Short communication

Synthesis and cytotoxic effects of (E)-3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl) prop-2-en-1-one in MDA-MB231 and MCF-7 breast cancer cell lines

Muhammad Nadeem Akhtara,\ast, Landa Zeenalbdin Ali Salimb, Swee Keong Yeapc,\d, Nadiah Abue, Seema Zareena, Kong Mun Lof, Addila Abu Bakara, Noorjahan Banu Alithleene

a Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Kuala, Pahang, Malaysia
b Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
c Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia
d Universiti Malaysia Campus, Jalan Sansuria, Bandar Sansuria, 43900 Sepang, Selangor, Malaysia
e Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
f Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

\textbf{ARTICLE INFO}

Article history:
Received 30 September 2016
Received in revised form 5 December 2016
Accepted 16 December 2016
Available online 28 December 2016

Keywords:
Synthesis of DMMF
Cytotoxicity
MCF-7
Apoptosis
Single x-ray crystallography

\textbf{ABSTRACT}

A chalcone derivative, (E)-3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl)-prop-2-en-1-one (DMMF) was synthesized and evaluated against various cancerous cell lines including colon adenocarcinoma (HT-29), myeloplastic leukemia (HL60), breast cancer (MCF-7 and MDA-MB231), normal hepatic cell (WRL-68) and normal breast cell (MCF-10A). The structure of DMMF was determined by EI-MS, 1H NMR and single X-ray crystallographic techniques. The DMMF possessed the highest cytotoxic effect against MCF-7 breast cancer cell (2.01 ± 1.53 µg/mL) and lowest against normal hepatic WRL-68 and breast cells after 24h of treatment. Induction of apoptosis and regulation of cell cycle progression results indicates the significant increase in early apoptosis and G2/M arrest after 48h of treatment in MCF-7 cells. Meanwhile, in MDA-MB231 cells, there was an increase in Sub G0/G1 cells population and early/late apoptotic cells upon treatment with DMMF. Additionally, DMMF effectively induced G2/M cell cycle arrest in MCF-7 cells and apoptosis in both MCF-7 and MDA-MB231 cells.

© 2016 Phytochemical Society of Europe. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Chalcones are α, β unsaturated carbonyl compounds with 1,3-diaryl-2-propen-1-one architecture under the subclass of flavonoids. Chalcones are natural compounds occurring in various parts of medicinal plants especially in roots (Alpinia species, \textit{Piper meythysticum}), fruits (\textit{Ficus}, \textit{Dorstenia}, \textit{Morus}, \textit{Artocarpus}), seeds (\textit{Artocarpus communis}), as yellow pigments in flowers, and are also widely distributed in the species of genera \textit{Angelica}, \textit{Sophora}, \textit{Glycyrrhiza}, \textit{Humulus}, \textit{Scutellaria} and \textit{Parartocarpus} (Zhang et al., 2013; Vasconcelos et al., 2013). Additionally, chalcones possess a unique template that exhibited several biological activities including anti-inflammation, antimicrobial, antiparasitic, antioxidant, anti-angiogenic and anticancer properties (Reddy et al., 2012; Ye et al., 2005; Hsu et al., 2006; Pilatova et al., 2010; Sasayama et al., 2007; Lou et al., 2009; Mojzis et al., 2008). Chalcones such as flavokawian B and flavokawain A recently have received greater attention in anticancer drug discovery than naturally isolated compound due to its flexibility for modification and availability (Li and Vederas, 2009; Abu et al., 2013, 2014). There are several chalcones and poly-phenolic compounds that have important

\ast Corresponding author.
E-mail addresses: nadeemupm@gmail.com, nadeem@ump.edu.my (M.N. Akhtar), skyeap2005@gmail.com (S.K. Yeap), nadyahoo@gmail.com (N. Abu), kimlo@um.edu.my (K.M. Lo), noorjahan@upm.edu.my (N.B. Alithleen).