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ABSTRACT

A new Nonlinear Dynamic Inverse (NDI) method is proposed to minimise the ripple torque in an induction 
motor. This method is based on field oriented with space vector pulse width modulation (SVPWM). 
The nonlinear dynamic inverse controller cancelled a non-desirable response of the induction motor and 
enhancing the performance. This cancellation attempts by careful nonlinear algebraic equations. First, 
a mathematical model of induction motor and decoupling between two inputs have achieved. Then the 
desired new dynamic is derived from implementing the proposed nonlinear dynamic inverse controller 
(NDIC) technique that reserves some benefits such as fast torque control, minimum ripple torque, and 
fast speed response. Also, the proposed method significantly reduced the torque ripple which is the major 
concerns of the classical hysteresis-based in direct torque control (DTC) and feedback linearization 
control (FLC) scheme and have an effect on the stator current distortion. Finally, the simulation results 
with MATLAB/Simulink achieved for a 2-hp induction motor (IM) drive. The results are verification 
proved that the proposed (NDI-SVPWM) system achieves smaller torque ripple about 0.4% and faster 
torque response than the conventional SVM-based on proportional integral (PI-DTC) method.    
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INTRODUCTION

Decreasing the ripple torque in the induction 
motor is a concern for many researchers  
because of its role in induction motor (IM) 
performance. Switching frequency varies 
with operating conditions and high torque 
ripple are two main problems of direct torque 
control (DTC) drives. As a result, induction 
motor (IM)’s which are robustness, low price, 
reliability and free maintenance, are used in 
industrial applications for a large scale. 
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A direct torque control (DTC) with a simple flux regulation is presented in (Alsofyani and 
Idris 2016) for induction motor (IM) to improve torque and speed estimations at zero - and 
low -speed regions. In this system, in closed-loop speed control, the rotor speed feedback was 
estimated by extended Kalman filter based on  real-time computation. However, a constant 
switching frequency controller (CSFC) was used due to the modest building of DTC-CSFC, 
small sampling time, hence significant control bandwidth was possible. Choi et al., (2016) 
presented a feedback which linearized direct torque control, and this control is with flux 
ripples for IPMSM drives and reduced torque. In this paper, the others succeed in reduction 
the torque and flux ripples to approximate (4-5) % with fast response to speed and torque 
varying conditions during the simulation process for uncertainties for some of the parameters. 
There is some difference between the simulation and experimental results. (Vafaie, Mirzaeian 
Dehkordi et al. 2016), proposed a new predictable DTC method via a voltage vector which has 
an optimal phase. This approach can improve the classical DTC’s dynamic reaction as well 
as decrease torque ripples and flux ripples. By using space-vector modulation, which has five 
segments, the voltage vector that obtained the fixed frequency of switching was synthesized

This paper proposes a nonlinear dynamic inverse NDI technique to an induction motor. 
This  method is used to minimize the ripple torque based on field-oriented current control with 
SVM. To apply the proposed NDI-SVPWM scheme, the decoupled dynamic model of an IM 
is first introduced by defining the two states (i.e., the stator flux and speed). The nonlinear 
dynamic inverse is applied to the nonlinear IM model to  obtain an equivalent linearized 
model and then utilizing the linear control theory. The desired stator flux and rotor speed are 
adjusted with proportional integral derivative (PID) controller to get minimum allowed ripple 
torque with fast response. Consequently, the proposed method can significantly lessen the 
torque ripple which is the major weaknesses of the classical hysteresis-based DTC scheme. 
Simulation and investigations are carried out via MATLAB/Simulink of a 2-hp IM drive to 
confirm the performance of the proposed NDI-SVPWM scheme.Results  indicate that the 
proposed NDI-SVPWM scheme realizes faster and low ripple torque of about 0.4%.Simulated  
results also confirm that the  proposed method reduces the torque ripple effectively while 
improving the dynamic response of the traditional DTC and FLC methods, robust control under 
100% parameter uncertainty.The proposed method helps to cancels  undesired the behavior of 
induction motors caused by  huge ripple torque and the instabilty of working under low speed 
and variable torque. After cancellation process by NDIC apply the desired input by a set of 
PID controller to get minimum allowed ripple torque with fast response.

Nonlinear Dynamic Inverse Controller

DI is a controller synthesis technique to cancel and replace  deficient or undesirable dynamics  
with designer-specified desirable dynamics. 

A tail-sitter vertical take-off and landing (VTOL) were used a hover flight attitude controller 
in the micro aerial vehicle (MAV) was presented by(Jin, Bifeng et al. 2015). Considering the 
aggravation affectability and nonlinear dynamics of the VTOL MAV, applying L1 versatile 
control hypothesis for augmenting the baseline dynamic inversion controller. The L1 versatile 
growth follows up on the evaluating, angular dynamics and compensating uncertainty in the 
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time-varying with fast adjustment rate and appropriate time-delay margin. The design of a self-
scheduled current controller for doubly fed induction machines was presented by (Tien, Scherer 
et al. 2016) . The outline depended on the structure of straight parameter-shifting frameworks 
where the mechanical angular rate was thought to be a quantifiable time-changing parameter. 

Current Control

Consider the field-oriented model of the induction motor (Boukas and Habetler 2004).
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A very realistic assumption, considering the performance of modem microprocessors and 

power electronics, which can achieve closed-loop control with a period of a few 

microseconds. Thus, the voltage-fed model (1) is reduced to the current-controlled field-

oriented induction motor model, which is 
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as follows 
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Speed Control in Stator-Oriented Model

This section deals with the application of the command matching control strategy to the stator-
oriented induction motor model (Boukas and Habetler, 2004). The method is studied in depth 
for the current-fed field oriented control in the next section, which forms the main theoretic 
result of the current research. System (5) can be expressed in a more compact form as follows
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Flux Estimator 

The additional feature of the estimator, in this case, is the extraction of the flux magnitude 

and flux angle derivatives ( ). The estimator equations have to be numerically solved 

during the control process (Leonhard 2001). For a fast control Digital Signal Processor (DSP) 

this is a typical task. Numerical methods used for their solution are studied. The estimator 

relations follow 
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Where the “hat" symbol indicates estimated quantities. The percentage ripple torque 

calculation is attempt by (Aghili, Buehler et al. 1998)  
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Where R% is the percentage ripple torque, Tmax is the maximum torque, Tmin is the 

minimum torque, Tss is the steady state torque at a specific time.  

Simulation Results and Discussion 

Figure 1 explained the dynamic inverse controllers as in (15). Figure2 illustrates the line 

output voltage of the inverter that  provides AC  to the induction motor that is controlled to 

the performance of the induction motor and achieved the desired response such as speed and 

torque. The fast response of rotor speed of the induction motor is shown in Figure3, at time 

0.12 second the speed is stable at 40 Rad/Sec as desired. The torque response is showing in 

Figure4, the magnitude of input load torque is varied from (0.4-0.8) N.m to test the behaviour 

of the output torque response. Figure 5 is the zooming of the Figure 4 at a certain time to 
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Figure 1. Block diagram of the dynamic inverse. 

        

Figure 2. Output line voltage of the inverter.           Figure 3. Rotor speed 

response with reference speed. 
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torque zooming for a given moment. 

Figure6 and 7 illustrate the behavior of the rotor speed and torque under 100% uncertainty 

in stator resistance and rotor resistance and 20% uncertainty in mutual inductance.    
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Figure 6 and 7 illustrate the behavior of the rotor speed and torque under 100% uncertainty 
in stator resistance and rotor resistance and 20% uncertainty in mutual inductance.   
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The three phase induction motor parameters are: Rated voltage 380 V, Power 2hp, 

Frequency 60Hz, Friction factor 0.0001 (N.m.s), Stator resistance and inductance (3.05Ω, 

0.243H), Rotor resistance and inductance (2.12Ω, 0.306H), Mutual inductance 0.225H, 

Inertia 0.0005(kg.m^2), Pole pairs 2. 

Conclusion 

This paper introduces a nonlinear dynamic inverse controller (NDI) that is applied on 

induction motor based in SVPWM to  minimise  the ripple torque. It shows  the variation in 

torque magnitude (0.4-0.8) N.m does not have a harmful effect on the speed response 

stability through operation time. The results confirm that the proposed method is both robust  

and does not  depend on induction motor parameters. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Rotor speed response with and without 
100% uncertainty

Figure 7. Torque response with and without 100% 
uncertainty

The three phase induction motor parameters are: Rated voltage 380 V, Power 2hp, 
Frequency 60Hz, Friction factor 0.0001 (N.m.s), Stator resistance and inductance (3.05Ω, 
0.243H), Rotor resistance and inductance (2.12Ω, 0.306H), Mutual inductance 0.225H, Inertia 
0.0005 (kg.m^2), Pole pairs 2.

CONCLUSION

This paper introduces a nonlinear dynamic inverse controller (NDI) that is applied on induction 
motor based in SVPWM to  minimise  the ripple torque. It shows  the variation in torque 
magnitude (0.4-0.8) N.m does not have a harmful effect on the speed response stability through 
operation time. The results confirm that the proposed method is both robust  and does not  
depend on induction motor parameters.
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