

signal at certain orders.          
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Figure 5.6. Butterworth Filter Performance at wc = 5Hz.  a) and b) are the original and 

the rectified sEMG raw. Example of a filtered sEMG raw using Butterworth filter at 

different orders with cut-off frequency wc = 5Hz (figure (c)). (d) and (e) enlargement of 

the first and the third bursts of the sEMG raw.  
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Figure 5.7. Butterworth Filter Performance at wc = 6Hz.  a) and b) are the original and 

the rectified sEMG raw. Example of a filtered sEMG raw using Butterworth filter at 

different orders with cut-off frequency wc = 6Hz (figure (c)). (d) and (e) enlargement of 

the first and the third bursts of the sEMG raw.  
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Figure 5.8. Butterworth Filter Performance at wc = 8Hz.  a) and b) are the original and 

the rectified sEMG raw. Example of a rectified-filtered sEMG raw using Butterworth 

filter at different orders with cut-off frequency wc = 8Hz (figure (c)). (d) and (e) 

enlargement of the first and the third bursts of the sEMG  
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           We conclude from the above results of the effects of the filter parameters on the 

sEMG smoothing that caution should be taken when filtering sEMG. For instance, when 

using a cutoff frequency of 2Hz, the filter order should not be greater than the first 

order.  In the 5Hz cutoff frequency example, the accepted filter orders are maybe only 

the 1
st
, 2

nd
 and 3

rd
 orders. When choosing a 6Hz cutoff frequency, the 1

st
 order should 

be excluded and the 3
rd

 order filter could be the best as it shows almost the average of 

the remaining filter outputs. Lastly, the 8Hz cutoff frequency shows a number of ripples 

in all selected filter orders compare to the 6Hz example.  

 

           Table 5.1 clarifies the differences in the peaks of the filtered sEMG at the 

aforementioned cutoff frequencies with filter order varies 1 to 7. It shows that the 

change in amplitudes with regards to the filter order at the cutoff frequency wc=5Hz 

and wc=6Hz is very minor compare to the amplitudes at wc=2Hz. At cutoff frequency 

wc=8Hz, the change also is very minor, but from the above graph, the results shows 

ripples.   

 

Table 5.1 

Maximum values of the filtered sEMG  

 
   Peaks     

Order  N=1 N=2 N=3 N=4 N=5 N=6 N=7 

C
u

to
ff

 

F
re

q
(H

z)
 2 

5 

6 

8 

0.0642 

0.0819     

0.0861  

0.0923      

0.0687 

0.0853     

0.0895  

0.0949        

0.0698 

0.0862     

0.0906   

0.0967       

0.0701 

0.0867     

0.0909 

0.0976         

0.0703 

0.0866     

0.0910  

0.0981        

0.0703 

0.0868     

0.0910   

0.0984       

0.0772 

0.0869 

0.0910 

0.0984     

 

Further confirmation/validation of filtering the sEMG signal have been made by 

comparing the wavelet outputs at different level with the Butterworth filter outputs. 

 

5.3.1    Optimum Filter Order 

 

To determine the optimum filter order, we fixed the cutoff frequency and 

simultaneously vary the Butterworth filter order from 1 to 8; meanwhile we compute the 

correlations with regards to the wavelet filter at different scales from 4 to 8 (see Table. 

5.2). The main finding from Table 5.2 shows that wavelet approach at scale six (6) 

possesses the best correlation with all selected orders of the Butterworth filter (more 

details on correlation results can be found in appendix C). Referring again to table 5.2 
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(column correspond to the sixth level), the highest correlation point (0.9879) 

corresponds to the third filter order. For a clearer view, the highlighted column in Table 

5.1 is plotted in Figure 5.9. Third filter order is then maybe the optimum order that the 

Butterworth filter outputs can produce. Third order inhere also shows agreement with 

the previous results at cutoff frequency of 6Hz.  

 

Table 5.2 

Wavelet output correlation with Butterworth filter 

     

 

 

 

 

Figure 5.9. Correlation between the wavelet output at level six and the outputs of the 

Butterworth filter at different order.   
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0.9393 

2 0.9352 0.9862 0.9878 0.9624 0.9339 

3 0.9298 0.9847 0.9879 0.9601 0.9315 

4 0.9267 0.983 0.9874 0.9587 0.9302 

5 0.925 0.982 0.9872 0.958 0.9295 

6 0.9237 0.9812 0.9868 0.9575 0.929 

7 0.9229 0.9805 0.9866 0.9571 0.9286 

8 0.9222 0.9801 0.9864 0.9568 0.9283 
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Figure 5.10. Example of the wavelet outputs at scales 5, 6, 7 and 8. 

 

It is clear from Figure 5.10 that the wavelet output at level 5 is considered as not 

clean as anticipated. On the other hand, the wavelet output at level 8 has shown an 

undershoot in the 1
st
 and the 3

rd
 bursts of the filtered sEMG signal. The most suitable 

outputs of the wavelet outputs could be level 6 or level 7.   

 

5.3.2    Optimum Cutoff Frequency 

 

             Once the optimum filter order is selected, an appropriate cutoff frequency has to 

be determined for the filter. The correlations of the original signal (rectified signal in 

this case) and the filtered signal at different cutoff frequency is computed and graphed 

along with the correlations of the original signal to the wavelet filter at different scales 

as illustrated in Figure 5.11. The cross point (B= 6) between the two curves is selected 

as the best optimum cutoff frequency as well as it is the best scale for the wavelet that 

the sEMG signal could be reconstructed on.  Selecting a filter order above the point B, 

the sEMG signal is getting noisier. In contrast, when selecting a filter order below the 

point B, the signal will get more distorted. On the other hand, wavelet is performing the 

opposite idea of the Butterworth filter. When selecting a scale above the point B, the 

signal is more distorted and when selecting a scale below the point B the signal is noisy.  
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As discussed earlier in the previous chapter, from the recursive equation of the 

Butterworth filter, the signal output is one dimension. However, for the wavelet outputs 

to obtain for example a level 6 output, the computation is a multi-dimensioned process 

(6 dimensions). This lead to a longer computation time compared to the Butterworth 

computation time (Table 5.3).  Therefore, using the Butterworth filter is recommended.  

 

Table 5.3 

Computation time difference between wavelet and Butterworth 

Butterworth Computation Time Wavelet Computation Time 

0.002784s 0.036473s 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Filters output correlation with the original signal. Correlations of the 

original signal to both Butterworth (blue) and wavelet (red) with regards to the filter 

cut-off frequency and wavelet levels.   
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present the motion of five subjects for each task, i.e., the sit-to-stand, stand-to-sit and 

the walking tasks. In the chair rise protocol, the RF and BF muscle activities 

represented by sEMG is normalized to the hip angle motion range from approximately 

[0-90] and [90-0] during the sit-to-stand and stand-to-sit tasks, respectively.     

Additional results on the normalization procedure for validation are presented in 

Appendix F.     

 

During the sit-to-stand task, the subjects took shorter time (2.37s) than the stand-

to-sit (2.54s) task (Table 5.3). The initial posture (hip-angle) of the subjects at chair-off 

was close to zero (1.2± 2.38
0
) while at upright posture, the angle was about (86.5 ± 

4.83
0
) as presented in Table 5.4.    

 

Table 5.4 

Hip angles range and movement time during chair rise task. 

Hip angle (Deg± SD) Movement time (s ± SD) 

At chair-off At upright posture Sit-to-stand Stand-to-sit 

1.2 ± 2.38 86.5 ± 4.83 2.37 ± 0.0354 2.54 ± 0.0432 

 

   Throughout the following results, the sEMG signals are presented in a filtered 

waveform using 3
rd

 order Butterworth filter at wc = 6Hz. They are normalized in term of 

amplitude to the peak of the filtered sEMG signal with the standard deviation as 

mentioned before.   

 

5.4.1    Sit to Stand Results 

 

 Sit-to-stand sEMG raw for both RF and BF muscles are normalized to the 

travelling distance from chair-off to stand upright is presented in this sub-suction. The 

subjects movements presented by the hip angle shows agreement between the five 

subjects with an angle travelling from approximately 0
0
 (sitting on the chair) to 90

0
 

(standing upright posture) as shown in Figure 5.12 (left). The standard deviation error 

contour (shadowed area) along with the average of all angles indicates that movement is 

repetitive (Figure 5.12 (right)) with all subject.   

The normalized RF muscle activities versus the motion range during sit to stand 

is presented in Figure 5.13. It is noticeable that the RF muscle activities appears to burst 
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prior to the starting time of the individual movement and decays in short time after the 

burst. The peak point of the averaged signal (0.6 mV) corresponds to about 15% from 

the total range of the movement. This result is consistent with the result presented in 

(Gross et al., 1998).  

 

In Figure 5.14, the BF sEMG signal is normalized to the motion range; again, 

the muscle activity bursts before the motion of the individual starts. The peak level of 

the BF occurs at about 10% of the total movement range. This means that these muscles 

might not be contributing only to flexion and extension of the knee joint movement but 

also to the adduction and abduction movements.  

 

Figure 5.15 shows the schematic representation of both RF and BF muscles 

activities and their maximal burst occurrence during the sit to stand range of motion. 

The activation of RF muscle preceded the BF activation. However, in both muscles the 

average of onset time is approximately ended together, but before the motion had ended.     

 

  

Figure 5.12. Hip angles of five subjects during performing sit to stand task (left), the 

thick curve is the average of the five subjects during sit to stand task and the (+/-) 

standard deviation error contour is presented in grey area (right).  
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Figure 5.13. RF muscle activity of five subjects during performing sit to stand task, the 

thick curve is the average and the (+/-) standard deviation presented in grey area. 

 

 

Figure 5.14. BF muscle activity of five subjects during performing sit to stand, the 

average and the (+/-) standard deviation presented in grey area. 

 

 

Figure 5.15. Schematic representation of the BF and RF muscle activities onset time 

range (Black and grey, respectively) with regards to the motion range during sit to stand 

task. The red vertical mark represents the maximal burst (peak) of the sEMG.  The blue 

horizontal bar represents the hip angle movement range in percentage.   
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Table 5.5 details the standard deviation (STD) of the sit to stand task for the five 

subjects. The table shows the the STD of the sEMG with accordance to the movement 

range.  

 

Table 5.5 

STD during sit to stand task 

Muscle STD (0%) STD (50%) STD (100%) 

RF 0.12
 

0.07 0.04 

BF 0.1 0.14 0.05 

 

 

5.4.2 Stand to Sit Results 

 

In the following, we present the results of the experiment of chair rise protocol, 

particularly, the stand to sit task. In Figure 5.16 (a), the hip angles are presented for five 

subjects during performing the task of stand to sit. It is clear that the movements shows 

agreement between the five subjects with an angle travelling from approximately 90
0
 

(standing upright posture) to 0
0
 (sitting on the chair). Figure 5.16 (b) shows the average 

of the hip angles and the (+/-) standard deviation contour of movement (shaded).  

 

In the stand to sit task, the muscles activities i.e. the onset time is found to be 

within the range of the individual‘s motion. As presented in Figures 5.17 and 5.18, the 

activation of the RF and the BF muscles starts at nearly the same time with the 

movement of the individual. This means that there was no delay between the muscle 

activity and the movement time. However, the decaying time of both muscles occurred 

nearly at 70% form the total range of the motion. 

 

Figure 5.19 shows a schematic representation of both RF and BF muscles 

activities and their maximal burst occurrence during the stand to sit with accordance to 

the range of motion. Both RF and BF muscles activation burst on time or in accordance 

to the starting point of the movement. The peak point of the the BF happened at about 

45% from the range of the motion, whereas, the RF maximal point occurred later at 

about 55% from the total motion range. However, the onset time latency of the BF 

decays faster than the onset time of the RF muscle with regard to the movement. 
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Figure 5.16. Hip angles during stand to sit. Hip angle of five subjects during stand to sit 

protocol (left), the average and the (+/-) standard deviation of the hip angle presented in 

grey area.  

 

 

Figure 5.17. BF muscle activities normalized to the stand to sit motion range. BF 

muscle activity of five subjects during performing stand to sit (left), the BF activity 

average and the (+/-) standard deviation presented in grey area (right). 
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Figure 5.18. RF muscle activities normalized to the stand to sit motion range. RF 

muscle activity of five subjects during performing stand to sit (left figure), the RF 

activity average and the (+/-) standard deviation presented in grey area (right figure). 

 

 

 

Figure 5.19. Schematic representation of the BF and RF muscle activities onset range 

(Black and grey, respectively) during stand to sit task. The red vertical mark represents 

the maximal burst of the EMG.  The blue horizontal bar represents the hip angle 

movement range in percentage.   

 

Table 5.6 details the standard deviation (STD) of the stand to sit task for the five 

subjects. The table shows the the STD of the sEMG with accordance to the movement 

range.  

 

Table 5.6 

STD during stand to sit task 

Muscle STD (0%) STD (50%) STD (100%) 

BF 0.04
 

0.08 0.04 

RF 0.02 0.06 0.02 
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5.4.3    Walking Results 

   

In walking protocol as we discussed in the previous chapter, we have placed the 

surface electrodes over four muscles of the lower limb to record the sEMG. For 

kinematics data recordings, we have positioned two Gyro sensors, one over the 

hamstring muscle (the mid-thigh) and the other on the back heel side. Therefore, in the 

following we will presents four sEMG signals with two kinematics signals that record 

the angular velocity and then progressed to angles.  All the following results of the four 

muscles are normalized in amplitude to the peak of the signal plus its standard deviation 

and in time as a function of the gait cycle.  

          Figure 5.20 shows the hip angle for one cycle for five subjects (right), an average 

over the over five subjects and its standard deviation is presented in the left side of 

Figure 5.20. Because the starting point of the movement was at the heel strike, the angle 

appears to begin with negative values. The range of the hip angle is summarized in 

Table 5.5. Same explanations and information for the knee angle presented in Figure 

5.21 could be given.  The motion results show excellent agreement with the literature 

review (Veneman et al., 2007; Sawicki, 2007 and Buchanan et al., 2005). During the 

stance phase the knee angle shows small variation, while in the swing phase, the angle 

sloped faster during toe-off to heel strike movement.  

 

Table 5.7  

Motion range and movement time during walking for one stride. 

          Hip angle                   Knee angle Movement time (s)  

Min                     Max  

 

Min                 Max 

 

 One gait cycle 

 

-24.72±2.81        14.32±2.67 -69.82±2.69     1.03±2.18  3.27 ± 0.46 

 

            The RF muscle activities of five subjects are shown in Figure 5.22 during 

walking for one stride. The waveform of the RF muscle shows different behaves 

compare to the chair rise experiment. Consistent with the literature (Olree et al., 1996), 

the RF activities were the least variation (identical results). In Figure 5.23, the BF 

activities for five subjects were presented along with the standard deviation contour. 

Most variation appears to be similar in BF activity compared to the results presented by 

(Olree et al., 1996 and Veneman et al., 2007). The Gas muscle activities that are 

presented in Figure 5.24 show good agreement with literature review (Olree et al., 1996; 
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Veneman et al., 2007 and Sawicki, 2007).  Lastly, the Sol muscle seems to contribute 

more in the stance phase rather than the swing phase. This is due to the fact the Sol is 

directly related to the ankle movement i.e. when the toe is off there is no movement in 

the ankle level.  

 

 

Figure 5.20. Hip angle of five subjects during walking for one stride (left), the average 

and the (+/-) standard deviation presented in grey area. The movement starts at heel 

strike of the gait and ends at heel strike.  

 

 

Figure 5.21. Knee angles during walking. Knee angle of five subjects during walking 

for one stride (left), the average and the (+/-) standard deviation presented in grey area.  
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Figure 5.22. RF muscle activities normalized to one gait cycle. RF muscle activity of 

five subjects during walking for one gait cycle (left), the RF activity average and the 

(+/-) standard deviation presented in grey area (right). 

  

 

Figure 5.23. BF muscle activities normalized to one gait cycle. BF muscle activity of 

five subjects during walking for one gait cycle (left), the BF activity average and the 

(+/-) standard deviation presented in grey area (right). 
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 Figure 5.24. Gastrocnemius muscle activities normalized to one gait cycle. Gas muscle 

activity of five subjects during walking for one gait cycle (left), the Gas activity average 

and the (+/-) standard deviation presented in grey area (right). 

 

Figure 5.25. Soleus muscle activities normalized to one gait cycle. Soleus muscle 

activity of five subjects during walking for one gait cycle (left), the Soleus activity 

average and the (+/-) standard deviation presented in grey area (right). 
 

5.5       Crosstalk /Unwanted Recordings Removal   

 

In this section, we present the results of the modified Butterworth filter to 

suppress the presence of the crosstalk/unwanted measurements. Three examples are 

addressed, but we have abstracted the explanation only on the first example due to 

similar explanation in all other examples. In each example, the original signal, the 

filtered signal with conventional Butterworth, the filtered signal with the modified filter 

and also the cutoff frequency adaptation are presented.   
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       The recorded measurements over the RF and BF muscles along with the 

kinematics recordings are presented in Figure 5.26. The RF recordings show six (6) 

bursts while the BF recordings display four (4) which corresponds to the motion of the 

subject during sit to stand. For more clarification, the signals could be divided into four 

sub-bands. The 1
st
 and 3

rd
 bursts in BF tend to the 1

st
 and 2

nd
 risings from the chair-off 

to upright position, whereas the 2
nd

 and 4
th

 bursts tend to 1
st
 and 2

nd
 standing to sitting 

on the chair position. On the other hand, in the RF recordings, the 1
st
 and 4

th
 correspond 

to the 1
st
 and 2

nd
 risings from the chair-off to upright position, whereas the 3

nd
 and 6

th
 

bursts tend to 1
st
 and 2

nd
 standing to sitting on the chair position, while the remaining 

two bursts are categorized as crosstalk recordings. These activities associated with the 

signal of interest may lead to a miss interpretation of the signal or miss-use of the signal 

if it is used to control for example a prosthesis device.  

 

From Figure 5.26, the presence of the cross-talk started after the first burst of the 

RF muscle when the subject achieved the first chair-off task at time about 8.4s and 

ended at about 12s and it was associated with the signal of interest after the second 

rising from the chair exhibiting in an interval time [20s to 24s]. At these periods there 

was no recording on the level of angular velocity (standing upright without movement). 

On the other hand, the BF EMG recording was at rest with accordance to the individual 

motion. Applying a 3
rd

 order Butterworth filter at 6Hz cutoff frequency shows a well-

smoothed output within the BF, RF and gyro signals (Figures 5.27) but it does not 

eliminate the crosstalk recordings contaminating on the RF muscle. When the BF is at 

rest and the gyro corresponds to no movement, it is of interest to bring the RF signal at 

this period to rest (baseline). Thus, the already smoothed baseline signal of the relevant 

muscle was proposed to be the desired signal at this interval for two reasons: 1) to have 

the same magnitude of the signal with the baseline and 2) to avoid a sharp drop from the 

point where the crosstalk recordings start to the baseline reference. Point A1 (Figure 

5.27(a)), which is the point where the crosstalk on the RF recording starts to become 

activated, is projected to B1. Hence, the desired signal is the reflected signal from B1 

back through the baseline within the range of the start/end points of the crosstalk 

recording as highlighted in red rectangular Figure 5.27(a). For more clear view the 

reader can refer to Figure 5.27(b and c).  
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During the two intervals when the RF exhibited extra means of recordings 

(crosstalk recordings), this appears to change the behaviour of the Butterworth filter.  

That is to vary the cutoff frequency in order to decrease the crosstalk activities 

adaptively leading this segment of the signal to the baseline reference (see Figure 

5.28(b), black solid line). The 3
rd

 order adaptive Butterworth filter shows agreement to 

drive the signal to the baseline even when the peaks of the crosstalk activities almost 

matching the peaks of the actual sEMG signal at time 9.5s and 20.5s with magnitudes of 

0.08mV and 0.07mV, respectively.  It is noticeable from Figure 5.28(b) (black solid 

line) that there still a spike in the second burst, this can be removed using spikes 

removal algorithm. Figure 5.28 (e) presents the cutoff frequency which adaptively 

decreases whenever applicable i.e. when the crosstalk activities contaminated the signal 

of interest. The cutoff frequency dropped considerably whenever the magnitude of the 

crosstalk is higher than the base line amplitude of the signal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26. BF and RF sEMG recording with the corresponding angular velocity. (a) 

and (b) Example of sEMG recordings obtained from the Biceps Femoris and Rectus 

Femoris muscle of the volunteer during sit to stand task for two trials. (c) Angular 

velocity during sit to stand (The gyro was placed on the mid-thigh of the subject) 

 

 

 

 

 

0 4 8 12 16 20 24 28 32
0

0.2

0.4

Time(s)

m
V

 

 

0 4 8 12 16 20 24 28 32
0

0.1

0.2

Time(s)

m
V

 

 

0 4 8 12 16 20 24 28 32
-100

0

100

Time(s)

d
e
g
/
s

 

 

Rectus Femoris 

Biceps Femoris

angular velocity

Subject at chair- to-standing stage 

Subject at rest (1
st
 standing/2

nd
 sitting)                 

 

Background noise 

Subject at standing-to-sitting stage 

Crosstalk on the actual sEMG  

 



 

 

94 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27. (a) Smoothed sEMG of RF muscle using 3
rd

 order Butterworth filter and 

determining the crosstalk interval (approximately 8.2s -11.7s), the rectangular defined 

the desired baseline, the blue/red vertical lines present the start point/end point of the 

crosstalk recordings respectively. (b) The selected desired baseline signal expanded from 

(a). (c) The reflected signal in (b) to be attained by the RLS algorithm. 

 

Further examples on the crosstalk phenomena are illustrated in Figure 29 and 

Figure 30. The crosstalk contamination occurred at approximately 16
th

 second after the 

third burst of the RF during sit to stand task (Figure 29). Similarly, a 3
rd

 order 

Butterworth filter with adaptive cut-off frequency was applied to eliminate the 

additional signal. It is noticeable that the latter signal is less amplitude and therefore the 

drop in the cutoff frequency was less accordingly from 6Hz to 5.4Hz (Figure 29 (e)). 

Figure 30 presents another example of the crosstalk signal contaminated on the signal of 

interest. In this example the additional signal tends to occur after the first burst of the 

muscle (8
th

 seconds during the sit to stand task). The adaptive filter was applied and 

successfully suppresses the contaminated signal. 
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Figure 5.28. Example 1 of the crosstalk removal using adaptive Butterworth filter. (a) 

Cleaned sEMG of RF muscle 3
rd

 order Butterworth filter with a cutoff frequency at 6 Hz 

(blue dashed line) and cleaned sEMG with crosstalk removal using adaptive Butterworth 

filter(black solid line). b) and c) expansions of the same recordings from (b). (d) 

Adaptive cut-off frequency.  The frequency is fixed at 6Hz and decreases only when the 

crosstalk recordings presented in e). 
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Figure 5.29. Example 2 of the crosstalk removal using adaptive Butterworth filter. (a) 

Cleaned sEMG of RF muscle 3
rd

 order Butterworth filter with a cut-off frequency at 6 Hz 

(blue dashed line) and cleaned sEMG with crosstalk removal using adaptive Butterworth 

filter(black solid line). (b and c) expansions of the same recordings from (b). (d) 

Adaptive cut-off frequency.  The frequency is fixed at 6Hz and decreases only when the 

crosstalk recordings presented. 
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Figure 5.30. Example 3 of the crosstalk removal using adaptive Butterworth filter.   (a) 

Cleaned sEMG of RF muscle 3
rd

 order Butterworth filter with a cutoff frequency at 6 Hz 

(blue dashed line) and cleaned sEMG with crosstalk removal using adaptive Butterworth 

filter(black solid line). (b and c) expansions of the same recordings from (b). 

 

From Figures 5.28, 5.29 and 5.30, it is concluded that the modified Butterworth 

filter successfully eliminates the un-expected recordings (crosstalk) contaminated on the 

sEMG signal of interest. This method is applicable in real-time procedure compare to 

Blind Separation Source (BSS) in which it requires offline data.  
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5.6    Muscle Activation Dynamics  

 

Figure 5.31 shows an example of sEMG signal (processed until the normalization 

in amplitude) presented with e(k) recorded over the BF during sit to stand being 

transformed to firstly to the neural activation u(k). It can be seen that the resultant u(k) 

almost matching the e(k) with a delay time d as mentioned in equation (4.34). The u(k) 

was then transformed to the muscle activation a(k), which shows higher amplitude with 

slightly change in the waveform of the signal due to the nonlinearity in equation (4.36). 

This result is comparable with the results presented by Buchanan et al. (2004). 

    

 

 

Figure 5.31. Example of the transformation of the sEMG (e(k)) to the muscle activation 

(a(k)). 

 

           In the following, we present the results of the hill‘s model i.e. the force generated 

by a specific muscle. As mentioned before, the inputs to the hill‘s model were 1) neural 

activation a(k); 2) the muscle fiber length.  
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5.7      Hill’s Model Output  

 

          The hill‘s force for the selected muscles is presented in this section. In the chair-

rise experiment, the BF and RF are selected and the sums of the two resultant forces are 

used to estimate the moment in the knee joint.  However, in the walking experiment, 

three muscles are selected we exclude the soleus muscle because this muscle contributes 

more to the ankle joint motion.   

 

Figure 5.32 shows the forces during sit to stand for the BF and the RF muscles. 

The BF force was higher than the RF force. Initially the BF force was about 1000N 

while the RF force was about 500N and in short time the forces reach their maximum 

points (750N at about 0.4s and 1050N at about 0.3s for the RF and BF respectively). 

This can be explained that when the subject at chair off, he/she requires high push up 

forces in order to lift the whole body. The forces decay faster as the individual travels 

this range of motion. This means, the RF and BF muscles contribute more at the 

beginning of the motion. 

 

 

Figure 5.32. Example of the transformation of the sEMG (e(k)) to the muscle Force 

(Fa(k)). 

 

Figure 5.33 present the knee joint moment generated by the BF and RF for the 

sit to stand and stand to sit tasks. It is noticeable from Figure 5.33 that the maximum 

joint moment was about 125N.m at about 0.35s (chair-off). Whereas, in the stand to sit 
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task, the maximum knee joint moment (140N.m) was late at time 1.45s, this means that 

the muscle activities were less at the first stage of the motion and more activated when 

the individual almost reached the sitting position.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.33. Knee joint moment generated by the RF and BF muscle during chair-rise 

task.  (a), sit to stand (b) stand to sit. 

 

Figure 5.34 represent the knee joint moment produced by the BF, RF and Gas 

muscles during one gait cycle.  

 

 

 

Figure 5.34. Net joint moment obtained from the BF, RF and Gas muscles during walking 

task for one gait cycle. 
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5.8        Inverse Dynamics Results    

 

 As mentioned earlier, one of the methods to calculate the net moment in a joint 

is to use the inverse dynamics. That is to find the joint moment based on the measured 

position, angular velocity and angular acceleration. From the anthropometrics data 

given in Table 4.5 and with the use of equations 4.47 and 4.49, the joint moment is 

calculated.    

 

             Figure 5.35 shows the net knee joint moment measured by the inverse dynamics 

and the moment produced by the RF and BF muscles activation. The measured moment 

form BF and RF maximum point was about 150 N.m while the moment obtained from 

the inverse dynamics was about 200 N.m at the beginning of the movement. This could 

be explained as the individual is at chair-off stage; he/she requires higher moment to 

lift-up the body and therefore involves more effort from the muscles. Moreover, this 

gives an insight understanding that the BF and RF muscles contribute more at the 

beginning of the motion. Noting that poor agreement in amplitude between the two 

moments along the sit to stand motion range and then they converge to about about 5 

N.m. However, both moments possessed almost the same waveform during the motion. 

This is clearly indicate that taking the generated moment from the BF and RF muscles 

only is not sufficient to produce a full joint moment.  On the other hand, during the 

stand to sit task (Figure 5.35 (b)), the produced moment by the BF and RF begun with 

minor moment (1N.m), similarly to the inverse dynamics moment where it began at 

about -5N.m. As the individual moved to sit down, the two moments slightly started to 

diverge. At sit on the chair posture, the inverse dynamics ended at maximum point of 

about 200N.m whereas, the muscles moment tends to decay to about 50N.m.  Again this 

means the two muscles cannot provide the sufficient moment in order to achieve and 

complete the task as many other muscles are involved. One can notice also that the 

moment during sit to stand is opposite to the moment during the stand to sit.  
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Figure 5.35. Inverse dynamic of the knee joint moment and the moment produced by the 

BF and RF muscles during chair-rise: (a) sit to stand, (b) sit to stand task. 

 

       Figure 5.36 presents the knee joint moment calculated through the inverse 

dynamics method and the moment obtained from the selected muscles during walking 

for one stride. The inverse dynamic moment level initially was about 55 N.m which 

maybe resulted from the reaction forces acting on the knee joint during the stance phase. 

In the swing phase and while the knee joint is flexing, the moment has dropped faster 

and back to increase while the knee begun to extent. On the other hand, the knee joint 

moment resulted from the selected muscles (BF, RF and Gas) shows different waveform 

from the inverse dynamic joint moment. It begun almost at 2 N.m as the muscles were 

not activated and then a maximum point occurred (40 N.m) during the single limb 

support. While the knee flexed, the muscles moment experienced negative values with 

maximum point (90N.m), however during the swing phase, the knee joint moment 

increased.   
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Figure 5.36. Inverse dynamic joint moment and the selected muscles during walking 

task for one gait cycle.   

 

5.8.1    Predicted Joint Moment  

          

As mentioned earlier, the LS based Levenbarg-Marquart algorithm is used to 

optimize the moment generated by the muscle to the net joint moment estimated by the 

inverse dynamics.  

The root mean square difference and the correlation coefficients are used to quantify the 

accuracy of optimized joint moment.  
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(5.1) 

 

where, 
inv
kM  and kM̂  are N x 1 vectors with their entries represented by the net joint 

moment obtained  from the inverse dynamics and the estimated moment from the 

muscles.  

Figure 5.37 (a) and (b) depicts the modeled moment obtained from the muscles 

and the measured using the inverse dynamic (i.e. measured). The model shows good 

agreement with the calculated moment during the chair-rise. The optimized model 
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during the walking task for one gait cycle shows less matching with the moment using 

the inverse dynamics method (Figure 5.38). This might be because the walking task 

incorporates many muscles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.37. Inverse dynamic net joint moment and the tuned joint moment during chair-

rise. (a) Sit to stand, (b) stand to sit task 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.38. Inverse dynamic net joint moment and the tuned joint moment during walking 

for one gait cycle. 
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Table 5.8 listed the estimated coefficients of the forces generated by the BF, RF and 

Gas muscles.  As mentioned in the previous chapter, K3—K5 are calculated from the 

data listed in table 4.3 based on literature review. The remaining coefficients are K1and 

K2, which includes the constants C0, C1 and C2 (see appendix B) of the equation 4.46. 

It is noticeable from Table 5.8 that during the chair-rise task (sit to stand and stand to 

sit), the coefficients K1 and K2 are close to each other for both the BF and the RF 

muscles. Therefore, one can select only one coefficient rather than two coefficients.   

 

 

Table 5.8 

 Identified Parameters based LS method 

 

        Coeffs 

Tasks 

Biceps Femoris Muscle  

K1 K2 K3 K4 K5 

 

Sit To Stand  

 

-1.6456 

 

4.2437 

 

0.3018
 

 

0.0013
 

 

-0.1514 

Stand To Sit -1.5589    
 

2.9722   
 

0.3018 0.0013 -0.1514 

Walking  17.2398 -21.7598 0.3018 0.0013 -0.1514 

 

        Coeff 

Tasks 

Rectus Femoris Muscle  

K1 K2 K3 K4 K5 

 

Sit To Stand  

 

-11.3109  
 

 

19.6632
 

 

0.1496
 

 

7.6.10
-4 

 

-0.126 

Stand To Sit -10.9754   
 

16.9391   
 

0.1496 7.6.10
-4 

-0.126 

Walking  6.0555 -11.5828 0.1496 7.6.10
-4

 -0.126 

 

        Coeff 

Task 

 Gastrocnemius Muscle  

K1 K2 K3 K4 K5 

 

Walking  

 

 

-1.5940 

 

 

1.7187 

 

 

0.10 

 

 

0.001
 

 

 

-0.0675 

 

 

Table 5.9 presents the accuracy of the predicted model for both experiments in 

term of correlation and root mean squared error (RMSE).  

 

             For the sit to stand and the stand to sit experiment, the optimized model showed 

good agreement with the inverse dynamic model (R
2
 varies from 0.9952-0.9963). The 

RMSE were relatively low varying between a minimum of 6.7763 and a maximum of 
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7.4161. However, during the walking task, the predicted model showed less agreement 

with the inverse dynamic model with R
2
 of 0.9139 and an RSME of 8.3172.   

 

 

Table 5.9 

 R
2
 and RMSE values  

         Accuracy 

Task 
R

2 

 
RMSE 

 

 

Sit To stand  

 

0.9952 
 

7.4165 
Stand To Sit 0.9963 6.7763 
Walking 0.9139 8.3172 

 

5.8.2    Real Time Implementation  

 

As mentioned in chapter 3, a real time system was developed in order to validate 

the proposed method. Figure 5.39 illustrates the open loop model output (angle 

scenario) during chair rise task. A validation of the model was made by using a gyro 

sensor to measure the angle of a one link exoskeleton and the actual movement of the 

individual. Results shows good matching at the beginning of the motion, slight 

difference occurs when the individual at about the upright posture. This is because the 

model is an open loop system. Yet the exoskeleton motion could track the individual 

movement sufficiently.  

 

 

 

Figure 5.39. Knee angles of the individual compared with angle of the exoskeleton 

during chair-rise task.  
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5.9       Summary   

 

            To summarize this chapter, the results of the proposed methodology are 

presented.  The recorded sEMG and the kinematics data were first presented in order to 

clarify the signals defect and the amount of the noises in them. It was important to 

remove the DC offset in both signals as it certainly conceal the rising and falling time in 

sEMG and it results in un-correct if further processing of the kinematics data is 

performed. The second important concern was to analyze the effect of the Butterworth 

filter on the amplitude of the sEMG signal as the rising/falling time of the signal. The 

presence of the overlapped crosstalk/unwanted measurements was determined using the 

onset/offset time of both the sEMG and the kinematics data.  Modified Butterworth 

filter based RLS algorithm was developed to eliminate the existed crosstalk/unwanted 

measurements. To better understand the contribution of a muscle to the individual‘s 

motion, the sEMG signals were normalized with the regards to the motion range in both 

experiments (chair-rise and walking). Hill‘s muscle model was implemented to obtain 

the forces generated by the muscles. Further process was to calculate the joint moments 

produced by the muscle forces and compare these results with the obtained from the 

inverse dynamics.  Lastly, the real time implementation results were presented in order 

to validate the proposed method.  

 

 

 

 

 

 

 

 

 

 



CHAPTER 6  

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

6.1      Introduction 

 

The overall purpose of this thesis was to examine some of the lower limb group 

muscles activities measured by means of the surface electromyography in order to be 

full in use for exoskeleton sEMG-based control.  

 

Capturing sEMG signals along with motion data was the core of the 

experiments.  The sEMG data were acquired from two muscles of the lower limb during 

chair-rise task while in the walking task, four muscles were acquired. Gyroscopes 

sensors were used to capture the motion of the heel (knee flexion) and the hip motion 

during walking. Even though, the experiments setup i.e. acquiring the sEMG signals 

were according to some of the standard and recommendations, these signals were not 

guaranteed for the use in controlling assistive devices in order to obtain safe human 

machine interaction.  

 

6.2    Summary of the Research   

 

          Four objectives were identified in this study as the following:  

 

i. To design an optimum digital filter that cleans the noises in surface 

electromyography signals. Results showed that unwise selecting the filter‘s 
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parameters (i.e. the filter order and the cutoff frequency) undershoot the signal 

and may delay the onset time of the signal. For instance, taking a cutoff 

frequency of 2Hz with the filter‘s order from [1-7] undershoot the signal with all 

orders expect the 1
st
 order in which it delayed the onset time of the signal. 

Whereas, when taking a cutoff of 6Hz, the outputs of the filter showed no 

difference between them with close similarity in amplitude apart from the first 

order output in which the result appears in a rippled waveform. The 3
rd

 order 

with cutoff frequency of 6Hz appeared to be the average of all outputs. 

Therefore, in this study we accept a 3
rd

 order Butterworth filter with cutoff 

frequency of 6Hz as the optimum filter (chapter5, section 5.3). 

ii. To detect and eliminate the existence of the unwanted/crosstalk recordings from 

the signal of interest. The proposed method (detecting and comparing the 

onset/offset of both kinematics and sEMG) had the ability to determine the 

presence of the overlapped crosstalk measurements on the signal of interest. As 

these recording needs to be eliminated, the modified Butterworth filter 

successfully eliminated and reduced the crosstalk measurements by adaptively 

decreasing the cutoff frequency with accordance the contaminated crosstalk 

timing (chapter 5, section 5.5).  

iii. To develop a model based HMM in order to relate the muscle activities with 

joint moment. On the other hand, the inverse dynamics model for both 

experiments protocol was developed to obtain the net joint moment to be 

compared with the joint moment obtained from the muscles. Accepted results 

between the two joint moments in term of waveform during chair-rise 

experiment while in the walking task, the waveform of was different. To attain a 

complete knee joint moment, the LS based optimization method showed good 

results to predict the knee joint moment produced by the muscles with good 

accuracy  

iv. To implement the algorithm into a real time system as a preliminary application 

to an exoskeleton system. A full real time system was developed to include all 

above objectives in order to predict the knee joint moment and to track the 

motion of the individual. The system was tested on single link exoskeleton robot 

for sit to stand task. Even though the system is an open loop, it showed good 

tracking with the individual‘s motion.   
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6.3    Research Contribution  

 

           The contributions in this study appears in analyzing the sEMG in depth in term 

of filtering i.e. the design of the optimal filter along with the adaptive filter that removes 

the unwanted/crosstalk recordings for safety purposes. The process of obtaining the 

force generated by the muscles (Hill model-based) was also studied and transformed to 

the joint moment.   

 

           A real time algorithm was developed to record, filter, remove the unwanted 

measurements, normalize and transform the sEMG to the joint moment. Validation of 

the algorithm is also provided by implementing it in.   

  

6.4    Future Work   

 

In the future work, it is suggested to record and analyze other major muscles of 

the lower limb from healthy, adults and patients in order to evaluate the difference 

between them.  Even though it is hard to stream multi-channels at a time, it is 

recommended to record every time two channels with the corresponding motion data. 

Using the methodology in this study will give each experiment an insight of the sEMG-

motion pattern. With the help of getting the net moment using the inverse dynamic, one 

can predict the moment of the remaining muscles.   

 

6.5    Recommendation   

 

i. We recommend furthering this research by implementing the system in a 

developed real-time operating system such as QNX Neutrino, Linux operating 

system or xPc target using Matlab/Simulink software rather than using Windows 

as it can delay the execution time.  

ii. Using more advanced motion sensor such as Inertial Measurement Unit (IMU) is 

crucial in order to avoid accumulated errors while calculating other physical 

parameters. 

iii. Conducting the experiment on the treadmill has valuable benefits in 1) 

controlling the speed of the subjects during walking and 2) avoiding the 
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Bluetooth communication failure due to the distance between control station and 

the user while walking for instance.  

iv. Further investigation on the Hill‘s Muscle Model (HMM) is most recommended.  

v. Real time parameters estimation of the forces generated by the muscle is 

recommended. 
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Appendix A: 

MATLAB-codes: 

A.1. MATLAB code for filtering “Butterworth Filter” 

%%  butterworth with cutoff fequency changing or adaptive cutoff 

frequency 
emg1=em1(:,2);emg1=emg1-mean(em1(:,2)); 
emg2=em2(:,2);emg2=emg2-mean(em2(:,2)); 
emg3=em3(:,2);emg3=emg3-mean(em3(:,2)); 
emg4=em4(:,2);emg4=emg4-mean(em4(:,2)); 
angvel=Gr2(:,2)-mean(Gr2(:,2)); 
Rawlength=[length(emg1),length(emg2),length(emg3),length(emg4),length(

angvel)]; 
samp=min(Rowlength); 
w1=.2;w2=5;%lower and upper frequencies 
%% generating a criteria cn 
cnn=ones(samp,1);w0=0.2; 
V  = tan(fc2 * pi/2);  
Sp = V * [-1-1i, -1+1i -1+1i] / sqrt(2); 
for k=1:length(V) 
Sg(k) = V(k) ^ 3;% k1 coffiecient 1  
  G(k) = real(Sg(k) / prod(1 - Sp(k,:))); 
  P(k,:) = (1 + Sp(k,:)) ./ (1 - Sp(k,:));%bilinear transform 
  B1(k,:) = G(k) * [1, 3, 3 1]; 
  A1(k,:) = real(poly(P(k,:))); 
end 
%% defining the upper lower corner of the frequencies non changing 

freq 
% corner 
cn=((w2+1)*ones(length(emg3),1)-w1)/w2; 
fc1=(w1+w2*cn)/512; 
V  = tan(fc1 * pi/2);  
Sp = V * [-1-1i, -1+1i -1+1i] / sqrt(2); 
for k=1:length(V) 
Sg(k) = V(k) ^ 3;% k1 coffiecient 1  
  G(k) = real(Sg(k) / prod(1 - Sp(k,:))); 
  P(k,:) = (1 + Sp(k,:)) ./ (1 - Sp(k,:));%bilinear transform 
  B1(k,:) = G(k) * [1, 3, 3 1]; 
  A1(k,:) = real(poly(P(k,:))); 
end 
%% =========== filtering forward and 

backward==============================  
%=====================================================================

===== 
%% 1-1 Removing the DC Bias (DC offset coming from)============ 
%=====================================================================

===== 
Rawlength=[length(emg1),length(emg2),length(emg3),length(emg4),length(

angvel)]; 
samp=min(Rowlength); 
angvel=angvel(1:samp); 
Ms=[emg1(1:samp),emg2(1:samp),emg3(1:samp),emg4(1:samp)]; 
y0=abs(emg2(1:samp)); 
y=abs(emg3(1:samp)); 
y1=abs(emg4(1:samp)); 
y2=((-1)*angvel(1:samp)); 
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lng=samp; 
x=zeros(1,lng);x(1)=y(1); x(2)=y(1); x(3)=y(1); 
x0=zeros(1,lng);x0(1)=y0(1); x0(2)=y0(1); x0(3)=y0(1); 
x1=zeros(1,lng);x1(1)=y1(1); x1(2)=y1(1); x1(3)=y1(1); 
x2=zeros(1,lng);x2(1)=y2(1); x2(2)=y2(1); x2(3)=y2(1); 
for k=4:lng  
 x(k)=B1(k,1)*y(k)+B1(k,2)*y(k-1)+B1(k,3)*y(k-2)+B1(k,4)*y(k-3) - 

A1(k,2)*x(k-1)-A1(k,3)*x(k-2)-A1(k,4)*x(k-3); % forward filter 
 x0(k)=B1(k,1)*y0(k)+B1(k,2)*y0(k-1)+B1(k,3)*y0(k-2)+B1(k,4)*y0(k-3) - 

A1(k,2)*x0(k-1)-A1(k,3)*x0(k-2)-A1(k,4)*x0(k-3); % forward filter 
 x1(k)=B1(k,1)*y1(k)+B1(k,2)*y1(k-1)+B1(k,3)*y1(k-2)+B1(k,4)*y1(k-3) - 

A1(k,2)*x1(k-1)-A1(k,3)*x1(k-2)-A1(k,4)*x1(k-3); % forward filter 
 x2(k)=B1(k,1)*y2(k)+B1(k,2)*y2(k-1)+B1(k,3)*y2(k-2)+B1(k,4)*y2(k-3) - 

A1(k,2)*x2(k-1)-A1(k,3)*x2(k-2)-A1(k,4)*x2(k-3); % forward filter 
end 
%subplot(211);plot(x);grid on,subplot(212);plot(x1);grid on, 
% 
yy=zeros(1,lng); yy(lng)=x(lng); yy(lng-1)=x(lng-1); yy(lng-2)=x(lng-

2);yy(lng-3)=x(lng-3); 
yy0=zeros(1,lng); yy0(lng)=x0(lng); yy0(lng-1)=x0(lng-1); yy0(lng-

2)=x0(lng-2);yy0(lng-3)=x0(lng-3); 
yy1=zeros(1,lng); yy1(lng)=x1(lng); yy1(lng-1)=x1(lng-1); yy1(lng-

2)=x1(lng-2);yy1(lng-3)=x1(lng-3); 
yy2=zeros(1,lng); yy2(lng)=x2(lng); yy2(lng-1)=x2(lng-1); yy2(lng-

2)=x2(lng-2);yy2(lng-3)=x2(lng-3); 
for k=lng-3:-1:1  
yy(k)= B1(k,1)*x(k)+B1(k,2)*x(k+1)+B1(k,3)*x(k+2)+B1(k,4)*x(k+3)+ - 

A1(k,2)*yy(k+1)-A1(k,3)*yy(k+2)-A1(k,4)*yy(k+3); % backward filter 
 yy0(k)=B1(k,1)*x0(k)+B1(k,2)*x0(k+1)+B1(k,3)*x0(k+2)+B1(k,4)*x0(k+3)+ 

- A1(k,2)*yy0(k+1)-A1(k,3)*yy0(k+2)-A1(k,4)*yy0(k+3); % backward 

filter 
 yy1(k)=B1(k,1)*x1(k)+B1(k,2)*x1(k+1)+B1(k,3)*x1(k+2)+B1(k,4)*x1(k+3)+ 

- A1(k,2)*yy1(k+1)-A1(k,3)*yy1(k+2)-A1(k,4)*yy1(k+3); % backward 

filter 
 yy2(k)=B1(k,1)*x2(k)+B1(k,2)*x2(k+1)+B1(k,3)*x2(k+2)+B1(k,4)*x2(k+3)+ 

- A1(k,2)*yy2(k+1)-A1(k,3)*yy2(k+2)-A1(k,4)*yy2(k+3); % backward 

filter 
end 
out=yy; 
subplot(411);plot(yy,'-k','LineWidth',2.0);grid on 
subplot(412);plot(yy1,'-k','LineWidth',2.0);grid on 
subplot(413);plot(yy2,'-k','LineWidth',2.0);grid on 
subplot(414);plot(yy0,'-k','LineWidth',2.0);grid on 

 

 

A.3. MATLAB code for filtering part “WAVELET FILTER” 

function [approximations, details] = wavelet_decompose(signal, scale, 

wavelet) 

 
sig_length = length(signal); 

 
approximations = zeros(sig_length, scale); 
details = zeros(sig_length, scale); 

 
[C,L] = wavedec(signal, scale, wavelet); 

 
for i=1:scale, 
  approximations(:,i) = wrcoef('a', C, L, wavelet, i); 
  details(:,i) = wrcoef('d', C, L, wavelet, i); 
end 
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A.4. MATLAB code for onset/offset detection (Offline Detection). 

function[onoff,onset,restav,offset,yy,y10,x10]=emgonsetdet(emgraw,fs) 
% base line wonder and DC offset removal  

bsl=emgraw(1:length(emgraw)); 
[p,s,mu] = polyfit((1:numel(bsl))',bsl,15); 
f_y = polyval(p,(1:numel(bsl))',[],mu); 
%plot(f_y,'g');hold on 
bsl1=f_y-bsl; 
bsl1=bsl1-mean(bsl1); 
fwlo = abs(bsl1); 
fwlo=fwlo-mean(fwlo); 
fwlo=abs(fwlo); 
%% prepare for loop 
% Get two ranges for resting emg (before & after burst) using ginput 

 
w1=.1;w2=5;%emgraw=emg3; 
cn=((w2+1)*ones(length(emgraw),1)-0.1)/w2;fc1=(w1+w2*cn)/512; 
V  = tan(fc1 * pi/2);  
Sp = V * [-1-1i, -1+1i -1+1i] / sqrt(2); 
for k=1:length(V) 
Sg(k) = V(k) ^ 3;% k1 coffiecient 1  
  G(k) = real(Sg(k) / prod(1 - Sp(k,:))); 
  P(k,:) = (1 + Sp(k,:)) ./ (1 - Sp(k,:));%bilinear transform 
  B1(k,:) = G(k) * [1, 3, 3 1]; 
  A1(k,:) = real(poly(P(k,:))); 
end 
%Rowlength=[length(emg1),length(emg2),length(emg3),length(emg4),length

(angvel)]; 
%samp=min(Rowlength); 
%angvel=angvel(1:samp); 
%Ms=[emg1(1:samp),emg2(1:samp),emg3(1:samp),emg4(1:samp)]; 
%y0=abs(emg2(1:samp)); 
samp1=length(emgraw); 
y=fwlo(1:samp1); 
lng=length(y); 
x=zeros(1,lng);x(1)=y(1); x(2)=y(1); x(3)=y(1); 
for k=4:lng  
    x(k)=B1(1,1)*y(k)+B1(1,2)*y(k-1)+B1(1,3)*y(k-2)+B1(1,4)*y(k-3) - 

A1(1,2)*x(k-1)-A1(1,3)*x(k-2)-A1(1,4)*x(k-3); % forward filter 
end 
yy=zeros(1,lng); yy(lng)=x(lng); yy(lng-1)=x(lng-1); yy(lng-2)=x(lng-

2);yy(lng-3)=x(lng-3); 
for k=lng-3:-1:1 
yy(k)=B1(1,1)*x(k)+B1(1,2)*x(k+1)+B1(1,3)*x(k+2)+B1(1,4)*x(k+3)+ - 

A1(1,2)*yy(k+1)-A1(1,3)*yy(k+2)-A1(1,4)*yy(k+3); % backward filter 
end 
f1 = figure; 
plot(yy,'-k','LineWidth',2.0);grid on 
%prepare for loop 
% Get two ranges for resting emg (before & after burst) using ginput 
%plot(yy); 
[x10 y10] = ginput(4); %click four times: two for start/end of resting 

emg before burst two for resting emg after burst 
x10 = round(x10); 
w1=.1;w2=5;%emgraw=emg3; 
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mvgav = zeros(x10(4)-x10(1),1); 
onoff(1,1) = 0; 
i=0; 
restav = mean(yy(x10(1):x10(2))); %average value of rest EMG before ON 
reststd = std(yy(x10(1):x10(2))); %std. dev. of rest EMG before ON 
restav2 = mean(yy(x10(3):x10(4))); %average value of rest EMG after 

OFF 
reststd2 = std(yy(x10(3):x10(4))); %std. dev. of rest EMG after OFF 
% restav3 = mean(yy(x10(5):x10(6))); %average value of rest EMG after 

OFF 
% reststd3 = std(yy(x10(5):x10(6))); %std. dev. of rest EMG after OFF 
%% window size (in samples) = ws*fs e.g. 50ms*2400Hz = 120 samples 
ws=50; 
sws2 = fs*(0.001*ws); 
sws = 0.5*(sws2); 
sws = round(sws); 
%% find "ON" index: 
% for xi, change from x(1) to x(2) if you want to ignore any "blips" 
% within the resting range. 
%xi = x(1); 
sd=1; 
xi = x10(2); % start searching from the second point gig 
xi = round(xi); 
for n = 2:length(mvgav); 
mvgav(n,1) = mean(yy((xi-sws):(xi+sws))); 
ifmvgav(n) > restav+2*sd*reststd; 
        i = i+1; 
onoff(i,1) = xi; 
break 
end 
    xi = xi+1; 

 
end 
%on1=onoff 
%% find "OFF" index: 
%clear n xi i 
mvgav2=zeros(x10(4)-x10(1),1); 
i=0; 
xi=onoff(1,1)+(2/3)*(x10(3)-onoff(1,1)); %start OFF search approx. 1/2 

way through ON burst. 
%% OFF loop: 
xi=round(xi); 
for n=2:length(mvgav2); 
    mvgav2(n,1)=mean(yy((xi-sws):(xi+sws))); 
if mvgav2(n)<restav2+sd*reststd2; 
        i=i+1; 
onoff(i,2)=xi; 
break 
end 
    xi=xi+1; 

 
end 
onoff1=onoff; 
%% defining the index of the onset and the offset of the emg 
% ind=ans; 
 ton=onoff1(:,1); 
toff=onoff1(:,2); 
 ton=ton*[1;1]; 
toff=toff*[1;1]; 
%%toff=toff*[0.5;0.5]; 
%plot(emgraw,'LineWidth',2.0);grid on 
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%% Grid filtering  
%%  butterworth with a changing cutoff fequency  or adaptive cutoff 

frequency 
hold on 
onset=yy(onoff(1));offset=yy(onoff(2)); 
yrange=[0 max(yy)]; 
plot([ton toff],yrange,'--b','LineWidth',2.5) 

 

 

A.5. MATLAB code for features extraction 

%% absolute vector of emg4 and the integrated emg 
emg44=emgtest; 
clear IEMG4 
%%################1st Inegrated 

EMG####################################### 
seg=50; 
for n=1:seg:length(emg4)-seg 
    IEMG4(n)=sum(abs(emg4(n:n+seg))); 
end 
  IEMG4= IEMG4(IEMG4~=0);IEMG4=IEMG4/(max(IEMG4)+std(IEMG4)); 
  plot(IEMG4) 
%% %%########################Mean Absolute 

Value############################## 
clear MAV 
 MAV=1/length(IEMG4)*IEMG4; 
 MAV=MAV/(max(MAV)+std(MAV)); 
 plot(MAV) 

  
%% %######################Modified Mean Absolute Value 1####### 
clear MMAV1 
seg=50; 
for n=2:seg:length(emg4)-seg 
    if 0.25*length(emg4)<= n <=0.75*length(emg4) 
        wn=1; 
        MMAV1(n)=sum(wn*abs(emg4(n:n+seg)))/length(emg4); 
    else 
        wn=0.5; 
        MMAV1(n)=sum(wn*abs(emg4(n:n+seg)))/length(emg4); 
    end 
end 

  
 MMAV1= MMAV1(MMAV1~=0); MMAV1=MMAV1/(max(MMAV1)+std(MMAV1)); 
 plot(MMAV1) 
%% ######## #####Modified Mean Absolute Value 2####### 
seg=50; 
clear MMAV2 
for n=1:50:length(emg4)-seg 
    if 0.25*length(emg4)<= n <=0.75*length(emg4) 
        wn=1; 
        MMAV2(n)=sum(wn*abs(emg4(n:n+seg)))/length(emg4); 
    elseif n<0.25*length(emg4) 
        wn(n)=n/length(emg4); 
        MMAV2(n)=sum(wn(n)*abs(emg4(n:n+seg)))/length(emg4); 
    else 
        wn(n)=4*(n-length(emg4)/length(emg4)); 
        MMAV2(n)=sum(abs(emg4(n:n+seg)))/length(emg4); 
    end 
end 
 MMAV2= MMAV2(MMAV2~=0);  MMAV2=MMAV2/(max(MMAV2)+std(MMAV2)); 
 plot(MMAV2) 
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%% ############### Mean Absolute Value Slope################### 
clear MAVSLP 
seg=50; 
for n = 2:length(MAV) 
    MAVSLP(n)=MAV(n)- MAV(n-1); 
end 
subplot(211);plot(MAVSLP,'r'),grid on;subplot(212);plot(MAV,'b');grid 

on 
%% ################### Simple Square Integral 

############################ 
clear SSI 
seg=50; 
for n=1:seg:length(emg4)-seg 
    SSI(n)= sum(abs(emg4(n:n+seg)))^2; 

    
end 
 SSI= SSI(SSI~=0);SSI=SSI/(max(SSI)+std(SSI));plot(SSI) 
%% #################Variance of 

EMG###################################### 
clear VAR 
seg=50; 
for n=1:50:length(emg4)-seg 
    VAR(n)=(1/(length(emg4)-1))*sum(emg4(n:n+seg)); 

     
end 
 VAR= VAR(VAR~=0);plot(VAR) 
%% #########################Root Mean Square ####################### 
clear RMS1 
seg=50; 
for n=1:seg:length(emg4)-seg 
    RMS1(n)=sqrt(((1/seg)*sum(emg4(n:n+seg).^2))); 
end 
  RMS1= RMS1(RMS1~=0);RMS1=RMS1/(max(RMS1)+std(RMS1)); plot(RMS1) 
%% ###### ############waveform length 

#################################### 
for n=2:length(emg1); 

     
    WL(n)=abs(emg1(1)-emg1(n-1)); 
end 
WL; 
%% ############## Zero crossing detector 

#################################  
%% 
clear zeroNb 
x=emg(1:end)'; 
zeroNb=0; 
for i=1:length(x)-1 %length : get x size 
if ((x(i)>=0 && x(i+1)<0) || (x(i)<=0 && x(i+1)>0)) 
     zeroNb=1+zeroNb; 
end 
end 

 

A.6 Real time simulation Algorithm 

%% this code calculate the average,the onset/offset acording to the 

motion of the emg signal every 150 samples along 
% the signal %%%%%%%% and return the onset of the emg signal  
%x=emg; 
%elapsedTime = 0;                                                        
tic;  
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x=yy; vel=abs(yy1); 
 x = double(x);     
if isvector(x)  
    x = x(:); 
end 
[mx,nx] = size(x);%vel=abs(yy1); 
% 
clear y00 pks locs diff1 x_std sum1 newsum1 kk k ondiff newondiff 

offdiff newoffdiff idvel_on idx_on 
newdiff1=[];sum1=[];newsum1=[];onoff1(1,1) = 

0;ont=[];offdiff=[];newoffdiff=[]; 
diff1=[];x_std=[];NS=150;i=0;ind1=[];newind1=[];ind2=[];newind2=[];ont

=[]; 
ondiff=[];newondiff=[]; 
% velocity 

parameters====================================================== 
% 

======================================================================

=== 
diff11=[];newdiff11=[];sum11=[];newsum11=[];vel_ont=[];ii=0; 
vel_ondiff=[];vel_newondiff=[];ind11=[];ind22=[];newind22=[]; 
vel_offdiff=[];vel_newoffdiff=[];idx_on=[];idx_off=[];idvel_on=[];idve

l_off=[]; 
for k = 2:NS:length(vel)-NS 
    % emg 

processing======================================================= 
    

%=====================================================================

= 
    y00(:,k)=(1/NS)*sum(x(k:k+NS));% calculating the mean value  for 

each segment  
    %xy(:,k)=y00(:,k); 
    locs=findpeaks(y00,0);% calculte the location of the peaks  
    pks=y00(locs);%display the peaks  
    newdiff1=(x(k:k+NS)-(1/NS)*sum(x(k:k+NS)));% calculate the 

variance   
    diff1=[diff1;newdiff1]; 
    newsum1=(sum(newdiff1)^2)*(1/(NS-1)); 
    sum1=[sum1;newsum1];% 
    x_std=sqrt(sum1);%kk2=kk2+1; standard deviation calculation 

  
% angular velocity 

processing============================================== 
    

%=====================================================================

= 
    y001(:,k)=(1/NS)*sum(vel(k:k+NS));% mean value  
    locs1=findpeaks(y001,0); 
    pks1=y001(locs1); 
    newdiff11=(vel(k:k+NS)-(1/NS)*sum(vel(k:k+NS))); 
    diff11=[diff11;newdiff11]; 
    newsum11=(sum(newdiff11)^2)*(1/(NS-1)); 
    sum11=[sum11;newsum11];%xi = locs(3);xi = round(xi); 
    vel_std=sqrt(sum11);%kk2=kk2+1; 
    [B1,A1]=butter(3,6/512,'low'); 
    if y00(k)-y00(k-1)>0.0105+x_std 
         i = i+1;%kk1=kk1+1; 
         ont(i,1) = y00(k-NS); 
         %ondiff=diff(ont(i,1)); 
         for kk=1:length(ont(:,1))-1 
             if ont(kk,1)==0 && ont(kk+1,1)>0 
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               newondiff(kk,1)=(ont(kk+1,1))-ont(kk,1); 
             end 
             ondiff=newondiff; 
             ondiff=ondiff(ondiff~=0); 
         end 
        %break 
        [tf1, newind1] = ismember(ont(i,1), y00); 
        ind1=[ind1;newind1]; 
    end 
    for nn=1:length(ondiff) 
       idx_on(nn)=(find(y00==ondiff(nn))); 
    end 
     if y001(k)-y001(k-1)>4.0 +vel_std(round((k+NS)/NS)) 
          ii = ii+1;%kk1=kk1+1; 
          vel_ont(ii,1) = y001(k-NS); 
          for kk=1:length(vel_ont(:,1))-1 
              if vel_ont(kk,1)==0 && vel_ont(kk+1,1)>0 
                vel_newondiff(kk,1)=(vel_ont(kk+1,1))-vel_ont(kk,1); 
              end 
              vel_ondiff=vel_newondiff; 
              vel_ondiff=vel_ondiff(vel_ondiff~=0); 
%             
          end 
        %break 
        [tf11, newind11] = ismember(vel_ont(i,1), y001); 
        ind11=[ind11;newind11]; 
     end 
     for nn=1:length(vel_ondiff) 
       idvel_on(nn)=(find(y001==vel_ondiff(nn))); 
     end 
    if y00(k)-y00(k-1)<0.0105+x_std     %newont=y00(k); 
          i=i+1;  
          ont(i,2)=y00(k); 
          %off10(i,:)=ont(i,2);%;ont(1,2)]; 
           for kk=1:length(ont(:,2))-1 
               if ont(kk,2)==0 && ont(kk+1,2)>0 
               newoffdiff(kk,1)=(ont(kk+1,2))-ont(kk,2); 
               end 
               offdiff=newoffdiff; 
               offdiff=abs(offdiff(offdiff~=0)); 
           end 

            
           [tf2, newind2] = ismember(ont(i,2), y00); 
          ind2=[ind2;newind2]; 
    end 
    for nn=1:length(offdiff) 
       idx_off(nn)=(find(y00==offdiff(nn))); 

        
    end 
     if y001(k)-y001(k-1)<4.0+vel_std(round((k+NS)/NS))     

%newont=y001(k); 
           ii=ii+1;  
           vel_ont(ii,2)=y001(k); 
          for kk=1:length(vel_ont(:,2))-1 
               if vel_ont(kk,2)==0 && vel_ont(kk+1,2)>0 
                vel_newoffdiff(kk,1)=(vel_ont(kk+1,2))-vel_ont(kk,2); 
               end 
               vel_offdiff=vel_newoffdiff; 
               vel_offdiff=(vel_offdiff(vel_offdiff~=0)); 
           end 
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           [tf22, newind22] = ismember(vel_ont(i,2), y001); 
           ind22=[ind22;newind22]; 
     end 
    for nn=1:length(vel_offdiff) 
       idvel_off(nn)=(find(y001==vel_offdiff(nn))); 

        
    end 
    %==============================streching the signal====== 
    for k0=1:length(idvel_off) 
    %emg_veldis_on1(:,k0)=idvel_on(k0)-idx_on(k0); 
     if idvel_off(k0)-idx_off(k0)>20 
        if k0==1 
% =============baseline% 

expanding========================================= 
        x0=x(1:idx_on(k0));% I couldn't find it how it works 
        x1=dct(x0); 
        x1(length(x0):length(x0)+(idvel_on(k0)-idx_on(k0)))=0; 
        xx_1=idct(x1); 
% =============1st burst 

expanding========================================= 
        x01=x(idvel_on(k0)+1:idx_off(k0)); 
        xx01=dct(x01); 
        xx01(length(x01):length(x01)+(idvel_off(k0)-idx_off(k0)))=0; 
        xx1=idct(xx01); 
        else    

             
        eval(sprintf('x0%d = x(idvel_on(k0)+1:(idx_off(k0)))', k0)); 

         
        eval(sprintf('in2%d = x(idvel_off(k0-1):idvel_on(k0)-1)',k0)); 

          
        eval(sprintf('yd%d = x(abs(idvel_off(k0-1)-idvel_on(k0)):-

1:1)',k0)); 

        
       if idvel_on(k0)-idx_on(k0)>40 
        eval(['yhat' num2str(k0) '=filtadapt(yd' num2str(k0) ',in2' 

num2str(k0) ');']); 
       end 

          
        eval(['xx0' num2str(k0) '=dct(x0' num2str(k0) ');']); 

         
        eval(['x_' num2str(k0) '= (zeros(idvel_off(k0)-

idx_off(k0),1));']); 

         
        eval(['xx_0' num2str(k0) '= [xx0' num2str(k0) ';x_' 

num2str(k0) '];']); 

         
        eval(['xx' num2str(k0) '=idct(xx_0' num2str(k0) ');']); 

         
        zz_end=x(idvel_off(end)+1:end); 

         

         
        end 
     end 
   end 
end 

  
toc 
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A.6. Real Time implementation correlation between the motion and muscle 

activities in real time process 

function 

[FiltEMG,GYFilt,MeanV,STDV,MGYRO,nSamp,idx_on,idx_off,idvel_on,idvel_o

ff]= cmd_realTime2(comPort1,comPort2,captureDuration, 

fileName1,fileName2) 
%% this code calculate the average of the emg signal every 150 samples 

along 
% the signal %%%%%%%% and return the onset of the emg signal  
%elapsedTime = 0; 
close all 
DELAY_PERIOD =.2;   
thisFilter.bufferedX=[];     
thisFilter.bufferedX1=[];  
thisFilter.samplingRate=512; 

  
shimmer1 = ShimmerHandleClass(comPort1);                                     

% Define shimmer as a ShimmerHandle Class instance with comPort1 
shimmer2 = ShimmerHandleClass(comPort2);  

  
firsttime = true; 
 if (shimmer1.connect && shimmer2.connect)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 
% Define settings for shimmer 

     

  
    shimmer1.setsamplingrate(512);  
    shimmer1.setinternalboard('EMG'); % Set the shimmer internal 

daughter board to 'None' 
    shimmer1.setenabledsensors('EMG',1);  

     
    shimmer2.setinternalboard('Gyro');                                                

% Set the shimmer 2 internal daughter board to '9DOF', the default 

setting is 'None' 
    shimmer2.setenabledsensors('Gyro',1);  % Enable the shimmer 2 

accelerometer and gyroscope, disable the magnetometer, AnEx_A0 and 

AnEX_A7 
    shimmer2.setsamplingrate(512);  

       
    if (shimmer1.start && shimmer2.start)%    
        calibDataShimmer1 = [];                                                
        newData1 = []; 

         
        calibDataShimmer2 = [];                                                
        newData2 = []; 

         
        storeData = []; 
        MeanV=[];newMeanV=[]; 
        STDV=[];newSTDV=[]; 

         
        nSamp=[];sig=[]; 

         
        idx_on=[];idx_off=[]; 

        

         
        on=[];newondiff=[];ondiff=[];newoffdiff=[];offdiff=[]; 
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        nSdiff=[];newSdiff=[]; 

         

         
        %%%% Gyro parameters %%%%%%%%%%%%%%%% 
        GYFilt=[]; 
        MGYRO=[];newMGYRO=[];MGYRO1=[];newMGYRO1=[]; 
        sig1=[];MnGyro=[]; 
        idvel_on=[];idvel_off=[]; 
        STDGYRO=[];newSTDGYRO=[];nSamp1=[]; 
        

onGY=[];newonGYdiff=[];onGYdiff=[];newoffGYdiff=[];offGYdiff=[]; 
        nSdiff1=[];newSdiff1=[]; 

         
        h.figure1=figure('Name','Shimmer ');                              

% Create a handle to figure for plotting data from shimmer 

        
        elapsedTime = 0;   i0=0;   i1=0;                                  

% Reset to 0     
        tic;   

  
        while (elapsedTime < captureDuration)             

                       
            pause(DELAY_PERIOD);                                           

% Pause for this period of time on each iteration to allow data to 

arrive in the buffer 

    
            %%%EMG data shimmer sensor ################# 
            

[newData1,signalNameArray,signalFormatArray,signalUnitArray]= 

shimmer1.getdata('EMG','c'); 

              
            if (firsttime==true)  
                signalNamesString = char(signalNameArray(1,1));                                           

% Create a single string, signalNamesString 
                signalFormatsString = char(signalFormatArray(1,1));                                       

% Create a single string, signalFormatsString 
                signalUnitsString = char(signalUnitArray(1,1));                                           

% Create a single string, signalUnitsString 
                signalNamesString=[char('EMG'), char(9), 

char('EMG_Filtered'), char(9)]; % create a single string, 

signalNamesString 
                dlmwrite(fileName1, signalNamesString, '%s');        
            end 

             
            if ~isempty(newData1)                                          

% TRUE if new data has arrived 

                 
               %dlmwrite(fileName1, newData1, '-append', 'delimiter', 

'\t'); % Append the new data to the file in a tab delimited format         
                calibDataShimmer1 = [calibDataShimmer1; newData1]; 
                EMGDataFiltered=(calibDataShimmer1(:)); 
                % filter 

design============================================== 
                nSamples = length(calibDataShimmer1(:)); 
                bufferSize = thisFilter.samplingRate*2; 
                if isempty(thisFilter.bufferedX) 
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                   thisFilter.bufferedX = 

[newData1(1)*ones(bufferSize,1); calibDataShimmer1(:)]; 
                else 
                   thisFilter.bufferedX = 

[thisFilter.bufferedX(nSamples+1:end); calibDataShimmer1(:)]; 
                end 
                  % filter coeffecient  
                B=[6.000067137988330e-06,1.800020141396499e-

05,1.800020141396499e-05,6.000067137988330e-06]; 
                A=[1,-2.921919417911570,2.846514484228639,-

0.924560688648323]; 

                 
                Y = filtfilt(B,A,abs(thisFilter.bufferedX)); 
                EMGDataFiltered = Y(end-nSamples+1:end); 

                 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                newstoreData = [calibDataShimmer1 EMGDataFiltered]; 
                storeData = [storeData; newstoreData]; 
                dlmwrite(fileName1, newData1, '-append', 'delimiter', 

'\t');  
                Seg=nSamples/150; 

                 
                newMeanV=mean(EMGDataFiltered(end-Seg+1:end));%(end-

Seg+1:end));% The mean values for each requested coming filtered data 
                nSamp=[nSamp;nSamples];k0=0; 
                MeanV=[MeanV(:);newMeanV(:)]; 

                 
                newSTDV=std(EMGDataFiltered(end-Seg+1:end));% The 

standard diviation for each segment 
                STDV=[STDV(:);newSTDV(:)]; 
                FiltEMG=EMGDataFiltered(nSamp(1)-100:end); 
                FiltEMG1=abs(FiltEMG-newMeanV); 
                if length(nSamp)>1 
                    k0=k0+1; 
                    newSdiff(k0)=nSamp(length(nSamp))-

nSamp(length(nSamp)-1); 
                    nSdiff=[nSdiff;newSdiff]; 
                    newsig=zeros(newSdiff,1);newsig(end)=newMeanV; 
                    sig=[sig;newsig];  
                end 

                 

                 
                if length(MeanV)>1 
                     i0=i0+1; 
                     if MeanV(length(MeanV))> 3*MeanV(1)+ 

1*STDV(length(STDV))%&&  
                         on(i0,1)=MeanV(length(MeanV)-1); 
                         %on1=on(i0,1); 
                        for kk=1:length(on(:,1))-1 
                           if on(kk,1)==0 && on(kk+1,1)>0 
                             newondiff(kk,1)=(on(kk+1,1))- on(kk,1); 
                             %newondiff(i0)=on1(length(on)+1)- 

on(length(on)); 
                             ondiff=[newondiff]; 
                           end 
                           ondiff=ondiff(ondiff~=0); 
                        end 
                     end 
                    for nn=1:length(ondiff) 
                       idx_on(nn)=(find(sig==ondiff(nn))); 
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                    end 
                      if MeanV(length(MeanV)) < 

3*MeanV(1)%+STDV(length(STDV)) 
                          on(i0,2)=MeanV(length(MeanV)); 
                          for kk=1:length(on(:,2))-1 
                           if on(kk,2)==0 && on(kk+1,2)>0 
                             newoffdiff(kk,2)=(on(kk+1,2))- on(kk,2); 
                             %newondiff(i0)=on1(length(on)+1)- 

on(length(on)); 
                             offdiff=[newoffdiff]; 
                           end 
                           offdiff=abs(offdiff(offdiff~=0)); 
                          end 
                      end 
                      for n0=1:length(offdiff) 
                       idx_off(n0)=(find(sig==offdiff(n0))); 
                      end 

                     
                end 

  
                 set(0,'CurrentFigure',h.figure1);                                                      

% Create subplot 
                 subplot(211); plot(FiltEMG);  
                 x=FiltEMG; 
            end   
            %%%%%%%%%%%%%%%%%%%%%%%%GYRO SHIMMER %%%%%%%%%%%%%%%%%%%%% 

             

             

             
            

[newData2,signalNameArray,signalFormatArray,signalUnitArray]=shimmer2.

getdata('Gyroscope','c'); 
            if (firsttime==true)  
                signalNamesString = char(signalNameArray(1,1));                                           

% Create a single string, signalNamesString 
                signalFormatsString = char(signalFormatArray(1,1));                                       

% Create a single string, signalFormatsString 
                signalUnitsString = char(signalUnitArray(1,1));                                           

% Create a single string, signalUnitsString 
                for i= 2:length(signalNameArray)                                                          

% which lists the names of the enabled  
                    tabbedNextSignalName = [char(9), 

char(signalNameArray(1,i))];                         % Add tab 

delimiter before signal name 
                    signalNamesString = 

strcat(signalNamesString,tabbedNextSignalName);                   % 

Concatenate signal names delimited by a tab. 

                  
                    firsttime=false; 
                end 

  
                dlmwrite(fileName2, signalNamesString, '%s');    % 

Write the signalNamesString as the first row of the file 

  
            end 

  
            if ~isempty(newData2)                                           

% TRUE if new data has arrived 
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                dlmwrite(fileName2, newData2, '-append', 'delimiter', 

'\t'); % Append the new data to the file in a tab delimited format 

                             
                calibDataShimmer2 = [calibDataShimmer2; newData2]; 
                GYDataFiltered=calibDataShimmer2(:,1); 

                 
                gyroData = [calibDataShimmer2(:,1), 

calibDataShimmer2(:,2), calibDataShimmer2(:,3)]; 
                % filter design for the Gyro sensor  
                nSamples1 = length(calibDataShimmer2(:,1)); 
                bufferSize1 = thisFilter.samplingRate*2; 
                if isempty(thisFilter.bufferedX1) 
                   thisFilter.bufferedX1 = 

[newData2(1,1)*ones(bufferSize1,1); calibDataShimmer2(:,1)]; 
                else 
                   thisFilter.bufferedX1 = 

[thisFilter.bufferedX1(nSamples1+1:end); calibDataShimmer2(:,1)]; 
                end 
                %                   % filter coeffecient  
                B=[6.000067137988330e-06,1.800020141396499e-

05,1.800020141396499e-05,6.000067137988330e-06]; 
                A=[1,-2.921919417911570,2.846514484228639,-

0.924560688648323]; 
                YY = filtfilt(B,A,thisFilter.bufferedX1); 
                GYDataFiltered = YY(end-nSamples1+1:end); 
                GYDataFiltered1= abs(YY(end-nSamples1+1:end)); 
                 Seg1=nSamples1/150; 

                 
               %(end-Seg+1:end));% The mean values for each requested 

coming filtered data 
                newMGYRO= mean(GYDataFiltered(end-Seg1+1:end)); 
                GYFilt=GYDataFiltered-newMGYRO; 
                MGYRO=[MGYRO;newMGYRO]; 

                 
                newSTDGYRO=std(GYDataFiltered1(end-Seg1+1:end));% The 

standard diviation for each segment 
                STDGYRO=[STDGYRO;newSTDGYRO]; 
                nSamp1=[nSamp1;nSamples1];k1=0; 
                if length(nSamp1)>1 
                    k1=k1+1; 
                    newSdiff1(k1)=nSamp1(length(nSamp1))-

nSamp1(length(nSamp1)-1); 
                    nSdiff1=[nSdiff1;newSdiff1]; 
                    newsig1=zeros(newSdiff1,1);newsig1(end)= 

(newMGYRO); 
                    sig1=[sig1;newsig1];  
                    sig1=abs(sig1); 
                end 
                %%%%%%%%%%%%%%%%%%%GYRO MEAN and 

%%%%%%%%%%%%%%%%%%%%%%%% 
                if length(MGYRO)>1 
                     i1=i1+1; 
                     if abs(MGYRO(length(MGYRO)))> 7+1*abs(MGYRO(2)) + 

1*STDGYRO(length(STDGYRO))%&&  
                         onGY(i1,1)=abs(MGYRO(length(MGYRO)-1)); 
                         %on1=on(i0,1); 
                        for k=1:length(onGY(:,1))-1 
                           if onGY(k,1)==0 && onGY(k+1,1)>0 
                             newonGYdiff(k,1)=(onGY(k+1,1))- 

onGY(k,1); 
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                             %newondiff(i0)=on1(length(on)+1)- 

on(length(on)); 
                             onGYdiff=[newonGYdiff]; 
                           end 
                           onGYdiff=onGYdiff(onGYdiff~=0); 
                        end 
                     end 

                      
                     for n1=1:length(onGYdiff) 
                       idvel_on(n1)=(find(sig1==onGYdiff(n1))); 
                     end 

                 

                 
%                     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                      if abs(MGYRO(length(MGYRO))) < 

4+1*abs(MGYRO(2))%+STDV(length(STDV)) 
                          onGY(i1,2)=abs(MGYRO(length(MGYRO))); 
                          for k=1:length(onGY(:,2))-1 
                           if onGY(k,2)==0 && onGY(k+1,2)>0 
                             newoffGYdiff(k,2)=(onGY(k+1,2))- 

onGY(k,2); 
                             %newondiff(i0)=on1(length(on)+1)- 

on(length(on)); 
                             offGYdiff=[newoffGYdiff]; 
                           end 
                           offGYdiff=abs(offGYdiff(offGYdiff~=0)); 
                          end 
                      end 
                      for n2=1:length(offGYdiff) 
                       idvel_off(n2)=(find(sig1==offGYdiff(n2))); 
                      end 
%                      
                 end 

  
             % Extract only the columns of gyroscope data 
            set(0,'CurrentFigure',h.figure1);                                                      

% Create subplot 
            subplot(212); plot(GYFilt);  
            %xx=[x1,x2,x3]; 
            %subplot(212); plot(x1);%hold on;plot(x2,'g');hold 

on;plot(x3,'r') 
            end 

            

  
            %%% Finding the delays between the two signals / expanding 
            %%% or/shortening the signal whenever is needed to be??? 
     for k2=1:length(idvel_off) 
%     %emg_veldis_on1(:,k0)=idvel_on(k0)-idx_on(k0); 
      if idvel_off(k2)-idx_off(k2)>20 
         if k2==1 
% % =============baseline% 

expanding========================================= 
         x0=x(1:idx_on(k2));% I couldn't find it how it works 
         x1=dct(x0); 
         x1(length(x0):length(x0)+(idvel_on(k2)-idx_on(k2)))=0; 
         xx_1=idct(x1); 
% % =============1st burst 

expanding========================================= 
         x01=x(idvel_on(k2)+1:idx_off(k2)); 
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         xx01=dct(x01); 
         xx01(length(x01):length(x01)+(idvel_off(k2)-idx_off(k2)))=0; 
         xx1=idct(xx01); 
        else    

             
        eval(sprintf('x0%d = x(idvel_on(k2)+1:(idx_off(k2)))', k2)); 

         
        eval(sprintf('in2%d = x(idvel_off(k2-1):idvel_on(k2)-1)',k2)); 

          
        eval(sprintf('yd%d = x(abs(idvel_off(k2-1)-idvel_on(k2)):-

1:1)',k2)); 

        
       if idvel_on(k2)-idx_on(k2)>40 
        eval(['yhat' num2str(k2) '=filtadapt(yd' num2str(k2) ',in2' 

num2str(k2) ');']); 
       end 

          
        eval(['xx0' num2str(k2) '=dct(x0' num2str(k2) ');']); 

         
        eval(['x_' num2str(k2) '= (zeros(idvel_off(k2)-

idx_off(k2),1));']); 

         
        eval(['xx_0' num2str(k2) '= [xx0' num2str(k2) ';x_' 

num2str(k2) '];']); 

         
        eval(['xx' num2str(k2) '=idct(xx_0' num2str(k2) ');']); 

   
         end 
      end 
    end 

  
            elapsedTime = elapsedTime + toc;                               

% Stop timer and add to elapsed time 
            tic;                                  
        end   

         
         elapsedTime = elapsedTime + toc;                                   

% Stop timer 

          
         fprintf('The percentage of received packets: %d 

\n',shimmer1.getpercentageofpacketsreceived(calibDataShimmer1(:,1))); 
         fprintf('The percentage of received packets: %d 

\n',shimmer1.getpercentageofpacketsreceived(calibDataShimmer2(:,1))); 

% Detect loss packets 

  
         shimmer1.stop;  
         shimmer2.stop; 

          
    end  
     shimmer1.disconnect;    
     shimmer2.disconnect; 

     
 end 

 

A.7 Passive force-length relationship  

function Fp=fp_l(n_lm) 
fmax=974; 
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for k=1:length(n_lm) 
Fp (k) =exp(10*n_lm(k)-15); 
end 
figure 
plot(fmax*Fp) 
end 

 

A.8 Active force-Fiber length relationship  

function Fa=fa_l(n_lm) 
%This is the force-length equation for the bicep. (pg 88) 
%For the equation to not equal 0, the muscle length must be between 

.075 and .225. 
q0= -2.06; q1 = 6.16;  q2 = -3.13;fmax=974; 
for k=1:length(n_lm) 
    if n_lm(k)>=0.5 & n_lm(k)<=1.5 
    Fa(k) = q0+ q1*n_lm(k)+ q2*n_lm(k).^ 2; 
    else 
    Fa(k)=0; 
    end% k1 coffiecient 1  

     
end 

  
plot(fmax*Fa) 

  
end 

 

A.8 sEMG raw to muscle force-joint moment transformation 

%% EMG to neural activation  
gama1=0.23;gama2=0.28; 
beta1=gama1+gama2;beta2=gama1*gama2;  
alpha = beta1+beta2+1;d=40e-3; 

  
n_emg1_fil=BF_M'; 
u0=n_emg1_fil(1); 
u=u0*ones(1,1201);u(1)=n_emg1_fil(1); u(2)=n_emg1_fil(2);d=40e-

3;Fs=512; 

  
for i=21:1:length(u) 
    u(i)=alpha*n_emg1_fil(i-round(d*Fs))- beta1*u(i-1)-beta2*u(i-2); 
end 
plot(u) 
%% BF optimal muscle length  
A=-1.78; 
lm0=10.09;%(cm) for the lower limb BF muscle  

  
for k=1:length(RF_M) 
    aa(k)=(exp(A*u(k))-1)/(exp(A)-1); 
    lm(k) = lm0*(0.15*(1- aa(k))+1); 
    n_lm(k)=lm(k)/lm0; 
end 
plot(aa) 
hold on 
plot(u,'r');plot(n_emg1_fil(1:1201),'k') 
figure  
plot(n_lm) 
%% active muscle force normalized to the length of the muscle FA 
fmax=1312; % from literature  
for k=1:length(RF_M) 
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    FA(k)=aa(k)*Fa(k); 
end 
FA; 

  
FA_t=fmax*(FA+Fp);  

 

A.9 Moment Arm code 

% the following coeffiecient are adapted from J.J. Visser et.al 1990 

  
coef1=[-0.02345 0.24222 -0.00059]; %RF_knee angle coeff  
coef2=[-0.01966 -0.15041    0.00044];% RF_Hip angle coeff 
coef3=[0.19826  -0.04600    0.00000];%BF_knee angle coeff 
coef4=[0.16644  0.31078 0.00061]; %BF_hip angle coeff 
coef5=[-0.08268 -0.08028    -0.00013]; %Gas_knee angle coeff 

  
%theta1=ang1; 
seg=46.1;% upper seg length (cm); 

  
for kk=1:length(theta1) 

  
A0=coef1(1); 
A1=coef1(2); 
A2=coef1(3); 

  
lmt(kk,1)=coef3(1)+coef3(2)*theta1(kk,1) + coef3(3)*(theta1(kk,1))^2; 
MA1_RFw(kk,1)= coef1(2)+2*coef1(3)*theta1(kk,1); 
MA1_BFw(kk,1)= coef3(2)+2*coef3(3)*theta1(kk,1); 
MA1_Gasw(kk,1)= coef5(2)+2*coef5(3)*theta1(kk,1); 
end 

 

 

A.9 Moment generated by the muscles 

%% muscle tendon length measurments of the RF BF and Gas and moment 

arm 
% Estimation of the RF length with reagrds to the hip movement 
%parameter 

  
for nn=1:length(RF_M) 
    Mt1(nn)=FA_t(nn)*MA1(nn);%% BF muscle  
    Mt2(nn)=FA_t1(nn)*MA(nn);%% RF muscle  
end 
MT_t=Mt1+Mt2; 
plot(MT_t) 

 

A.11 Inverse dynamics moment for sit to stand, stand to sit anf walking 

% simulation parameters  
m1=7.1;m2=48.14; l1=0.461;l2=0.29;g=9.81; 
I1=0.132;I2=1.145; 
%theta2=-(3/2)*theta1 + (3*pi 
%% standing up model  
for nn=1:length(acc) 
Mk(nn)=acc(nn)*(-(1/8)*m2*l2^2+(1/4)*m1*l1^2 +m2*l1^2 -

(1/4)*m2*l1*l2*sin((3/2)*theta1(nn))+I1- 1/2*I2)... 
       -(3/8)*m2*l1*l2*cos((3/2)*theta1(nn))*vel(nn)^2 + 

0.5*m1*g*l1*sin(theta1(nn))... 
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       +m2*g*l1*sin(theta1(nn))-0.5*m2*g*l2*cos(0.5*theta1(nn)); 
end 
plot(Mk) 
%% sitting down model 

%%%%==========================%%%%%%%================ 
%P1=0.5*m1*g*l1*cos(theta1);P2=m2*g*(l1*cos(theta1)-

0.5*l2*sin(theta1/2)); 
%x=l1*sin(theta1)-0.5*l2*cos(theta1/2);y=l1*cos(theta1)-

0.5*l2*sin(theta1/2); 
clear DLk DLp  
for nn=1:length(acc) 
   K1(nn)=0.5*vel(nn)^2*(0.25*m1*l1^2+I1); 
   DLk(nn)= acc(nn)*(0.25*m1*l1^2+I1+0.25*I2) + 

0.5*m2*acc(nn)*(4*l1.^2+0.25*l2.^2 - l1*l2*sin(theta1(nn)/2))- 

0.5*l1*l2*vel(nn).^2*cos(theta1(nn)./2); 
   DLp(nn)=0.5*g*l1*(m1-

2*m2)*cos(theta1(nn))+0.25*m2*g*l2*cos(theta1(nn)./2); 
   Mk2(nn)=DLk(nn)-DLp(nn); 
end 
 plot(Mk2,'r') 
%% walking experiment inverse dynamics 

  
% simulation parameters  
m1=3.2;m2=7.1; l1=0.43;l2=0.46;g=9.81; 
I1=0.064;I2=0.1345; 

  
%theta1=-(heel_angtr3*pi./180); 
theta0=(theta3*pi/180); 
%ang=theta1; 
clear vel1 vel2 
for kk=1:length(theta1)-1; 
    vel1(kk)=512*(theta1(kk+1)-theta1(kk)); 
    vel2(kk)=512*(theta0(kk+1)-theta0(kk)); 
end 

  
plot(vel1); 
%%   
clear acc1 acc2  

  
for k=1:length(vel1)-1; 
   acc1(k)=512*(vel1(k+1)- vel1(k)); 
   acc2(k)=512*(vel2(k+1)- vel2(k)); 
end 
plot(acc2) 
%% walking inverse dynamic 
clear Mkw Dlp Dkw 
for nn=1:length(acc1) 
    Dlk(nn)=(acc1(nn)*(0.25*m1*l1^2+I1))+ 

0.5*I2*(acc1(nn)+acc2(nn))+0.5*m2*(4*l1^2*acc1(nn)+l2^2*(acc1(nn)+acc2

(nn))+l1*l2*(2*acc1(nn)+acc2(nn))*cos(theta0(nn))-

l1*l2*(2*vel1(nn)*vel2(nn)+(vel1(nn)^2))*sin(theta0(nn))); 
    Dlp(nn)= -(0.5*m1*g*l1*cos(theta1(nn)) + m2*g*l1*cos(theta1(nn))+ 

0.5* m2*g*l2*cos(theta1(nn)+theta0(nn))); 
    Mkw(nn)=Dlk(nn)-Dlp(nn); 

     
end 
   

 

A.11 fitting polynomials for the sit to stand, stand to sit anf walking 
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function p = polyfit2(aa1,aa2,z) 
% polyfit2.m  
% ------------------- 
% By D.HAKIM (2016) 
% 
% Usage aa1 and aa2 aa3 are the muscle activation dynamics 

% z is the inverse dynamic moment  
% ------ 

  
% sense. P is a row vector of length (N+1)*(N+2)/2 containing the  
% polynomial coefficients in ascending powers, 0th order first. 
% 
%   P = [ p11 p12 p13 p21 p22] 
% 
% e.g. For a 3rd order fit,  
% the regression problem is formulated in matrix format as: 
%   [x  y  x^2  y^2  x^3   y^3] [p11 
%                                p12 
%                                p13 
%                                p21 
%                                p22 
%                                p23] 
%                                     
% 

  
clear V 

  
x=aa1';y=aa2'; 
x = x(:); 
y = y(:); 

  
lx=length(x); 
ly=length(y); 
y=y*ones(1,lx); 
x=ones(ly,1)*x'; 
x = x(:); 
y = y(:); 
z = z(:); 
%w = w(:); 
F0Bf=1312;F0RF=974;F0Gas=2225;% are the max forces at isometric 

contraction  
%pts=lx*ly; 
%pts=length(z); 
V(:,1)=diag(F0Bf*x(:)*MA1_BF');V(:,2)=diag(F0Bf*diag(x*x')*MA1_BF');V(

:,3)=diag(F0Bf*diag(diag(x*x')*x')*MA1_BF'); 
V(:,4)=diag(F0RF*y(:)*MA1_RF');V(:,5)=diag(F0RF*diag(y*y')*MA1_RF');V(

:,6)=diag(F0RF*diag(diag(y*y')*y')*MA1_RF'); 
V(:,7)=diag(F0Gas*z(:)*MA1_Gasw');V(:,8)=diag(F0Gas*diag(z*z')*MA1_Gas

w');V(:,9)=diag(F0Gas*diag(diag(z*z')*z')*MA1_Gasw'); 

  
% Solve least squares problem. 
[Q,R] = qr(V,0); 
ws = warning('off','all');  
p = R\(Q'*(z));    % Same as p = V\(w.*z); 

  
%r = z - (V*p)./w; 
p = p.';          % Polynomial coefficients are row vectors by 

convention. 
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Appendix B 

 

More simplification on equation (4.46) has been made; the force generated by a muscle 

is rewritten as  
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Since 
ml0 and η are known see (chapter 4, Table 4.3) for each muscle, one can calculate 

the coefficients K3, K4 and K5 in which are listed in table 5.4. These coefficients are 

constant with all types of experiment. 

 

Let, 
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 (B.4) 

 

the forces generated by the BF, RF and Gas muscles, a1(k), a2(k), and a3(k) are the 

muscle activities for the BF, RF and Gas muscle at time sample k, respectively.  

KiBF with i =1,2….,5 are the coefficients of force generated by the BF muscle, KiRF are 

the coefficients of force generated by the RF muscle and KiGas are the coefficients of 

force generated by the Gas muscle.   
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Appendix C:  

 

Table C.1  

Wavelet and Butterworth correlation 

 

Butterworth order  Wavelet levels  Correlation 

  

8 

6 0.9864 

7 0.9568 

8 0.9283 

5 0.9801 

4 0.9222 

 

7 

4 0.9229 

5 0.9805 

6 0.9866 

7 0.9571 

8 0.9286 

6 

4 0.9237 

5 0.9812 

6 0.9868 

7 0.9575 

8 0.9290 

5 

4 0.9250 

5 0.9820 

6 0.9872 

7 0.9580 

8 0.9295 

4 

4 0.9267 

5 0.9830 

6 0.9874 

7 0.9587 

8 0.9302 

3 

4 0.9298 

5 0.9847 

6 0.9879 

7 0.9601 

8 0.9315 

2 

4 0.9352 

5 0.9862 

6 0.9878 

7 0.9624 

8 0.9339 

1 

4 0.9480 

5 0.9851 

6 0.9847 

7 0.9657 

8 0.9393 
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Figure C.2. Daubechies mother wavelet waveform.  
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