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ABSTRACT 

  

 

Regardless of type of stress, either mental stress, emotional stress or physical stress, it 

definitely affects human lifestyle and work performance. There are two prominent 

methods in assessing stress which are  psychological assessment (qualitative method) 

and physiological assessment (quantitative method). This research proposes a new 

stress index based on Electroencephalogram (EEG) signals and non-parametric 

analysis of the signals. In non-parametric method, the EEG features that might relate 

to stress are extracted in term of Asymmetry Ratio (AR), Relative Energy Ratio 

(RER), Spectral Centroids (SC) and Spectral Entropy (SE). The selected features are 

fed to the k-Nearest Neighbor (k-NN) classifier to identify the stressed group among 

the four experimental groups being tested. The classification results are based on 

accuracy, sensitivity and specificity. To support the classification results using k-NN 

classifier, the clustering techniques using Fuzzy C-Means (FCM) and Fuzzy K-Means 

(FKM) are implemented. To ensure the robustness of the classifier, the cross-

validation technique using k-fold and leave-one-out is performed to the classifier. The 

assignment of the stress index is verified by applying Z-score technique to the selected 

EEG features. The experiments established a 3-level index  (Index 1, Index 2 and 

Index 3) which represents the stress levels of low stress, moderate stress and high 

stress at overall classification accuracy of 88.89%, classification sensitivity of 86.67 

% and classification specificity of 100%.  The outcome of the research suggests that 

the stress level of human can be determined accurately by applying  SC on the ratio of 

the Energy Spectral Density (ESD) of Beta and Alpha bands of the brain signals. The 

experimental results of this study also confirm that human stress level can be 

determined and classified precisely using physiological signal through the proposed 

stress index. The high accuracy, sensitivity and specificity of the classifier might also 

indicate the robustness of the proposed method. 
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1 

 

CHAPTER ONE 

INTRODUCTION  

 

 

1.1 RESEARCH BACKGROUND 

 

Stress is one of the major health issues where too much stress may lead to 

depression, fatigue and insomnia. Regardless of weight and type of stress, it affects 

human lifestyles and work performance. Stress can either be positive (eustress) or 

negative (distress) [1-3], and the prominent definition of stress is the failure of the 

human body to challenge stressors or stress factors mentally, physically and 

emotionally [3-5]. Among the major stressors are high workloads, noisy working area, 

improper sleep, unfinished work, fear of something and conflict in family. Stress 

disturbs the balance of sympathetic and parasympathetic level in the human 

Autonomous Nervous System (ANS), resulting in the release of stress hormone 

(cortisol) and leads human to experience negative stress (distress) such as depression, 

anxious, angry, fatigue and frustrated.  

Researchers have introduced qualitative  and quantitative methods to detect 

stress, the former method normally employs self-report questionnaires  while the latter 

method analyses human physiological signals [6]. Physiological signals such as 

Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), 

Electrooculagram (EOG), Galvanic Skin Response (GSR), Skin Temperature, Blood 

Volume Pulse (BVP) and respiration rate can be utilised to identify stress. Meanwhile, 

Cohen’s Perceived Stress Scale (PSS), Stress Response Inventory (SRI) and Hamilton 

Depression Rating Scale (HDRS) are widely used self-report questionnaires on stress. 

In spite of the various methods implemented to detect stress and provide a solution to 

overcome it, there is still lacking in methods for indicating the level of stress of 

healthy person.  

Since stress is dependent on human emotions and linked with the Autonomous 

Nervous System (ANS), this research attempts to provide the stress index as a stress 

indicator based on cerebral activities and change of cognitive state in the human brain 

due to the putative stressors. EEG signals are selected to recognize human stress since 

the signals are generated from the electrical activity in the human brain due to the 



 
 

2 

 

change in cognitive state or any stimulation to the brain. Furthermore, the use of EEG 

signals to measure human stress is more precise and reliable than the self-report 

questionnaires and other physiological signals [1, 7-8]. The analysis of the features 

obtained from the EEG signals due to stress can lead to the recognition of stress level. 

An index is a numeral normally used as an indicator in the field of health, such 

as diseases, emotions, fatigue and stress, to trigger the necessary action. For instance, 

Bi-spectral Index (BIS) is used to index the level of anesthesia (unconsciousness) from 

0-100 [9].  Meanwhile, the assessment and quantification of the level of fatigue has 

been determined from the analysis of EEG signals [10-11].  In addition, index is also 

used to recognize human emotion such as fear, sadness, peace and happiness [12]. The 

index can provide fast information to human for immediate action to be taken to 

overcome the health problem related either to diseases, drowsiness or emotions. 

Even though many researches have been done to identify the stress level using 

physiological signals, researchers have yet to come out with a reliable index for stress 

level indicator using EEG signals from healthy people. Stress index can be used to 

indicate the seriousness of stress regardless of the stresses so that appropriate action 

can be taken to overcome the problem. The index of an individual stress level can be 

used as a guideline to provide suitable treatment and the good accuracy of the 

developed non-linear model can predict the tendency of an individual to have stress 

even though he or she is in good health. 

In this research, using intelligent signal processing techniques, the 

characteristics of EEG signals and its features that might relate to stress are studied, 

identified and classified in order to construct a reliable stress index. Stress features in 

the EEG signals can be extracted using feature extraction techniques and the features 

can then be classified and clustered using k-Nearest Neighbor (k-NN) classifier, Fuzzy 

C-Means (FCM) and Fuzzy K-Means (FKM). The results from these classifications 

and clustering are used to assign stress index.   

 

1.2 PROBLEM STATEMENT 

 

Various methods and health indices have been implemented by researchers to 

recognize human stress level either using physiological signals or psychoanalysis 

tests, however a realiable stress index to indicate the stress level of a healthy person 

has yet to be produced. Whereas the stress experienced by an unhealthy person can be 
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easily detected, this is not the case with a healthy person. In spite of the various 

stimulation techniques conducted on the human brain using human physiological 

signals, previous researchers have not come out with a reliable stress index to describe 

the stress level of a healthy person. Thus, a reliable biological indicator to indicate the 

stress level of healthy person is required.  

 

1.3 RESEARCH OBJECTIVES 

 

The main objective of the thesis is to develop a new technique to determine 

and classify human stress index using non-parametric analysis of spectral centroid on 

the ratio of the energy spectral density of the brain signals. To achieve this objective, 

the following sub-objectives were implemented.  

 To construct signal processing technique that has the capability of identifying 

the stress features from the EEG datasets in terms of asymmetry ratio, energy 

ratio, asymmetry ratio and spectral centroid of the energy spectral density of 

EEG signals. 

 To measure the classification and clustering performance for the group with 

stress and non-stress features using k-Nearest Neighbor (k-NN) classifier, 

Fuzzy C-Means and Fuzzy K-Means (FKM). 

 To assign stress index based on the results of spectral analysis and 

classification of the selected EEG features. 

 

1.4 RESEARCH SCOPE 

 

To realise the objective of the research, all activities and experiments related to 

the research were conducted according to the following scope of research.  

 

1.4.1 EEG Data Collection and Re-generation of the Corrupted EEG Data 

 

EEG data were collected at the Research and Development Laboratory for 

Human Potential, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor. The 

Laboratory is a controlled room that is free from environmental noise in order to 

minimize the interference of noise during EEG measurement.  
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The data were categorized into four groups: Group 1 consisted of 50 EEG data 

with Eyes-Closed (EC) state, 50 EEG data with Eyes-Open (EO) state (after 

answering IQ test question), 40 EEG data with EC state (before performing horizontal 

rotation), and finally, 40 EEG data with EC state (after performing horizontal 

rotation). Thus, a total of 180 data comprised from 140 subjects were employed in this 

research. However, 37 corrupted EEG data were replaced with new EEG data using 

EEG data re-generation technique in order to have equal representations of each 

experimental group. The EEG data were taken from the subjects with the age ranges 

from 20 to 50 years old. The selected subjects are required to be in healthy condition, 

non-smoking, not consuming any drugs and not undergoing any medication. The 

declaration of the health condition must be done prior to EEG measurement (refer to 

Appendix A). Since all the experiments that were conducted in this research involve 

human beings, written permission was put forward to every subjects to obtain their 

approval before carrying out the experiments.  

 

1.4.2 EEG Equipment Set-up and Measurement Protocol 

 

The EEG equipment (amplifier) and electrodes were setup according to the 

standard manual for EEG montage before taking any measurement. Besides, the EEG 

equipment was buy-off or validated in term of voltage and frequency. The Prefrontal 

area of a subject’s brain (forehead) was chosen as measurement area. Meanwhile, the 

measurement time was set according to the cognitive states, which was Eyes-Open 

(EO) and Eyes-Closed (EC) states with duration of 10 minutes and 3 minutes 

respectively. 

In order to stimulate the subject’s brain, the subjects were instructed to answer 

20 Intelligent Quotients (IQ) test questionnaires based on the modified Raven’s 

Standard Progressive Matrices (SPM) that involves logical thinking. Writing and oral 

communication were not included in the test. 

 

1.4.3 Analysis of EEG Signals 

 

The EEG signals were measured using EEG electrodes and amplifier. Then, 

the signals were transferred to computer using Bluetooth and were captured using 

SIMULINK in MATLAB. The analysis of the signals were done in off-line manner 
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using MATLAB. The statistical analyses of EEG signals were carried out using SPSS, 

Excel and MATLAB. 

 

1.5 THESIS OUTLINE 

 

The thesis is organized as follows:  

Chapter 1 briefly describes the need of the research, which includes the 

definition of stress, stress detection techniques, physiological signals and stress index 

based on EEG signals. Then, the main goal, specific objectives and the scopes of the 

research are outlined.  

Chapter 2 presents the related literature review of the research. It elaborates in 

detail the definition of stress, the relationship between stress and EEG signals, the 

existing techniques and their limitation in indexing stress level, spectral analysis of 

EEG signals, features extraction methods and, finally the classification of the features 

using k-NN, FCM, FKM clustering and Z-score technique to develop the stress index. 

Chapter 3 describes the theoretical, formulation and mathematical calculations 

involved in the research, which include the calculation of EEG spectrum, energy, the 

ratio of energy, spectral centroids, entropy, Z-score, k-NN classification, cross-

validation of k-NN classification and classification performance in terms of accuracy, 

sensitivity and specificity. The chapter also includes the design of the band pass filter 

and artifact removal techniques. 

Chapter 4 explains the methodology to achieve the main objective of the 

research. It covers data collection, data re-generation, equipment set-up, equipment 

validation, measurement protocol, analysis of EEG signals, and extraction of stress 

features, k-NN classification, FKM and FCM clustering, Z-score and statistical 

analyses. 

Chapter 5 presents the results of Chapter 4 in the form of tables and figures. 

The results of the confusion matrix, the results of classification, clustering, statistical 

analyses and correlation study are discussed. The chapter also includes the result of 

artifact removal and equipment validation. Finally, the table of stress index is 

produced and discussed. The chapter also discusses the verification of the assigned 

stress index using Z-score technique and range of the EEG data from each group. 

Chapter 6 concludes the research work and offers recommendations for future 

work 
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CHAPTER TWO  

 LITERATURE REVIEW  

 

 

2.1 INTRODUCTION    

 

The research begins with an extensive literature review on the existing stress 

detection techniques based on EEG signals and their limitations, which include non-

parametric analysis of EEG signals, extracted features that are related to stress, and 

classification techniques to index the stress level. The chapter also describes the 

existing technique in producing the stress index. The chapter starts with literature 

reviews on the generation of emotions and EEG signals, and is followed with the 

relationship between emotions and EEG signals. Here, the focus of the study is 

negative emotion, which is stress. Since stress is associated with emotion, the 

literature review also includes emotion recognition techniques. Next, the chapter 

discusses the literatures on existing technique in analyzing and detecting human stress 

level, while scrutinizing its limitations in stress detection system. Since the study 

involves the non-parametric technique (spectral analysis) in extracting features related 

to stress from EEG signals, literatures related to this technique is thoroughly 

discussed. Meanwhile, the parametric technique (model-based) is also discussed as a 

comparison to non-parametric technique. Next, the chapter explains literatures related 

to the classification technique of selected stress features found in the EEG database. 

Since the study uses the k-NN classifier, FCM and FKM clusters to classify and 

cluster the extracted EEG features, this chapter only explains literatures related to 

these classifiers and clusters which includes cross-validation technique to validate the 

performance of the classifier. Finally, the chapter discusses the literatures on 

analyzing the selected EEG features in statistical manner. 

 

2.1.1 Brain and EEG Signals 

 

The human brain consisted of the Frontal Lobe, Parietal Lobe, Occipital Lobe 

and Temporal Lobe, as depicted in Figure 2.1, and is divided into the right hemisphere 

and left hemisphere.  
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Figure 2.1: The Brain’s Lobes and Their Functions [2-3,5]  

 

 

The functions of the lobes are described in Table 2.1 [6-7,13-15]. The frontal 

lobe is the biggest lobe part of the human brain, where its main function is to generate 

emotions and cognition. Since this lobe is associated with emotions, this study focuses 

on this area of the human brain. 

 

         Table 2.1: 

         The Function of the Lobes in Human Brain [6-7,13-15] 
 

Lobe 

 

Function 

 

Frontal 

 

Emotions, memory, cognition 

 

Parietal 

 

Voluntary movement, sensation 

 

Occipital 

 

Sight, vision 

 

Temporal 

 

Hearing 

 

Cerebellum 

 

Balance coordination 
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Human emotions can be recognized by analyzing the electrical activity in the 

frontal lobe region of the brain, where the electrical activity will be generated by the 

change in cognitive state or any stimulation to the brain. This neural activity can be 

captured using Electroencephalogram or Electroencephalography (EEG) [7, 16]. The 

brain electrical signal recorded by EEG is called EEG signals or brainwaves. The EEG 

signals are non-linear, dynamic and random with a very small amplitude in electrical 

potentials ranging from 10 to 100 microvolts [7-8]. The characteristics of EEG signals 

are described by frequency and amplitude as shown in Table 2.2. The signals can be 

categorized into Beta band, Alpha band, Theta band and Delta band, the band 

represents the cognitive state of alert, relax, light sleep and deep sleep, respectively. In 

terms of frequency and amplitude, Beta band has highest frequency but lowest 

amplitude, while Delta band has lowest frequency but highest amplitude. 

    Table 2.2: 

    The Characteristics of EEG Signals[7-8,16] 
EEG Sub-bands Frequency 

(Hz) 

Amplitude 

(Microvolt) 

Cerebral Activities 

 

Beta Band 

 

13-30 

 

Lowest 

 

Alert or working state 

 

Alpha Band 

 

8-13 

 

Low 

 

Relax or eyes-closed 

 

Theta Band 

 

4-8 

 

High 

 

Drowsy or light sleep 

 

Delta Band 

 

0.5-4 

 

Highest 

 

Deep sleep 

 

Researchers have found that emotions generated from the front side of the 

cerebral cortex can be categorized into two categories, which are positive emotions 

and negative emotions. Emotions can be modeled using Russell’s two-dimensional 

Affective Space model, where the X-axis represents Valence (positive and negative 

emotions) and Y-axis represents Arousal (active and passive levels of emotions) as 

illustrated in Figure 2.2 [4,12].  
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Figure 2.2: Russell’s Affective Space Model [4,12] 

 

Based on the model, there are four basic emotions that represent the positive 

and negative emotions. The emotions are Happy, Calm, Sad and Fear, which are 

scaled by valence and arousal [4, 12, 17], and stress falls into negative valence and 

active (positive) arousal. Stress might closes to Tensed under quandrant of Fear as 

shown in Figure 2.2. As discussed in Chapter 1 (Introduction), stress can be classified 

into positive stress (eustress) and negative stress (distress). Positive stress is vital in 

human daily live since it capables to improve or lead human to obtain good lifestyle. 

For example, human needs to has a positive stress or motivation to obtain a dream car, 

to take an important examination, to success in job interview, to purchase the first 

house, to deliver a baby, to get promoted at work, to graduate from college and others. 

Meanwhile, stress might also goes to Depressed under quadrant of Sad if human body 

unable to challenge stress and it will absolutely disturb human health [4, 12, 17]. 

EEG signals can be used to identify and classify types of emotions [18-20]. 

Researchers have introduced various techniques using EEG signals to recognize 

human emotions and the most popular technique is Frontal EEG Alpha Asymmetry 

[21-23]. In this technique, emotions are categorized based on the pattern of brain 

electrical activity (activity of Alpha band) at the right and left sides of the frontal lobe 

due to motivational approach versus withdrawal. Negative emotion, such as 

withdrawal or depression, is associated with right frontal activation or left frontal 

inactivation. Meanwhile, positive emotion, such motivational approach or happiness  

is associated with right frontal inactivation or left frontal activation [23-28]. The right 

and left activation is indicated by a difference score using Alpha asymmetry ratio [28-
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30] and the method has been widely used in Psycho-physiology field to assess 

emotions.  

Another technique that has been used to recognize emotions is the analysis of 

EEG signals measured at frontal and temporal lobe using Wavelet Entropy. The 

technique is able to classify two types of emotions (Calm and Excited) with 73.25% 

accuracy. Other than frontal asymmetry and entropy techniques, wavelet transforms 

and fractal dimension are widely used techniques to recognize emotion. In addition, 

features from EEG signals can be extracted using Discrete Wavelet Transform (DWT) 

technique with a classification accuracy of 83.26% [31]. The fractal dimension 

technique was introduced to recognize brain state in terms of emotion and the level of 

emotion [32]. In addition, the technique was used by the researchers to classify EEG 

signals that correlate with chronic mental stress [33]. 

Other devices that can be used to detect human emotions include Blood 

Volume Pulse (BVP), Electrocardiogram (ECG), Electromyogram (EMG), 

Electrooculogram (EOG), Galvanic Skin Response (GSR), respiration rate and skin 

temperature [34]. For instance, the physiological signals such as BVP, GSR and pupil 

diameter were used to detect negative emotion of computer users [34]. However, since 

the signals are generated from the frontal lobe of the human brain, EEG is most 

preferred methodology to detect and measure human stress (negative emotions). 

Researches have shown that the frontal lobe is a suitable location to measure stress 

based on the analysis of the EEG signal of that region. Besides, the increase in the 

ratio of Beta over Alpha power in frontal lobe can be used to indicate the strength of 

emotions [19]. An emotions recognizer has been developed to recognize stress at the 

frontal lobe with 83.2% accuracy [35]. 

Other than the brain lobes, the right and left hemispheres of the human brain 

also play vital role in studying human emotions. The cognitive functions of the right 

and left hemispheres are different, as described in Table 2.3 [36-38]. The cognitive 

functions of the right hemisphere are on creativity, intuition, perceiving and 

remembering, while that of the left hemisphere are on analytical, logical, language and 

speech. Previous researches have shown that the ability to use cognitive functions of 

both hemispheres could lead to a better lifestyle and health [37-40]. Thus, it is crucial 

to study cerebral activities on both hemispheres of human brain regardless of the type 

of emotions. The cerebral activity of the right hemisphere is associated with negative 
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emotions, while that of the left hemisphere is associated with positive emotions [20-

22, 40]. 

 

                       Table 2.3: 

                       The Brain Hemispheres and their Cognitive Functions [36-38] 
Right Hemisphere 

 

Left Hemisphere 

Creative 

 

Analytical 

Imaginative 

 

Logical 

Intuitive 

 

Repetitive 

Conceptual 

 

Organized 

Big Picture 

 

Details 

Heuristic 

 

Scientific 

Empathetic 

 

Detached 

Figurative 

 

Literal 

Irregular Sequential 

 

 

2.1.2 Stress and EEG Signals  

 

Researchers have discovered that stress is associated with human emotions, 

either negative emotion (negative valence and active arousal) or negative 

psychological state. Nowadays, chronic stress disturbs human lifestyle and might lead 

to major health issues such as depression, drowsiness, mental disorder and sleep 

disorder. For instance, mental disorder caused by stress might lead to brain-related 

diseases such as Alzheimer, epilepsy, schizophrenia and dementia while depression 

might cause a person to commit suicide [41-42]. However, there is no single definition 

of stress among individuals as different individuals treat or react to stress differently. 

In the field of psycho-physiology, stress is defined as the disturbance in the balance of 

sympathetic and parasympathetic activities of the Autonomous Nervous System 

(ANS) due to the stress factors or stresses [43-46]. Stress occurs when human resist 

putative stressors emotionally, mentally and physically with the release of Cortisol in 

the human body [41, 47]. The putative stressors or processive stressors can be defined 
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as the stress factors that most frequently affect human lifestyle such as high workload, 

noisy working environment, taking examinations, lost job, death of family members, 

getting exhausted and improper sleep [41, 48-49].  

Researchers have divided the definition of stress into two categories, which are 

positive stress (“eustress”) and negative stress (“distress”) [1-3]. Positive stress is 

healthy and motivates people in their lives; for example, to obtain a dream car, to take 

an important examination, to success in job interview, to purchase the first house, to 

deliver a baby, to get promoted at work, to graduate from college and others. On the 

contrary, negative stress is harmful and most people suffered this of type of stress, 

which affect their lifestyle even though their health conditions are good. However, if 

their bodies are unable to resist stress for a long time, it will lead them to a chronic 

stress and finally, they might encounter dangerous diseases [1-3, 43-44, 49]. For 

instance, from analysis of EEG signals, researchers have found that subjects had 

suffered primary insomnia due to stress and depression [50]. Therefore, it is very 

crucial for humans to manage their stress. 

Researchers have discovered that stress can be distinguished or categorized by 

different stress level such as high stress, moderate stress and low stress [51], while 

stress can be classified into physical, emotional and mental [5, 52-54]. There is a close 

relationship between the level of human stress and physiological signals. It has been 

observed that the relative Alpha power at Parietal and Occipital lobes of the human 

brain due to induced noise factor (physical and mental stress factors) was reduced, 

while that of Theta power was increased [49, 55].  

 

2.1.3 Stimulation of Brain 

 

As changes in cerebral activities cannot be detected without stimulating the 

brain, researchers have implemented several brain stimulation techniques. Such 

techniques include listening to music, watching pictures or movies or music videos, 

answering examination questions or stress questionnaires, performing IQ test or 

mental arithmetic tasks or mental stress test (Stroop test), and performing actual 

driving or driving simulation.  If stress stimuli are applied to human, ANS will release 

the stress hormone Cortisol and cerebral activities will react to challenge the stress. 

Therefore, the usage of EEG technology after performing brain stimulation is vital in 

detecting features that might be considered as stress features. 
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There have been numerous researches on how to stimulate the brain to produce 

stress [56-58], such as the use of mental stress test on subjects to detect their stress 

level. However, the existence of stress can be evaluated by analyzing the features 

extracted from BVP, GSR and Pupil Diameter (PD) signals [34]. In addition, audio-

visual and electromagnetic stimuli can be used to produce emotional stress in subjects, 

the effect of which is the lowering their cognitive activities [59-61]. Researchers have 

also discovered that audio-visual outperformed visual stimulus in stimulating frontal 

lobe of the brain in inducing emotional states [62-64].  

Another popularly used visual stimulus to stimulate the brain is the 

International Affective Picture System (IAPS), in which subjects are shown various 

types of pictures or movies to generate positive (calm) and negative (excited) 

emotions [65-66]. The analysis of EEG signals after applying this stimulus is able to 

categorize emotions into positive and negative emotions [18]. Beside audio-visual 

stimuli, actual driving or simulation of driving are widely carried out by researchers to 

stimulate brain and generate mental stress and fatigue [67-68]. In this case, emotional 

stress can be assessed by recording and studying the frequency of eyes-blink during 

the driving session [11, 68].  

Human affective states and their relation to emotions can be analysed by 

showing music videos to the subject, while recording the subject’s EEG signals. The 

level of arousal and valence can be detected from the extracted features after spectral 

analysing the EEG signals [69-71]. Audio-visual stimuli are eminent in studying the 

relationship between brain and stress. The measured EEG and ECG signals produced 

in the frontal lobe of the brain of the stress group, as a result of applying audio-visual 

stimuli that acts as emotional stress tasks, can then be compared to that of the non-

stress group [72]. Visual stimulation together some intervention (rotation bed) is used 

in this study but no audio stimulation is used. The stress stimulus used is the IQ test, a 

popular tool for measuring the intellectual level of the subjects. The brain of a subject 

is stimulated when the subject are requested to perform IQ test and undergo 

intervention while their brain signals were captured using the EEG device. The 

subjects are required to answer the IQ test questions, ranging from easy to difficult 

questions, in a stipulated time, and it is believed that the difficult questions will 

generate emotional and mental stress [refer to Appendix B]. Here, the difficult 

questions require subject to think and take longer time to answer the questions such as 

Question 14, Question 15, Question 18 and Question 20. The IQ test utilised in this 
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study was modified from the standard IQ test questionnaires (Raven’s Standard 

Progressive Matrices) [73]. As a reference, EEG signals were also recorded from a 

control group, subjects who were not undergoing the IQ test.  

 

2.2 STRESS DETECTION TECHNIQUES  

 

Stress is associated with negative emotions generated from the frontal lobe of 

the human brain, and researchers introduced numerous techniques to recognize and 

assess the level of stress. One widely used technique is based on physiological signals, 

while another is based on self-report questionnaires. The physiological signals, such 

as Heart Rate Variability (HRV), Skin Conductivity and EEG are used to detect stress 

levels of drivers [74]. The rate of eyes-blinking has been used to indicate the stress 

and drowsiness level during simulation of car driving [68]. In this study, beside  eyes-

blinking,  HRV, ECG, EMG, skin conductance and respiration rate were recorded to 

determine the level of mental workload and stress of a driver while driving in a city 

and on a highway. The study was able to recognize low stress at the 100% 

classification accuracy, medium stress at 94.7% and 97.4% for high stress, while the 

slope of EEG linear regression was used to determine the human relaxation level [60, 

63].  

Other than the slope of EEG signals, its spectral and statistical analysis were 

extensively employed by researchers to capture the features that migh relate to stress. 

EEG spectral analysis of the Alpha band has been used to recognize human 

personality and characteristic [75-77]. In addition, EEG power spectra was used to 

determine acute stress, chronic stress and normal stress under a hot environment with 

classification accuracy of 96.67%, 97.17% and 98.50%, respectively [51].  

Also, the asymmetry technique of EEG power at the frontal region of the 

human brain were introduced by researchers to discriminate the depressed subjects 

from healthy subjects [26-27, 42, 78-80]. Researchers have shown that, when 

detecting neural activity due to stress and fatigue, the change in EEG signals during 

stress and fatigue can be easily recognized using the entropy analysis of EEG signals 

instead of the spectral analysis technique [81].  

Studies previously conducted have been able to segregate the stress level of a 

stress group from that of a non-stress group by studying their EEG signals, as the Beta 

band is much more active in the stress group compared to that of the of the non-stress 
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group [49, 59]. A spectrum analysis using Short-Time Fourier Transform (STFT) can 

be applied to the EEG signals to determine the relationship between the human 

brainwaves and their mental tasks. In an experiment, one group of subjects was asked 

to be in a state of rest (relaxed and think of nothing), while another group was 

required to imagine the rotational movement of a cube after watching the image of the 

cube on the computer. It was found that the power of the Alpha band of the latter 

group has increased during the 10-second when the subjects were concentrating on the 

task and reduced when subject has lost attention [82].  

The smart spaces system was designed to detect people who under stress and 

provide the necessary solution using Moheet architecture [83]. Too much stress or the 

failure human body system to challenge stress can lead one to fatigue or drowsiness, 

as in the case among soldiers who are exposed to physical and mental stress [84]. In a 

related study, the level of drowsiness among soldiers were determined by measuring 

their EEG, EOG and ECG, where the instruments were attached to their helmet and 

the physiological data were transferred to a computer using Bluetooth. Some 

researchers have induced or manipulated stress on their subjects by giving difficult 

mathematical tasks or difficult mental tasks as stressful stimuli, where their EEG 

Alpha and Beta power are monitored. Individual who has the lowest score of task 

performance might experience stress and need to provide proper Alpha biofeedback or 

neurofeedback in order to change from the state of stress and anxiety to that of rest 

and relax [44, 85-89]. Among human physiological signals, EEG signals are more 

reliable in measuring stress because it indicates the imbalance in ANS due to stressors 

[3, 41-43] as the signal potray the neural activities that result from the change of the 

cognitive state. Hence, EEG is an effective discriminator for chronically stressed 

individuals [90]. Assessment of stress can also be conducted using self-report 

questionnaires, such as Cohen’s Perceived Stress Scale (PSS), Stress Response 

Inventory (SRI), Hamilton Depression Rating Scale (HDRS), Stress Self-Rating Scale 

(SSRS) and Profile Mood States (POMs) [91-92], where scores are used to determine 

the stress level before and after the subject undertook some tasks. PSS-10 

questionnaires has been used to determine the degree of stressful in an individual and 

it has been found that the EEG signals and the results from PSS-10 is negatively 

correlated. PSS-10 is based on 10 questions and a 5-point frequency scale ranging 

from 0 to 40; a minimum score of 0 indicates the individual has never encountered 

any stress, while a total score of 40 indicates he has experience high stress level [93]. 
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Meanwhile, 14-items Perceived Stress Scale (PSS-14) has been used to discriminate 

stressed and non-stress groups before EEG signals of the groups were measured and 

analyzed to verify the stress level of the groups [33]. SSRS has also been used to 

assess the stress level of subjects before undergoing stimulation tasks to produce an 

emotional state [59]. In addition, SSRS and SAM (Self Assessment Manikin) have 

been employed to assess the emotional state of subjects [3, 54, 94]. 

Based on the previous studies conducted on stress using physiological signals 

and stress questionnaires, it has been found that Skin Conductivity, Heart Rate 

Variability and EEG are suitable and reliable neurophysiological assessment tools to 

detect and assess stress level either from normal person, car or truck drivers and 

aircraft pilots [3, 11, 49, 74]. The change in magnitude of EEG rhythms (Alpha and 

Beta bands) due to the change of emotions and cognition at the frontal lobe can be 

utilized to indicate the existence of stress. However, the concentration of this study is 

on EEG signals and the related technologies, and the main focus is on the generation 

of stress index based merely on the analysis of EEG signals taken from the frontal side 

of the human brain.  

 

2.3 METHOD OF ANALYZING EEG SIGNALS 

 

Currently, EEG signals are being used in various fields such as meditation, 

diseases, reflexology, anesthesia and music. In the field of diseases, EEG signals were 

used and analyzed to detect epilepsy, sleep apnea, insomnia, Alzheimer, dementia and 

depression [95-97]. In addition, different types of music, such as soft or rock music, 

can stimulate brain and affect neural activities and is shown by the change in 

amplitude and frequency of the EEG signals.  

Typically, the features from EEG signals can be extracted using two types of 

analysis, which are parametric analysis and non-parametric analysis [98-100]. 

Parametric analysis is a time-base analysis that requires minimum data recording, and 

it involves modelling base analysis, such as autoregressive (AR), moving average 

(MA) and autoregressive moving average (ARMA) models [100]. Researchers have 

evaluated EEG activity in young children with epilepsy by extracting the spectral 

features in the EEG signals that has been modelled using AR or ARMA [98]. 

However, the drawback of the parametric technique is that it is incapable of 

establishing the model property when different EEG signals are used, even though 
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only a few EEG data is required. On the contrary, non-parametric method requires a 

lot of EEG data to obtain good spectral parameters [100-101]. Thus, there are 

advantages and disadvantages in using both parametric and non-parametric 

techniques, but the parametric analysis method is more suitable for stationary EEG 

signals, while non-parametric analysis is more competent and practicable in extracting 

features from non-stationary neural activities [100].  

Another advantage of non-parametric method is that the spectral analysis 

parameters can be used to estimate the alertness level of human operators regardless 

of the length of the EEG signals being analysed [99, 102]. Non-parametric analysis 

involves spectral analysis (frequency domain and time-frequency domain) and 

wavelet analysis. Recently, spectral analysis of EEG signals via Fourier Transform, 

such as Short-Time Fourier Transform (STFT), has become a popular technique in 

applications involving EEG signals. This technique was famously known as time-

frequency representation (TFR) due to its capabilities to convert one-dimensional 

signal (time domain) to  two- dimensional signal (time and frequency domains). With 

STFT or TFR, also known as spectrogram or windowed Fourier transformation, short 

windows are applied at high frequencies while long windows are applied at low 

frequencies, and the EEG features could be localized in time and frequency [49, 103-

105]. STFT is a very effective technique in decomposing vast non-stationary EEG 

signal. As EEG signals are weak and highly non-stationary random signals, the 

spectral components of the signals will be more effectively decomposed using the 

combination of the STFT with wavelet transformation [106]. The classification of 

motor imagery EEG has been achieved using wavelet transformation [107]. 

Time-frequency analysis using wavelet transformation has become a powerful 

tool in the extraction of features from EEG signals as it is able to identify and localize 

the transient features of the signals, and simultaneously, produces the wavelet 

coefficients that represent the distribution of energy in the signals. However, the 

drawback of the technique is that it is dependent on the selection technique of the 

most suitable and practical mother wavelet [20, 31, 106-109]. Kernel Density 

Estimation is another non-parametric technique used by researchers to extract EEG 

features by calculating density of the data points [110].  

When the spectrum of EEG signals are analysed using Discrete Fourier 

Transform (DFT), the time-based signals will be converted to frequency-based 

signals, where power and energy in specific frequency bands are revealed based on the 
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neural activity of the brain [99-100, 111-112]. The generated power obtained from the 

analysis is called Power Spectral Density (PSD) and the energy under the area of PSD 

curve is called Energy Spectral Density (ESD) [24, 61, 112]. The power spectrum of 

EEG signals represents the power at each frequency band of the signal, hence are 

known as Delta power, Theta power, Alpha power and Beta power, whose the 

magnitude of the power density is denoted in (µV
2
/Hz) [24, 28]. EEG power spectrum 

has been used to estimate the stress level of subjects after performing Mental 

Arithmetic Task (MAT) and simulation of car driving [68, 71]. Moreover, the EEG 

power spectrum has been applied in recognizing depressed male patients with 91.3% 

classification accuracy [42]. In an acupuncture treatment, the power spectrum of EEG 

signals was applied to monitor Alpha and Theta, and it was found that the highest 

power was seen at EEG rhythms of Theta and Alpha indicating an increase in the 

relaxation level of human brain [113]. The technique was also used by a researcher to 

extract features from EEG signals captured from the subjects under mental stress [33]. 

In addition, the power spectral density of the EEG signals obtained from the subjects 

after performing Audio Vigilance Task (AVT) able to provide features to classifiers to 

classify mental fatigue of the subjects into several levels [114]. The negative and 

positive emotions can be clearly identified using the features obtained from the time-

frequency analysis of EEG signals [101], as the energy contents buried in the signals 

is revealed from the analysis [115]. These literatures confirm that EEG power 

spectrum is very useful in identifying human characteristics or cognitive states. 

Wavelet transformation and entropy can also be employed as a spectral 

analysis method for detecting stress. Discrete wavelet transform was employed to 

extract EEG features in order to recognize positive and negative emotions, such as 

happiness, disgust and fear [94], while wavelet packet energy was used to reveal 

features related to mental fatigue [85, 116]. The wavelet transformation technique has 

also been widely used in emotion recognition. However, this method is less preferable 

by researchers in analyzing EEG signals to recognize emotion, probably due to the 

difficulty in selecting suitable mother wavelet and decomposition level.  

Another method of analysing EEG signals is to employ spectral entropy to 

detect irregularity patterns in the signals, where the spectral entropy is obtained after 

applying entropy to the power spectrum of EEG signals. There are three types of 

entropy, which are Renyi’s entropy, Shannon’s entropy and Tsallis’s wavelet entropy 

and entropy is applied to detect the abnormalities of the distribution of energy in EEG 
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signals. Entropy has been used to detect changes in cerebral activities due to stress and 

fatigue [117]. In studies conducted on subjects with mental stress and epilepsy, it was 

found that their EEG spectral entropy was basically lower than that of subjects 

without stress and epilepsy [95, 117-118]. Also,  the entropy analysis of EEG signals 

was used in finding abnormalities of the EEG signals caused by human emotions [31, 

65]. Spectral analysis has also been employed to quantify the spectral complexity 

during mental tasks (imagined right and left hand movement). In addition, the stress 

caused by mental workload can be identified by the statistical and spectral analysis of 

their work stress [119-120]. In this study, the ratio of the EEG power spectrum of all 

frequency bands are spectrally analysed in order to determine the stress pattern of the 

EEG datasets.  

 

2.4 ARTIFACTS REMOVAL  

 

The raw EEG signals are affected by artifacts that come from various sources, 

and in terms of physiological signals, EOG (eyes-movement or eyes-blinking), EMG 

(body movement) and ECG (Heart rate) are considered artifacts or biological noises. 

Among them, EOG is the major artifacts due to the characteristics of the signals which 

have frequencies ranging from 0.1 Hz to 38 Hz and amplitude greater than 100 

microvolt [121-128].  

There are many widely used methods to remove the noise and obtain the noise-

free EEG signal, such as by applying Adaptive Noise Cancellers (ANC) but this 

technique requires reference signal [7, 121-122]. In addition, the EOG signals can be 

separated from the EEG signals using Independent Component Analysis (ICA) and 

Principal Component Analysis (PCA) [123-124]. Data adaptive de-trending method 

using a bivariate extension to an empirical mode decomposition (BEMD) [125] and 

wavelet decomposition using threshold wavelet coefficient have also been employed 

to segregate EOG signals from the captured EEG signals [126]. Noise removal 

through regression method in time and frequency domain [127] and blind source 

separation (BSS) are other popular techniques preferred by researchers; with BSS, its 

algorithm automatically detects the EOG signals and completely remove the signal 

without disturbing the content of original signal [112, 124].  

Another technique discovered by researchers was the use of Recursive Least 

Square (RLS) adaptive filter with ICA to separate ocular artifact from EEG signals, in 
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which case the EOG signals were measured and acts as a reference signal to be used in 

adaptive filter, and the signals were then removed using ICA technique [124]. 

However, the filtering techniques introduced by the researchers to remove artifacts are 

quite complex.  

EEG signals can be contaminated by various noises originating from various 

sources such as from biological signals, instrument sensors and the environment. In 

this study, the main concern is the EOG signals originating from biological signals, 

where the EOG signals is simply removed from EEG signals by applying the 

threshold value of ± 100 µV to the amplitude of the signals, and any raw data with 

amplitude outside the threshold value will be rejected. Meanwhile, noise from 

instrument sensors was removed by setting the proper impedance to the sensors during 

EEG measurement. On top of that, the experiments were carried out in a room with 

controlled environment. 

 

2.5 EEG FEATURES  

 

The features from EEG signals can be extracted using either parametric or 

non-parametric methods. The features are mean amplitude, root-mean-square 

amplitude, standard deviation, wavelet sub-band entropy, spectral peak power, 

spectral peak frequency, spectral entropy, power ratio, relative power ratio, power 

asymmetry, spectral centroid, bandwidth, zero-crossing rate and spectral roll-off  

frequency [128-129].  Since this study only focuses on non-parametric methods of 

analyzing EEG signals to secure features related to stress, the chosen EEG features to 

establish stress index from the group of EEG datasets are relative power ratio, the 

asymmetry of power ratio, spectral centroids and spectral entropy. The selection of 

these features will be discussed in this section and section 2.6 in this chapter.  

Spectral centroids, among the eminent features in analyzing EEG signals, is 

widely used in speech and recognition system to detect the dominant frequency in 

EEG signals [130-134]. Spectral centroids is more dominant than Mel Frequency 

Cepstral Coefficients (MFCC) technique in extracting audio and speech features as it 

is more resilience to noise and is able to identify the dominant frequency from noisy 

speeches [134]. Spectral centroids has been used as one of the EEG features to be an 

input to a classifier to discriminate healthy subject from epileptic subjects [103]. In 

applying spectral centroids, the audio or speech data need to be converted to power 
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spectrum first and then filtered to the number of frequency bands. In this study, 

spectral centroids were applied to the relative energy ratio of EEG datasets and the 

features obtained were selected as an input for the classification process.  

Another method that can be employed to detect features in EEG signals is 

known as the asymmetry technique. In previous studies, researchers have employed 

asymmetry technique to determine the dominant Alpha or Beta power from brain 

hemisphere [39-40, 96-97]. In this study, the asymmetry power ratio is selected as 

EEG features due to its effectiveness in detecting changes in neural activities in the 

left and right hemispheres after the brain has been stimulated or after performing 

mental tasks. However, this study involves a combination of several techniques, which 

are asymmetry, normalized asymmetry, energy or power ratio and spectral centroids. 

The power and energy of the Delta, Theta, Alpha and Beta bands on both hemispheres 

are calculated before applying asymmetry technique to determine the dominant power 

or energy either in the left or right hemisphere of the human brain. Another technique 

is the application of the entropy on EEG power spectrum. Spectral entropy can be 

used to verify the stress pattern from the spectral analysis of EEG signals. The ratio of 

Alpha power at frontal and parietal lobes of the brain are the preferable features to 

measure the load due the increase in mental tasks [135-136, 198-199]. 

 

2.6 ASSIGNMENT OF STRESS INDEX  

 

It is very crucial to come out with a numerical indicator to represent the human 

stress level due to the increase cases of chronic stress which include healthy people. 

Therefore, various stress indicators using physiological signals have been designed and 

introduced by researchers [137-139]. One such example is the Psychological Stress 

Index (PSI) using normalization of the Heart Beat Interval (HBI) and the amplitude of 

Plethysmograph (PPG), which has been used to assess the human mental condition 

[137-139]. In addition, Heart Rate, Skin Conductance (SC) and EMG were used to 

determine three different stress levels of drivers [74]. EEG signals were also used to 

measure the different drowsiness level of drivers [10, 116, 140]. Meanwhile, Bispectral 

Index (BIS) with a scale from 0 to 100 were generated from EEG signals to determine 

the level of Anesthesia (unconsciousness) [9]. Also, physiological index was created 

from the difference between the baseline interval of EEG band power and test interval 

of EEG band power in order to measure cognitive load [136, 141]. Index created from 
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human biological signals really work as an indicator and it very useful in trigerring 

necessary action. Therefore, a reliable physiological indicator is needed to indicate the 

degree of the stress regardless of the health status, whether good or bad. With the aid of 

physiological indicator, a physician, clinician or biomedical researcher can take proper 

action to those under stress. 

An index can be defined as a numerical value utilized as an indicator to trigger 

the necessary action. It has been applied in various fields especially in the field of 

health such as emotion, brain-related diseases, depression, stress and fatigue. Different 

indices have been assigned to different type of emotions such as fear, sad, peace and 

happiness [12, 94] but studies in consuming index for detecting stress are still few. The 

available stress index based on EEG features are summarized in Table 2.4, which 

elucidates that all researchers had applied the non-parametric method to EEG signals 

to produce indices for the any change in the brain activity due to the stimulation of the 

brain or performing any tasks mentally or physically. Since the objective of this study 

is to generate stress index for healthy person using EEG signals, and not from self-

report questionnaires, this chapter will only discuss the non-parametric techniques that 

are used in producing stress index using the extracted features from EEG signals. 

 

         TABLE 2.4: 

         Summary of Existing Research on Stress using EEG signals 
Ref. 

No. 

Authors Methods Results 

 

1 

 

 

S. Handri et al. 

 

EEG, ECG & Skin 

Temperature & k-NN 

Classification 

 

Two levels index for Mental 

Stress (Low & High) 

 

51 

 

R. K. Sinha 

 

 

EEG Power Spectra & 

Neural Network 

 

Three indices: Acute, Chronic & 

Normal Stress; based on heat 

 

60 

 

M. Teplan 

 

Dynamic Bayesian 

Network & EEG 

 

Model to estimate human  

stress level 

 

78 

 

H. Hinrikus et al. 

 

 

 

Relative difference in 

EEG Power Spectrum 

at two frequency 

bands 

 

Index for depression – SASI 

(EEG Spectral Asymmetry 

Index) 

 

117 

 

Y. Tran et al. 

 

 

EEG Power Spectrum 

and Entropy 

 

Indicator for fatigue and stress; 

based on Entropy 

 

135 

 

A. Holm et al. 

 

EEG  power of Theta 

& Alpha ratio 

 

Index to estimate cognitive 

workload, mental fatigue and 

stress 
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139 

 

A. Nassef et al. 

 

 

Ratio of Theta power 

at Frontal area with 

Alpha power in 

Parietal area 

 

Task Load Index (TLI) 

 

142 

 

I. Jraidi et al. 

 

Multi Agent System 

on Learner’s 

brainwaves 

 

Predict stress level variation of 

Learner 

 

143 

 

T. Yamakoshi 

et al. 

 

 

Physiological signals 

(EEG,ECG,EOG, 

Respiration & Blood 

pressure) 

 

Index for Driver Activation 

State (DAS) for monotonous 

driving 

 

 

144 

 

C. Berka et al. 

 

EEG signals 

 

EEG Index for Alertness, 

Cognition and Memory for 

mental tasks 

 

 

 

There are various physiological indices produced by researchers, either using 

biological signals or non-biological signals. However, this study will tackle the stress 

index using a combination of relative energy ratio, entropy and spectral centroids in 

order to produce a reliable stress index. In the process of generating stress index, this 

study also evaluate asymmetry technique as a comparison to relative energy ratio in 

order to  search for the best technique to produce reliable stress index.  

 

2.7 SELECTION OF CLASSIFIERS 

 

After obtaining the EEG features from non-parametric analysis of EEG 

signals, the features are then required to be classified in order to get the desired 

output. For instance, the classification of EEG transient events and features using rule 

mining and fuzzy has been used to detect epilepsy signals from the EEG signals [145]. 

Researchers have introduced various classifiers for classifying EEG features, such as 

Artificial Neural Network (ANN), Bayesian network, Decision tree, Fuzzy, Gaussian 

Mixture Model (GMM), k-Nearest Neighbor (k-NN), Linear Discriminant Analysis 

(LDA), Random Forests (RF) and Vector Support Machine (SVM).  

A classifier is selected depending on the complexity and performance of the 

classifier in solving specific problems or classifying features. In a study, Fuzzy, k-NN 

and Bayesian network have been evaluated in diagnosing diseases, where it was found 

that Fuzzy outperformed k-NN and Bayesian in terms of high accuracy and sensitivity 
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but selections of Fuzzy parameters were difficult [146]. Meanwhile, the combination 

of k-NN and LDA classifiers were employed to classify features from EEG signals in 

detecting human emotions with a prominent accuracy of 83.26% and 75.21% accuracy 

[31]. The performance of k-NN is dependent on the selection of the EEG features as 

the input to the classifier. The use of features from time-domain (cross-correlation) as 

input to k-NN have resulted in a classification rate of 97%, higher than that obtained 

when the features from frequency-domain (Power Spectral Density) are used [103]. In 

addition, it has been found that the performance k-NN in classifying human emotions 

is dependent on the number of centroids used [147]. 

ANN is a supervised learning algorithm that uses multi-layered perceptron 

(MLP) to minimize the difference between output and target values [7, 112]. In a 

study, ANN was used to discriminate the rate of mental task of subjects who were 

asked to perform five mental tasks, and the classifier has produced a classification rate 

of 80-86% accuracy [148-149]. ANN has also been used in classifying EEG features 

to detect human emotions and personal characteristics [33, 75-76, 150]. ANN has 

produced very high accuracy when applied in classification of stress in experiments 

conducted on rats that were exposed to heat, where the stress was classified into acute, 

chronic and normal  [51]. In addition, ANN has been employed in the classification of 

EEG features from human emotions and achieving an accuracy of  96.43% in the 

predicted level of stress [4], and in the determination of the level of human vigilance 

using EEG features [151]. However, the drawback of using ANN classifier is that its 

parameters must be properly set so as to produce lower errors, where the selection of 

the parameters is determined by Casmean square error for every run. The process of 

analyzing EEG signals is time consuming even though the performance of the 

classifier is good. The most critical part in neural architecture is the selection of the 

number of hidden layer and numbers of neurons [108, 152]. The classification of three 

mental tasks (imagination of moving left-hand, imagination of moving right-hand and 

generation words of random letter) has been successfully implemented using three 

hidden layers feed forward ANN with a classification accuracy of 68.35 % [153]. In 

brain-related disease such as epilepsy, using ANN to classify EEG features extracted 

from the autoregressive modeling of EEG signals has successfully discriminated 

patients with epilepsy and patients without epilepsy with 92.3% accuracy [154-155]. 

In comparing ANN and SVM in terms of parameters setting, SVM requires 

more complex parameters. SVM has been widely used in classifying features related 
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to diseases such as epilepsy and depression [7, 103]. In another research, SVM was 

employed to determine the subjects with epilepsy using the reduced EEG feature 

dimension obtained from the application of PCA, ICA and LDA on the features [98]. 

In SVM, discriminant plane or hyper-plane is created to separate datasets from 

different classes; the data points that were required to determine hyper-plane are 

called support vectors (SV). SVM uses non-linear mapping to present higher feature 

space dimension and search for the maximal margin between two classes from the 

hyper-plane [7, 33, 103, 156, 157]. In stress detection technique, SVM has been used 

to classify features from physiological signals, such as GSR, BVP, ST and PD, to 

determine the affective states of computer users, whether they are stressed or not, and 

the results of the experiment achieved 90.1% classification accuracy [34]. The 

combination of k-NN and SVM has also been used to classify subjects with chronic 

mental stress using features obtained from STFT, Fractal Dimension and Gaussian 

Mixtures of EEG Spectrogram (GMM) and the techniques were able to produce a 

classification rate higher than 90% [33]. On the contrary, LDA utilizes  hyperplane to 

classify data into different classes with less complex mathematical calculation but this 

technique is difficult to employ when dealing with the nonlinear EEG data [158]. RF 

is nonlinear classifier and very effective in selecting huge features especially from 

EEG signals [114]. However, the classifier requires feature ranking criteria and it 

needs to be combined with Initial Feature Ranking  scheme (INIT) or Recursive 

Feature Elimination scheme (RFE). 

In this study, in order to support the supervised classification technique, the  

unsupervised classification techniques such as Fuzzy C-Means (FCM) and Fuzzy k-

Means (FKM) are chosen to cluster the selected EEG features. Both FCM and FKM 

use the number of clusters to cluster the datasets contain feature-vectors. The 

performance of FCM is measured based on the membership degree between the 

cluster centers with the datasets, while that of FKM is evaluated on the distance of 

centroids in each cluster. FCM and FKM are widely used in clusters features and to 

obtain pattern from the datasets containing feature-vectors. For example, FCM has 

been used to cluster three types of human emotions (fear, happy, disgusts) after the 

EEG features were obtained using Wavelet Transform. Even though the number of 

clusters became an issue, the results of the study showed that FCM was prominent in 

the clustering of EEG features [159]. Moreover, both FCM and FKM were used to 
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correctly classify six types of human emotions (anger, disgust, fear, happy, sad and 

surprise) [160].  

Beside emotions, FCM has been used to classify EEG signals from  EEG 

features extracted using ICA and Wavelet transform to recognize brain diseases, such 

as Epilepsy and Cerebral Palsy, with 95% classification accuracy [161]. In a study, 

Fuzzy was used to discriminate subjects with mental disorder from healthy subjects 

with 80% accuracy, with EEG features acted as an input to the Fuzzy [162-163], while 

in another study, FKM produced a good clustering performance to cluster the EEG 

features in detecting migraine [164]. FCM was also employed in detecting the level of 

stress in drivers using features from physiological signals such as ECG, EMG, SC and 

respiration rate. In FCM analysis, the stress value was calculated from the 

membership degree of EEG features and clusters, and it was found that the larger the 

size of the membership degree, the larger is the stress value [165]. Fuzzy expert 

systems are now becoming a good choice in detecting human stress, even though 

some parameters in fuzzy such as the selection of number of clusters remain an issue, 

as the selection of the parameters can be made based on the size of the datasets or data 

points. For example, the use of Fuzzy expert systems were able to detect stress at 99.5 

% accuracy using features from ECG and GSR [166]. Besides detecting human 

emotions and diseases, FCM also can be used to track human activities. For example, 

FCM was used to classify the EEG pattern of human activity (before and after a meal, 

before and after smoking), where the EEG features were extracted using singular 

value decomposition (SVD) [167]. 

There are advantages and disadvantages in using classifiers to classify EEG 

features. Some factors that should be considered when selecting classifiers are the 

number of features, classification time, non-uniform weighting of the features, 

nonlinear map between inputs and output, unknown data distribution and monotonic 

convergence of the data. Beside the ratio of testing and learning vectors, various 

factors affect the classifier’s performance, one of which is the features themselves. In 

this study, k-NN, FCM and FKM are selected to classify and cluster the EEG features 

that might relate to stress. k-NN is selected due to its robust supervised learning 

algorithm and ease of use even though the k-value need to be varied depending on the 

number of features. Meanwhile, FCM and FKM have good performance in clustering 

human emotions.  
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2.7.1 Cross-Validation of Classifier 

 

The EEG classification performance needs to be validated using cross-

validation technique in order to reduce the bias created from the selection of training 

and testing ratio for EEG datasets [168]. From the various techniques currently 

available, in this study k-fold cross-validation and leave-one-out cross-validation are 

used to validate the k-NN performance. For k-fold cross-validation, k indicates the 

number of folds to validate the classifier, where the size of the fold is determined by 

the size of the datasets [168]. In 5-fold cross-validation, four folds are assigned for 

training and one fold is assigned for testing. It is impractical to use a big number of 

folds when the size of the datasets is small, and the popularly used number is 10-fold 

[169]. The advantage of using k-fold cross-validation is that all data will be employed 

for testing and training. In this study, the 10-fold cross-validation is selected as the 

size of the datasets is 180x4. Besides, the researches preferred to use 10-fold cross 

validation in validating k-NN performance [170]. Meanwhile, for the leave-one-out 

technique, one data will be selected for testing while the remainder will be selected for 

training. 

 

2.8 STATISTICAL ANALYSES 

 

SPSS (Statistical Package of Social Science) is a statistical analysis software 

package widely used by researchers to identify the significant differences of the 

selected features after securing the features from non-parametric analysis. For 

example, analysis of variance (ANOVA) and MANOVA (Multivariate analysis of 

variance) were used to reveal the significant difference in the selected EEG features 

obtained during monotonous driving [171-172]. ANOVA, a statistical method under 

mean analysis of SPSS [173], is an extension of t-test that can be utilized with a 

maximum of two independent datasets. It computes the significance values base on 

the mean and variance of datasets. ANOVA has been used to check the significant 

difference of the selected features obtained from EEG frontal asymmetry technique 

during cognitive task (mental arithmetic task) [29]. Also, ANOVA has been employed 

to obtain the significant difference of the mean scores of relative power spectra 

density ratio of various emotional states [59], to compute the significant differences 

between features obtained from EEG and ECG with Cortisol data [3], and to identify 
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the significance of time domain features of EMG signals to classify four types of 

emotions; neutral, positive, negative and mixed [174]. Meanwhile, t-test method was 

used to examine the significance of the extracted features to recognize chronic mental 

stress [33].  

MANOVA is the extension of analysis of variance that can effectively 

compute significant difference of more than one dependent variable. It requires 

dependent variables and covariates that are not correlated to each other in order to 

capture the unique variance, it has been found that MANOVA can compute and 

distinctly separate the features into two groups [175]. However, this study only applies 

ANOVA which is enough to discover the significant difference for the selected EEG 

features. Pearson correlation (scatterplot) is another statistical method that employed 

to search for linear relationship between two random variables. It can be used to 

indicate whether the correlation between the variables is strong or weak by calculating 

the correlation coefficient, r and the significant value, p. Those technique was 

employed to detect noise that produced by human head or body movement in 

measuring EEG signals [176]. In addition, Pearson’s r was used to determine the non-

linear correlation between EEG channels with its cognitive states (eyes-closed and 

eyes-open) [176].  

In this research, in order to determine the significant value and correlation 

coefficient of the selected  EEG features such as asymmetry  and relative energy ratio, 

statistical analyses were performed using ANOVA and Pearson correlation. Before 

performing statistical analysis, the EEG datasets were checked for normality. The 

abnormality of the EEG datasets will affect the significant value and correlation 

coefficient of the EEG datasets. All the analyses were done using SPSS version 17. 

The statistical analyses are essential in confirming the significant value of the selected 

EEG features before the features can be used for the classification process. This 

process will assist classifier to produce good classification results, and the results of 

the analyses will be discussed in Chapter 5.  

 

2.9 CHAPTER SUMMARY  

 

Researchers have introduced various stress detection system using 

physiological or non-physiological signals. In addition, researchers have proved that 

physiological signals are much better in detecting stress, especially using ECG, EEG 
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and Skin conductance. Meanwhile, the non-physiological method such as self-report 

questionnaires are  imprecise. Since stress is part of negative emotions and originated 

from the frontal lobe of the human brain, EEG is more preferable and precise tool for 

capturing human stress. Therefore, using EEG signals, this research will tackle 

negative stress by producing a stress index that can be used to indicate the level of 

negative stress. Regardless of the type of stress, the natural response of a human brain 

will be registered by a change in power of brainwaves frequency components. In order 

to create a reliable EEG-based stress index, the analysis technique of EEG signals is 

emphasized. 

Two techniques can be used to analyze EEG signals, which are parametric and 

non-parametric techniques. There are advantages and disadvantages of using 

parametric and non-parametric analysis in analyzing EEG signals to obtain features 

that might relate to stress, and the selection of the features plays a vital role in 

producing a reliable stress index. In this study, non-parametric analysis, namely, 

spectral analysis was selected, but the focus is on using Fourier Transform to convert 

the EEG signals from time-domain to frequency-domain (power spectrum). 

Furthermore, various features can be extracted from the EEG signals, either in time 

domain, frequency domain or time-frequency domain, however, in this study, the 

selected features are asymmetry ratio, relative energy ratio, spectral centroids and 

spectral entropy. These features have been found to be useful in determining different 

neural or cognitive activities in the brain. Hence, in order to implement a precise stress 

detection to produce a reliable stress index, this study propose to combine asymmetry 

and relative energy ratio with spectral centroids and spectral entropy. Based on 

previous researches on stress detection using EEG signals, the selection of the correct 

and reliable EEG features are most important in order to obtain a good classification 

accuracy. 

For classifying the EEG features, k-NN is chosen due to the robust supervised 

learning algorithm and unsophisticated pattern classifer for spectral analysis of EEG 

signals, and FCM and FKM were selected to assist the classification. The k-NN was 

tested for robustness by validating the classifier performance using k-fold and leave-

one cross-validation techniques. In order to figure out the significance and correlation 

of the EEG features, the statistical analyses are implemented using ANOVA and 

Pearson correlation.  
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CHAPTER THREE 

FUNDAMENTAL CONCEPT AND THEORY 

 

 

3.1 INTRODUCTION 

 

This chapter details the theory and mathematical expressions that are used in 

this study to extract features using non-parametric analysis of EEG signals. As 

discussed in Chapter 2, non-parametric analysis can provide better analysis in term of 

feature extraction than parametric analysis when involving a lot of non-stationary 

cerebral activities. Since this study uses huge EEG datasets, non-parametric analysis is 

more preferable than parametric analysis. The analysis of the EEG signals involves 

the following steps: offset setting of the electrodes to capture the EEG signals, 

removal of EOG signals from EEG signals, filtering and categorizing of the EEG 

rhythms into Delta (δ), Theta (θ), Alpha (α) and Beta (β) bands, and the conversion of 

EEG signals from time-domain to frequency-domain using Fourier Transform 

technique. This chapter also discusses the theory related to Power Spectral Density 

(PSD) and Energy Spectral Density (ESD). In order to produce reliable features, the 

PSD and ESD values of the datasets are tested for normality. Since some datasets are 

corrupted, the corrupted data need to be replaced using data re-generation technique 

which will be discussed in this chapter. 

Selection of EEG features, which are asymmetry ratio (AR), relative energy 

ratio (RER), spectral centroids (SC) and spectral entropy (SE), is carried out after the 

values of ESD has been obtained from the spectral analysis of EEG signals. Once the 

EEG features are selected and confirmed to be used to determine the stress index, 

then, the spectral entropy and Z-score analysis technique are employed to verify the 

stress index from the selected EEG features. Next, this chapter discusses the theory 

and mathematical expressions of the classifier and clustering techniques employed in 

this study, where the selected features become an input to the classifier. The theory 

and equation to validate the performance of the classifier is also discussed. Finally, 

this chapter will explain the theory of ANOVA and Pearson correlation since these 

statistical methods are employed to verify the significance of the selected features and 

the correlation between the cognitive states. 
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3.2 EEG SIGNALS PRE-PROCESSING  

 

Due to the weakness of the EEG signals and the high tendency of the signals to 

be interfered by various noises or artifacts, the noises detection technique is utmost 

required. In this study, two channels are attached to the human forehead to capture the 

signals, and the first source of noise comes from the setting of the electrodes or 

sensors (instrument), while the second source originated from human 

neurophysiological signals. Since the measurement areas are close to the eyes, eyes- 

movement or eyes-blinking will be the major artifact and influences the characteristics 

of the EEG signals. Hence, the two types of noises is discussed in the following 

section. 

 

3.2.1 Electrodes Offset 

 

Several experiments were carried out to check the EEG readings captured by 

the electrodes, which were labeled as right and left electrodes, where it was found that 

there is a slight offset between the readings detected in Channel 1 (right electrode, 

Fp1) and Channel 2 (left electrode, Fp2). The procedure to validate the instrument and 

electrodes will be discussed in Chapter 4, and the results of validating the instruments 

are discussed in Chapter 5. This value is called “electrode offset” and is input into the 

MATLAB program before removing artifacts from the EEG signals. 

 

3.2.2 EOG Removal 

 

As stated in Chapter 2, the eyes-movement or Electrooculogram (EOG) signals 

are characterised with an amplitude greater than 100μV and frequency below 40 Hz 

[121-128]. Researchers have discovered that EOG signals have about similar 

characteristic with EEG signals in term of the range of the signal frequency. 

Consequently, the recorded EEG signals might consist of EOG signals, regardless 

whether the subject is in deep sleep, light sleep, relaxed or tensed. Other physiological 

signals, such as ECG and EMG signals, have less influence in affecting EEG 

measurement since the frequency of ECG signal is less than 1 Hz and that of  EMG 

signal is greater than 50 Hz. Meanwhile, the non-physiological signal such as power 

line noise has a frequency above 50 Hz, where in the case an EEG device is unable to 
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remove the noise, a notch filter will discard the noise [7]; a notch filter is not used in 

this study. Since the frequency range of EEG signals is from 0.5 Hz to 40 Hz, it will 

be affected only by EOG signals. Even though frequency becomes a key factor in 

recognizing artifacts, in this study, the amplitude of the artifacts are removed, as the 

corresponding frequency will be removed once its amplitude is removed. In actual 

implementation, the threshold value is set in the analysis program of MATLAB, such 

that any EEG signal with amplitude above +100μV and below -100μV  will be 

rejected. Based on the literature review on the EOG signals, researchers have 

confirmed that the signals that were captured from the neural activities with amplitude 

above +100μV and below -100μV, is actually EOG signals, not EEG signals. 

 

3.2.3   Band-pass Filter Settings 

 

In this study, Finite Impulse Response (FIR) band-pass filter is selected to 

segregate the EEG signal components into its sub-bands. FIR filter is selected over 

Infinite Impulse Response [IIR] filter as FIR filter is more stable, has a linear phase 

response and is easier to implement compared to IIR filter  [61, 112, 177-178]. Also,  

a window-based FIR filter is used in this study, and among window functions that can 

be used are Rectangular, Blackman, Hamming, Hanning (Hann), Gaussian, Bartlett 

and Kaiser. In designing of filters, filter order, type of filter, cut-off frequencies and 

window functions play a vital role to produce a required filter coefficient. The filter 

coefficient will then be convolved with the raw EEG data to produce filtered data. The 

filter order and its window functions provide smoother filtered data when the raw 

EEG data undergoes convolution through the filter. The filter order is calculated based 

on the frequency response of the specified cut-off frequency and sampling frequency. 

The major characteristic in designing the FIR filter is all frequencies of the filter is 

expressed in terms of normalized frequency and meet the cut-off frequencies of the 

filter specifications as stated in Table 3.1. Meanwhile, Figure 3.1 illustrates the plot of 

the filter’s frequency response based on the filter specifications. This filter response 

must meet the filter specifications as stated in Table 3.1 in term of normalized cut-off 

frequencies, filter order, filter type and stop-band attenuation.  In term of filter type, 

the plot of the filter’s frequency response has confirmed the specified filter type in 

Table 3.1 which is band-pass filter. Next, this FIR band-pass filter must meet the 

normalized cut-off frequencies for the overall band, which are around 0.0039 to 
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0.2344 as specified by item no. 5 in Table 3.1. Also, the highest side-lobe (stop-band 

attenuation) of the filter should not exceed -53 dB, and as shown in Figure 3.1, the 

highest side-lobe is below -50 dB, which implies that the filter’s specification is met 

[177-178]. The selection of the side-lobe or stop-band attenuation is based on the 

selected window as specified by item no. 8 in Table 3.1. Meanwhile, the filter order as 

specified by item no.7 in Table 3.1, is calculated from the window transistion width. If 

the frequency response of the filter fails to meet the specifications, the filter order 

need to be varied and the window function must be changed. In this study, a band-pass 

filter need to be designed in order to extract the frequency bands based on the 

characteristics of EEG signals as discussed in Chapter 2. Here, the band-pass filter is 

more practical and effective to filter the raw EEG signals with the range of the 

frequency from 0.5 Hz to 30 Hz.  

 

         Table 3.1: 

         Filter Specifications 
No. Filter parameters 

 

Settings 

1 Sampling frequency 

 

256 Hz 

2 Maximum signal frequency 

 

256/2 = 128 Hz 

3 Frequency bands Delta = [0.5 - 4] Hz 

Theta = [4 - 8] Hz 

Alpha = [8 - 13] Hz 

Beta = [13 - 30] Hz 

 

4 Normalized cut-off frequencies of frequency 

bands 

Delta = [0.0039 - 0.0313] 

Theta = [0.0313 - 0.0625] 

Alpha = [0.0625 - 0.1016 ] 

Beta = [0.1016 - 0.2344 ] 

 

5 Normalized cut-off frequencies for overall 

bands 

[0.0039 - 0.2344] 

 

6 Filter type FIR, band-pass 

7 Filter order 74 

8 Type of window Hamming 

 

 

Table 3.1 elucidates the settings used to design the FIR band-pass filter and 

obtain the frequency response of the filter shown in Figure 3.1. The sampling 

frequency is set to 256 Hz in accordance with the sampling frequency of the wireless 

EEG amplifier (g.MOBIlab) and the maximum frequency 128 Hz, half that of the 

sampling frequency. Since the EEG frequency bands lies in the range between 0.5 Hz 
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and 30 Hz, the cut-off frequencies of the EEG frequency bands are computed by 

dividing the EEG frequency bands with half of the sampling frequency (maximum 

frequency) to produce a normalized cut-off frequencies of 0.0039 and 0.2344. The 

determination of the sampling frequency must follow the Nyquist rate theorem where 

the theorem has defined that the maximum input or analog signal frequency must be 

half of the sampling frequency. Meanwhile, the filter order of 74 as defined in Table 

3.1 is selected because the normalized cut-off frequencies are met as shown by the 

graph of frequency response in Figure 3.1. In designing the window filter, Hamming 

window is selected in order to produce a good filter coefficient based on the response 

of the filter [177-178]. The specifications of the window is discussed in the next 

section of this chapter. The process to find the filter order and frequency response can 

be referred to Appendix E. 
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Figure 3.1: Frequency Response of the Design Filter 

 

3.2.4   Window Specifications 

 

The windows that can be used in filter designs are shown in Figure 3.2. From 

the figure, it is noted that the width of the Hamming window is wider than that of 

Hanning and Blackman windows. However, the Hamming, Hanning and Blackman 

windows have lower side lobes than that of the Rectangular window. Therefore, the 
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Hamming window is selected in this study based on the width of the window and the 

magnitude of the side lobes of the frequency response of the window. Due to the 

characteristics of the Hamming window, the use of this window in designing filter 

should result in good filter coefficient [16, 145-146]. The filter coefficient is used to 

capture the required EEG signals from the raw EEG signals during convolution 

process. 

 

Figure 3.2: Type of Window Functions for Designing Band-pass Filter [146] 

 

The specifications of the windows shown in Figure 3.2 are listed in Table 3.2, 

where N or M represents the filter length or order. Based on the selected filter order of 

74 and Hamming window, the transition width will be 0.0446 by dividing the 3.3 with 

74 (3.3 / N) and matched with the stop-band attenuation at -53 dB. 

 

         Table 3.2: 

         Window Specifications for Designing Band-pass Filter 
Type of Window Transition Width Stop-band Attenuation 

Rectangular 0.9/N -21 dB 

Hanning 3.1/N -41 dB 

Hamming 3.3/N -53 dB 

Blackman 5.5/N -75 dB 

Kaiser 2.93/N, 4.32/N, 5.71/N -50, -70 and -90 dB 

 

Window size  
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Table 3.3 describes the mathematical equations that were used to produce the 

windows, where the length of the windows is determined by the filter order. The 

formula also describe the size of the window which denoted by the filter order, N. 

 
         Table 3.3: 

         Mathematical Equations of the Windows  

Type of Window Mathematical Equations 

Rectangular 
w(n) = 1,  0 ≤ n ≤ N 

0,  elsewhere 

Hanning 
w(n) = 0.5 -0.5cos(2n/N),  0 ≤ n ≤ N 

0,   elsewhere 

Hamming 
w(n) =  0.54 – 0.46cos(2n/N), 0 ≤ n ≤ N 

 0,  elsewhere 

Blackman 
w(n) = 0.42 - 0.5cos(2n/N) + 0.08cos(4n/N), 0 ≤ n ≤ N 

 0,   elsewhere 

 

Figure 3.3 depicts the window obtained from the filter specification, and the 

size of the window is influenced by the filter order or length (N or M), in this case the 

length of the window will be 73. This means the raw EEG data will be filtered by a 

FIR band-pass filter with window functions having a width of 73. With the specified 

parameters, the filter produces characteristics that are similar to that of the Hamming 

window, as described by Table 3.2 and illustrated in Figure 3.2.  
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Figure 3.3: Hamming Window Produced from the Selected Window Specifications 
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3.2.5   Filter Coefficient 

 

The frequency response of the N
th

 order FIR filter can be mathematically 

expressed by equation 3.1. In the equation, h(n) is defined as the filter coefficient, 

which will be convolved with raw EEG data to produce the filtered EEG data. H(e
jω

)  

or  H(ω)  is the frequency response of the filter at the specified cut-off frequencies (ω). 

                                                            (3.1) 

                    
The output, which is the filtered data, is derived from equations 3.2 and 3.3. 

 

                                                     (3.2) 

                                                    (3.3) 

 

where h(n) is the filtered coefficient, x(n) is the raw EEG signals and y(n) is the 

filtered signals. The filtering process is to produce the Delta band, Theta band, Alpha 

band and Beta band of EEG signals. The plot of the filter coefficient, up to the 

selected filter length, using specifications stated earlier is shown in Figure 3.4. The 

calculated filter coefficient will be used to produce filtered data by convolving the 

filter coefficient with the raw EEG data. 
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Figure 3.4: A Plot of Filter Coefficient versus Filter Order 
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3.3 SPECTRAL ANALYSIS OF EEG SIGNALS  

 

After designing the filter to capture the EEG frequency bands, the next step is 

to perform spectral analysis of the filtered signals using non-parametric technique. In 

this case, the time-domain EEG signals is converted to frequency-domain signals 

using Discrete Fourier Transform (DFT). The conversion is implemented using the 

Fast Fourier Transform (FFT) function in MATLAB. The results will return the DFT 

value of the filtered EEG data in terms of power spectrum (power spectral density) 

versus frequency. Equation 3.4 depicts the formula to sample the raw data into finite 

discrete database on the length of the data, measurement time and sampling frequency.   

                                                           (3.4) 

In equation 3.4, n is the finite length sequence and Ts is the the sampling time. 

Sampling time is the reciprocal of the sampling frequency. N-point DFT of x(n) is 

calculated using equation 3.5. 

 

                                 ,   k = 0,1, …, N-1              (3.5) 

 

In equation 3.5, k represents the harmonic number of the transform 

component, while N is the length of the sequence. The output of the equation will be 

in terms of complex component that consist of real and imaginary components. Thus, 

to secure the real component, which is the power spectral density (PSD), the absolute 

value of equation 3.5 is calculated, as shown in equation 3.6. 

 

 
(3.6) 

 

Then, energy spectral density (ESD) is calculated using the results of the 

power spectrum (PSD) of the filtered data. Here, ESD is measured based on the area 

under the PSD curve of the specified frequency range of the EEG frequency bands.  

Following that, the asymmetry energy ratio, relative energy ratio and spectral 

centroids are calculated, where these parameters are selected as EEG features for this 

study. Meanwhile, spectral entropy and Z-score technique are used to confirm the 

stress pattern obtained from the experimental groups.   
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3.3.1 Power Spectral Density (PSD) 

 

PSD is calculated by performing Fast Fourier Transform (FFT) on the discrete-

time data, or sampled data, as stated in equation 3.6. In this study, both the 

MATLAB’s psd and fft functions were used to compute the PSD value of the filtered 

data. Here, the psd function requires the use of several parameters, such as the number 

of FFT points, sampling frequency,  and size of window with 50% overlapping before 

applying these parameters to the filtered data. Meanwhile, the fft function is applied to 

the filtered data to act as a comparison to the sprectral analysis using psd function. 

The overlapped window is used to segment the database on the window size and 

percentage of overlapping. The selected length of the FFT length is 1024. The 

selection of the length of the FFT must follow the length of the filtered data and the 

size of the window [7, 61, 99, 112, 177-178]. An example of the PSD plot is shown in 

Figure 3.5, which  depicts the PSD plot for Beta bands (13–30 Hz) where the mean 

frequency of the band is around 19-20 Hz. The mean frequency of each frequency 

band is also calculated.  
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Figure 3.5:  Example of a PSD Plot of EEG Beta Band 

 

The plot of the PSD for the overall frequency bands is shown in Figure 3.6. 

This figure elucidates the characteristics of the EEG sub-bands based on the specified 

frequency bands from 0.5 Hz to 30 Hz. Beta and Alpha bands are located at the higher 

frequency but have lower amplitude, while Delta and Theta bands are located at lower 

frequencies but have higher amplitude. The plot of the PSD characteristic confirms the 

characteristic of EEG spectrum [7, 8, 16]. 
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Figure 3.6: Characteristic of PSD of EEG Signals 

 

3.3.2 Energy Spectral Density (ESD) 

 

To determine the features that exist in the EEG signals, the next step is to 

calculate the values of ESD by performing trapezoidal numerical integration on the 

PSD values over the frequency range using the trapz function in MATLAB. This 

function requires two parameters, for example, trapz(X, Y) will compute the integral 

of Y with respect to X using trapezoidal integration. In this study, the value of X is 

the range of frequency, while the value of Y is PSD, and as depicted by Figure 3.5, the 

area under the PSD curve is considered as ESD. Since the EEG frequency bands 

consists of the range of the frequency of EEG signals, ESD is selected as EEG 

features because it indicates the calculation of the energy of the EEG signals within 

the EEG frequency bands. In comparison, PSD values indicate the highest power at 

the mean or peak frequency. In this study, ESD of the EEG frequency bands (, θ,  

and ) is the mean ESD, namely, the average of the ESD at the right hemisphere and 

left hemisphere of the human brain as stated in equations 3.7, 3.8, 3.9 and 3.10. 

 

 (3.7) 

 (3.8) 

 (3.9) 

 (3.10) 
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            The reason for taking the average value of ESD for all frequency bands is that 

the cerebral activities in both hemispheres of the human brain are basically similar, 

unless the stimulation on the left hemisphere is different from that of the right 

hemisphere. This can be seen from the EEG datasets at right and left hemisphere, 

where the values are approximately the same (Refer to Appendix C).  

 

3.3.3 Asymmetry Ratio (AR) 

 

As discussed in the literature review, the main purpose of AR is to show the 

dominant activity of the brainwaves, either in the right hemisphere or left hemisphere 

of the human brain. In addition, it is used to compare the neural activities in the left 

and right hemisphere of the brain. Two basic formulas that can be used to calculate 

asymmetry are as in equations 3.11 and 3.12. 

 

 (3.11) 

 

 (3.12) 

 

 

Equation 3.11 is known as normalized asymmetry where R stands for the 

power spectrum of EEG frequency bands of the right hemisphere of the human brain 

and L indicates the power spectrum of EEG frequency bands of the left hemisphere of 

the human brain, while equation 3.12 is called ln-transformed (natural log) asymmetry 

using natural logarithm. The expression for normalized asymmetry is bounded 

between 1 and -1. However, ln-transformed asymmetry is unbounded [28]. Both 

asymmetry and normalized asymmetry ratios were evaluated in this study. 

 

3.3.4 Relative Energy Ratio (RER) 

 

RER is the ratio of the ESD of each EEG sub-bands over the total energy of 

the EEG sub-bands. It is described by equations 3.13, 3.14, 3.15, 3.16 and 3.17. RER 

for each EEG rhythms for all the four groups of subjects involved in the experiment 

are taken as EEG features and become an input to the classifier. ESD of the EEG 
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frequency bands is determined by calculating the mean of the ESD of the right 

hemisphere and ESD of the left hemisphere of human brain. 

 

 

    (3.13) 

 

 (3.14) 

 

 (3.15) 

 

 (3.16) 

 

 (3.17) 

 

 

By computing RER over the EEG frequency bands for four experimental 

groups, the pattern of stress from the EEG signals might be discovered. Even though 

the pattern of stress might be clearly shown by RER of Alpha and Beta, this study also 

considers the stress pattern from the Delta and Theta sub-bands. In order to strengthen 

the pattern, another EEG feature, the spectral centroids, is applied to the RER of the 

experimental groups. It is used to search for the dominant EEG energy among the 

experimental groups.  

 

3.3.5 Spectral Centroids (SC) 

 

Spectral Centroids (SC), one of the features under frequency domain or 

spectral analysis, can be mathematically expressed as in equation 3.18.  
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In this equation, energy is computed from the spectrogram     of the RER.    is 

the average frequency weighted by the amplitude of     , where i represents the number 

of samples in the experimental groups. The values of the spectral centroids from each 

group are used as a target or class for the classification process.   

 

3.3.6 Spectral Entropy (SE) 

 

Another feature that is selected is the spectral entropy (SE), one of the features 

in the frequency domain. In this study, SE is based on Shannon’s entropy and it is 

chosen to detect the pattern of the stress from the experimental groups by finding the 

abnormality or uncertainty in the EEG data that might be related to stress. The entropy 

is mathematically described by equation 3.19. The main purpose of using Shannon’s 

entropy is to indicate which experimental groups might have stress features before 

proceeding to the classification of the EEG features. 

 

                                                                             (3.19) 

 

3.4 EEG DATA RE-GENERATION  

 

In this study, a total of 37 data from 4 experimental groups (180 data; Group 1 

– 50 data, Group 2 – 50 data, Group 3 – 40 data and Group 4 – 40 data) were founded 

corrupted and must be eliminated; 8 EEG data from Group 1, 3 EEG data from Group 

2, 13 EEG data from Group 3 and 13 EEG data from Group 4. The corrupted data 

were identified when there is a high difference between the EEG data of the left brain 

to that of the right brain. As mentioned in Chapter 2 and section 3.3.2, neural activities 

in both hemispheres of human brain are normally the same, unless the brain is 

stimulated by something. Thus, the corrupted data can be easily detected. The 

corrupted data are then re-created using normally distributed pseudo-random numbers 

technique. This technique was selected since it can produce positive and negative 

values. To re-generate the corrupted data, an acceptable noise factor was applied to 

any good raw EEG datasets in the experimental group. The acceptable noise was 

determined by keeping the maximum difference between the original data and re-

generated data below 10%, which can be achieved by varying the noise factor shown 

i

n

i
i RERRERSE )(log)( 10

1




iF

iS

 S



 
 

44 

 

in equation 3.20 and 3.22. Some research had assigned a maximum difference of 5% 

between the original data and original data with noise [179]. The processes of re-

generating EEG datasets by adding noise are described by equations 3.20, 3.21 and 

3.22. The noise factor, F of 1.5 was used to re-produce an acceptable 37 EEG data. 

The method to generate oscillation signal to be used as noise using MATLAB 

function file is described in  Chapter 4.  

               

 (3.20) 

 (3.21) 

            (3.22) 

 

3.5 CLASSIFICATION METHOD: k-NEAREST NEIGHBOR (k-NN)  

 

This study uses the k-NN classifier to classify the extracted EEG features. The 

classifier operates by comparing a testing data (a new sample) with the training data 

(baseline data). When the k neighborhood in the training data is found to match the 

training data, the classifier assigns the testing data with the class that appear more 

frequently in the neighborhood of k, which indicates the number of nearest neighbors 

in the classification. In order to determine the class that match the testing data to the 

training data, the value of k must be varied. In this research, the values of k are 

changed in accordance with  the size of the training data. Typically, a small value of k 

is required for the classification with a maximum value of 10 [1, 7, 33, 94, 112, 180-

181], and the default value of k is 1. For example, if k = 1, the test data will be 

assigned to the class of its nearest neighbors, where k must be a positive integer. The 

partition of the dataset for training and testing in k-NN classification process can be 

done according to 50:50 ratio, 60:40 ratio, 70:30 ratio and 80:20 ratio. In this study, 

two different training-to-testing ratio, which are 50:50 and 70:30, were used to 

evaluate the EEG datasets in order to determine the ratio that would produce good 

classification accuracy.  

Besides the k-value and the ratio of partitioning data, other parameters that 

must be taken into account in classification are distance and rule. In order to identify 

neighbors, the distance and rule of k-NN classifier must be chosen. There are five 

types of k-NN distance (Euclidean, City block, Cosine, Correlation and Hamming) 
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and three k-NN rule (Nearest, Random and Consensus). The k-NN distance in term of 

Euclidean, City block and Cosine are described by equation 3.24 to equation 3.26 

respectively. The default neighborhood setting for distance and rule is Euclidean and 

Nearest, respectively, and are the commonly used settings by reseachers [1, 33, 94]. 

Hamming distance is not applicable in this study since it more suitable for classifying 

binary data. In this study, to search for the object similarity in the k-neighborhood, all 

k-NN rules are employed in the classification in conjunction with Euclidean, City 

block and Cosine of k-NN distance, as shown in equations 3.23, 3.24 and 3.25, 

respectively. The method to implement k-NN classification using MATLAB will be 

elucidated in Chapter 4.  

Equation 3.23 describes the Euclidean distance in k-NN classification.     or  

is either the training or the testing data, where i and j indicate the index of the data, 

while k is the counter for the length of the training data (n).  

                                                                                                                       

(3.23) 

 

Equation 3.24 describes the city block distance in k-NN classification.     or 

is either the training and the testing data, where i and j indicate the index of the data, 

while k is data counter. The distance is the summation of the difference between the 

data and the results that was assigned to the class that came out more frequently in the 

neighborhood of k. 

 

                                                                                                         (3.24) 

 

Cosine distance is elaborated by equation 3.25.  Similarly,       or      is either 

the training and the testing data, k is the data counter and n is the length of the training 

data. Cosine distance involves the summation of the multiplication of the data over the 

square root of the data that was assigned to the class that came out more frequently in 

the neighborhood of k.  

 

                                                                                                          (3.25) 
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Each of the three k-NN rules (nearest, random and consensus) that can be used 

to classify EEG dataset works differently. The nearest rule applies the majority rule 

with nearest point, the random rule utilizes the majority rule with random points (use 

random tie-breaker), while the consensus rule applies the opposite that of the majority 

rule. However, by default, the nearest rule is used in k-NN classification, where the 

test data are assigned to the class that consists of the majority of the k-nearest 

neighbors. For consensus rule, testing data that consists of k-nearest neighbors from 

different class are not assigned to the class but the NaN will be assigned to the output 

class. In this study, the k-NN classifier was evaluated using Euclidean, City block and 

Cosine distance, while all rules were used in order to find the best classification 

results.  

 

3.6 CLASSIFICATION PERFORMANCE: ACCURACY, SENSITIVITY 

AND SPECIFICITY 

 

In order to produce the best classification performance, the classifier must be 

tested for accuracy, sensitivity and specificity [158, 168, 170, 180]. Accuracy is 

defined as the closeness of the measurement to its true value, sensitivity is described 

as the true positive that is correctly identified, and specificity indicates the true 

negative that is correctly identified. Accuracy, sensitivity and specificity can be 

calculated using equations 3.26 3.27 and 3.28, respectively. In order to make proper 

computation of accuracy, sensitivity and specificity in the classification process, a 

confusion matrix need to be built.  

 

 (3.26) 

 

 (3.27) 
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The confusion matrix for the 2 x 2 matrices of the datasets is shown in Table 

3.4. 

 

          Table 3.4: 

          Confusion Matrix for 2x2 Matrices [182-184] 

  Target Class 

Actual Class TP FP 

Actual Class FN TN 

 

In the matrix, TP represents True Positive, FP is False Positive, FN indicates 

False Negative and TN for True Negative. 

However, this study involved the feature vectors of 4 x 4 matrices, which are 4 

groups with 4 EEG frequency bands. Therefore, the confusion matrix for 2 x 2 

matrices are modified to produce confusion matrix for 4 x 4 matrices as shown in 

Table 3.5. The reference for the 4 x 4 confusion matrix can be obtained from the 

website under the topic of evaluating classification model [169, 182-184]. 

 

         Table 3.5: 

         Confusion Matrix for 4x4 Matrices [182-184] 

 

 

Predicted Class 

A B C D 

Actual 

Class 

(Known 

data) 

 

A TPA eAB eAC eAD 

B eBA TPB eBC eBD 

C eCA eCB TPC eCD 

D eDA eDB eDC TPD 

 

Based on Table 3.5, accuracy, sensitivity and specificity can be calculated 

using equations 3.29, 3.30, 3.31 and 3.32. 
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(3.30) 

 

 

 

 

(3.31) 

 

 

 

                                                                                                                                 (3.32) 

                   

 

SensitivityA is for sensitivity of Class A, while SpecificityA indicates the 

specificity of Class A. The overall results of accuracy, sensitivity and specificity 

obtained from the experiments are detailed in Chapter 5. 

 

3.7 CLASSIFICATION ERROR  

 

Besides sensitivity and specificity, the classification performance is also 

measured based Mean-Square Error (MSE) when varying the distance of k-NN 

classifier. MSE is calculated from k = 1 to k = 10 when the distance of the k-NN are 

changed from Euclidean to City block and Cosine, respectively.  

 

3.8 VALIDATION OF k-NN CLASSIFIER 

 

The performances of the classifiers are evaluated through cross-validation, 

where the accuracy of the classifier is re-calculated by implementing multiple 

partitions of the datasets that was used for training and testing. The accuracy obtained 

from the validation process will be compared with that acquired from normal 

classification to determine whether or not the classifier is robust. Generally, the 

classification cross-validation can be achieved using k-fold cross-validation and 

Leave-One-Out (LOO) cross-validation. In k-fold cross-validation, k is the number of 

fold employed in the validation; if a 5-fold cross-validation is applied, 4 fold are used 

for training while one is for testing. This means that, in k-fold cross validation, all data 

in the datasets are used for training and testing. However, the size of the datasets will 
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determine the number of fold to be employed in the cross-validation, the bigger the 

number of data in the dataset, the bigger is value of k [168, 170, 185-189, 201]. In this 

study, a 10-fold cross-validation is chosen as the size of dataset matrix is 180x4, 

which is also the most used cross-validation to validate k-NN classifier performance 

[168, 170, 185-189, 201]. 

The k-NN classifier is also validated using LOO technique, in which case one 

data in the datasets is selected for testing while the remaining data becomes the 

training data. The process begins by choosing data number one as the test data and 

making the rest of the data as the training data. Then data number two is selected as 

the test data, while the remaing data becomes the training data. This process continues 

until the counter reaches the last data in the datasets. 

In both classifier cross-validation techniques, the accuracy obtained from each 

experiment is then used to produce average accuracy, where the results of the 

validation are shown and discussed in Chapter 5. 

 

3.9 CLUSTERING METHODS: FUZZY C-MEAN and FUZZY K-MEAN 

 

In order to support the classification results by k-NN classifier to generate 

stress index based on quantitative method, the extracted features from the EEG signals 

of the experimental groups are clustered using both FCM and FKM. The fuzzy 

technology is widely used by researchers, especially in identifying human emotions. 

FCM and FKM are unsupervised learning algorithms employed to compute the 

classification accuracy based on the membership degree of the cluster center and the 

centroids of the cluster center respectively [160-161, 164, 166, 189, 201]. Both FCM 

and FKM depend on the number of clusters used to partition the datasets, hence, in 

this study, the datasets are partitioned into four clusters as datasets from four groups 

are involved in the experiments.  

The first step in the FCM process is to define the required number of clusters 

in order to partition the datasets, which is followed with the calculation of the cluster 

center. The next step is to calculate the degree of membership, and finally, is the 

calculation of the clustering accuracy [161, 190]. The outputs from FCM are cluster 

center matrix, membership function matrix and the objective function. Membership is 

graded from 0 to 1, and four clusters will be produced as there are four experimental 

groups in the datasets. The results from the membership are then used to index the 
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clustered datasets. The datasets are then plotted to determine the dispersion of the 

datasets in the neighborhood of the cluster center. The objective function of FCM (J) 

is calculated using equation 3.33. 

 

                                                           (3.33) 

 

In the equation, n is the total number of data points, c is the number of clusters, 

xk  is the kth data point, vi is the cluster center, and μik is the degree of membership of 

kth datapoint and ith cluster center, where the value ranges from 0 to 1 with weighting 

effect of m. Meanwhile, ||xk-vi|| is the difference between datapoints and its cluster 

center. Membership degree can be determined using equation 3.34. 

 

                                                                                                       (3.34) 

 

 

which indicates the degree the datasets belong to the cluster center of v [165, 190-

191]. The index of the membership matrix is used as a class to k-NN classifier to 

ascertain the accuracy of the FCM clustering. To calculate the accuracy of the 

clustering, the clustered datasets is then used as an input data to k-NN classifier. 

In FKM, which can be implemented using equation 3.35, the number of 

clusters is used to determine the location and the index of the centroid in the datasets, 

and consequently, each cluster has k centroids. Squared Euclidean distance is 

employed to
 
determine the centroids of the data in each cluster, and the data points are 

then clustered based on the minimum Euclidean distances. Finally, the new center of 

the cluster is calculated based on the average of the data in the cluster [7, 112, 164, 

192]. The new location index is then utilised to determine the new data cluster, which 

will then be used as an input to k-NN classifier.  

 

                                                                                     (3.35) 
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 In Equation 3.35, n is the total number of data points, c is the number of 

clusters, xk  is the data points, vi is the cluster center, while ||xk-vi|| represents the 

Euclidean distance between kth data points xk and the cluster center, vi. J is the 

objective function of FKM where the main difference between FCM and FKM is the 

use of membership degree, μ. 

 

3.10 STATISTICAL ANALYSES 

 

This section will describe the theory of the statistical techniques to confirm the 

stress index assignment using Z-score technique, normality test, ANOVA and Pearson 

correlation study (scatterplot). Here, the Z-score is used to verify the stress index. 

Meanwhile, the normality test is applied to test the normality of the selected features 

before classification process. Next, ANOVA is selected to check the significance of 

the selected features. Finally, Pearson correlation study is performed to determine the 

correlation among the selected features when there is a change in brain cognitive 

states.  

 

3.10.1 Z-score Technique 

 

Z-score technique is applied in this research in order to confirm the stress 

pattern obtained from the energy ratio, spectral centroids and entropy. Z-score is used 

to calculate the mean of each group and their standard deviation, and is expressed as 

in equation 3.36. 

 

                                                                                                                 (3.36) 

 

 

The equation will produce a value of less than -1, zero and greater than 1. The 

results from Z-score will be used to validate the index assignment based on energy 

ratio, spectral centroids and classification results. Based on the formula of Z-score, it 

can be used to generate 3 indices from the scores (less than -1, zero and greather than 

1). Hence, this technique is practicable and suitable to verify the assignment of stress 

index based on the results of the relative energy ratio and classification of EEG 

features. 
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3.10.2 Normality Test  

 

The normality test is performed in order to determine the Gaussian pattern of 

each EEG dataset. The test is implemented for the filtered data, namely, after 

obtaining the energy or power spectrum of the data, and is also performed after the 

corrupted data is re-generated. The normality test is carried out using the histogram 

plot in MATLAB and the results of the test are discussed in Chapter 5. The testing for 

normality is important in order to enhance the classification performance. 

 

3.10.3 ANOVA 

 

In this study, ANOVA is used to indicate the significance of the extracted 

features, relative energy ratio and spectral centroid from different sets of data, where  

the significance of the features of different groups is based on the mean analysis of the 

data. In ANOVA, the dependent variables and independent variables need to be 

defined [173, 193]. In this study, ANOVA is used is to determine the degree of stress 

of the four experimental groups based on the change of Alpha and Beta power across 

the group. The cognitive states of Group 1, Group 3 and Group 4 is eyes-closed, while 

that of Group 2 is eyes-open, where members of Group 2 are requested to perform an 

IQ test. The dependent variables are the groups and the independent variables are the 

extracted features from the groups. Even though four experimental groups are 

involved in the study, since the main focus is to determine the significant difference 

between the members of Group 1 (who are asked to be in a relaxed state) and that of 

Group 2 (who had to undergo the IQ test), ANOVA is used instead of MANOVA. 

Furthermore, ANOVA will indicate the significant difference within the group and 

between groups by producing the output value of F and p. F-value indicate the degree 

of freedom, while p-value represents the degree of confidence [173]. The large  value 

of  F indicates the high variability between the groups. Meanwhile, the small value of 

F indicates the low variability between the groups. The p-value of 0.05 or less will 

indicate the significant difference on the dependent variable in the groups. Therefore, 

the extracted features from the two groups are said to have a significant difference if 

the p-value less than 0.05. In order to produce a good result from ANOVA analysis, 

the data for each variable must be normally distributed [173].   
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3.10.4 Pearson Correlation Study 

 

Beside ANOVA, in order to discover the linear relationship between the 

change of the cognitive states (eyes-closed and eyes-open) with the change of the 

EEG power spectrum, Pearson correlation (scatterplot) study is conducted. The 

correlation results between the cognitive state and its EEG power spectrum will be 

indicated by the Pearson correlation coefficient, r and the significant value, p. The 

range of the correlation coefficient is between -1.00 to 1.00 which indicates the 

correlation can be positive and negative where 0 will indicate zero correlation between 

the two variables being correlated.  The negative and positive correlation indicate the 

direction of the relationship. Regardless of the positive and negative correlation, the 

correlation coefficient will indicate the strength of the correlation results where the 

strength can be categorized into 3 categories; small correlation strength when r 

between  0.10 to 0.29, medium correlation strength when r between 0.30 to 0.49 and 

large or strong correlation strength when r between 0.50 to1.0. Meanwhile, the 

variables are significant if the significant value of the linear relationship less than 0.05 

(p < 0.05). The results of the statistical analyses (ANOVA and Pearson correlation 

coefficient) of the extracted EEG features are discussed in Chapter 5. 
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CHAPTER FOUR 

METHODOLOGY   

 

 

4.1 INTRODUCTION 

 

The description of how stress index is generated starting from the raw EEG 

datasets to the classification of the stress features is detailed in this chapter. Section 

4.2 describes the flow chart of the experimental steps conducted in this study. Data 

collection, data re-generation, equipment set-up and validation are elaborated in 

Section 4.3. The EEG measurement protocols are detailed in Section 4.4. Meanwhile, 

the pre-processing of the EEG datasets, including the removal of artifacts, filter design 

and normality test, is discussed in Section 4.5. The major portion of this chapter is 

covered by Sections 4.6 and 4.7 which, respectively, describe the spectral analysis of 

EEG signals and the selection of EEG features that might relate to stress. This is 

followed with discussion on the procedures to classify and cluster the extracted stress 

features in Section 4.8 and Section 4.10, while Section 4.9 describes the procedures on 

how to validate performance of the classifier. Then, the statistical analysis of the stress 

features is presented in Section 4.11. The assignment of the stress index based on the 

selected EEG features and the classification results is explained in Section 4.12, and 

finally, Section 4.13 describes the steps taken to verify the stress index.  

 

4.2 RESEARCH PROCESS FLOW 

 

This study involves several process flows as illustrated by Figure 4.1, Figure 

4.2 and Figure 4.3. Here, Figure 4.1 illustrates the main process flow of the research. 

According to Figure 4.1, it is obvious that the vital parts in process flow which are 

also the milestones in this research are the identification and selection of the EEG 

features that might relate to stress, classification of the features, construction of the 

stress index based on the selected features and the verification of the stress index.  
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Figure 4.1: Overview of Research Process Flow 

 

 

Looking at the main process flow (Figure 4.1), the research employs the 

available raw EEG datasets obtained from the four groups of subjects involved in the 

experiment. The data is then pre-processed to remove the artifacts and filtered at the 

required EEG frequency bands by applying band-pass filter with the specified cut-off 

frequencies to the noise-free data. Next, the non-parametric or spectral analysis is 
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performed to identify the EEG features that might relate to stress. If the features are 

related to stress, the features will be tested for normality first, before selecting the 

features as an input to the classifier for the classification process as labeled in the 

process flow as relevant stress features, otherwise, a new raw EEG data must be 

selected and the process repeated. As discussed in Section 2.5 in Chapter 2, there are 

various features in non-parametric analysis methods that can be selected and analyzed 

to idenfity the existence of stress in human. Among them, 3 features were selected and 

tested for stress identification process; Relative Energy Ratio (RER), Asymmetry and 

Natural Log Asymmetry since these features can detect the changes in human 

cognitive activities when stress stimuli are applied to human [56-61, 72, 75-77]. Next, 

the selected features are fed to classifiers. The selection of the features in determining 

stress index will be based on the classification performance. In this thesis, k-NN is 

selected as a classifier due to its robustness and less complicated supervised learning 

algorithm, while FCM and FKM are used to cluster the features extracted from EEG 

signals. These clustering techniques are employed to support the classification results 

by k-NN classifier. The performance of the classification is measured based on 

accuracy, sensitivity and specificity.  

The robustness of the classification is tested by applying k-fold cross-

validation. To determine whether or not the selected features are significant, statistical 

analysis is conducted on the features using ANOVA. Beside ANOVA, the study uses 

Pearson correlation in order to know the linear relationship between the variables 

being studied with the change of cognitive states. Once the results of the classification 

are obtained, the index that represents the level of the stress is assigned. The indices 

are verified using Z-score technique and the range of the EEG data from each of the 

four groups involved in the experiment. In addition, every EEG data obtained from the 

four groups are tested whether or not they belong to the correct index. The stress index 

is developed from the average value of the relative energy ratio, spectral centroids and 

entropy of EEG Alpha and Beta power spectrum from each group. Hence, it is vital to 

verify each EEG data in each group and their index. The process flow for the pre-

processing and spectral analysis is shown in Figure 4.2 and Figure 4.3, respectively. 
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Figure 4.2: Process Flow of EEG Pre-processing 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Process Flow to Identify Stress Features 

 

 

Referring to Figure 4.2, the major artifacts or noises in EEG measurements 

come from EOG signals. Hence, the artifacts in EEG signal are removed by setting the 
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threshold value in the algorithm, where the procedure for removing the artifact has 

been detailed in Section 4.5. Once the EEG datasets are free of artifact, the data are 

band-pass filtered to capture the required frequency. In this research, datasets with 

frequency ranging from 0.5 Hz to 30 Hz are selected, which comprise of Delta band 

(0.5-4 Hz), Theta band (4-8 Hz), Alpha band (8-13Hz) and Beta band (13-30Hz). 

Subsequently, the filtered EEG datasets are converted to power spectrum density 

using Fourier Transform technique, and then tested for normality using Excel and 

MATLAB. The procedure has been detailed in Section 4.5.3.           

This study implements spectral analysis which involve processes as illustrated 

in Figure 4.3 in order to recognize the EEG features that can be used to detect stress. 

As discussed in Chapter 2, this technique is one of the non-parametric analysis 

technique which is widely used by researchers to extract features from non-stationary 

data such as EEG signals. According to Figure 4.3, the Discrete Fourier Transform 

(DFT) is applied to the filtered EEG datasets. For the fastest computer computation, 

the signal processing uses Fast Fourier Transform or FFT [7, 112, 177-178]. As a 

result, the time-based data platform is converted to frequency-based data platform or 

power spectrum. The reflection of the power at each frequency by power spectrum is 

called PSD, having unit of µV
2
/Hz. In this study, ESD, obtained by dividing the area 

of the PSD curve with the range of the specified frequency, is considered as one of the 

feature of EEG sgnals. ESD is selected as a feature, instead of PSD, because it covers 

the overall energy distribution for each frequency band, while PSD selects the highest 

energy at the peak frequency. Thus, the value of ESD is relatively smaller and more 

precise than PSD as it covers the energy in the entire frequencies of EEG signals. The 

stress features are selected by calculating the ratio of ESD at each frequency band 

over the total energy of overall band. The ratio of ESD from each EEG rhythms are 

counted. However, since the stress pattern is indicated by the changes in the energy of 

Beta and Alpha bands, the focus is only on the ESD of Beta and Alpha bands.  

Beside ESD, SC is selected as stress feature as well since the feature were used 

by researchers to search for the dominant energy or frequency in a certain set of data 

being studied [118, 128, 130-134]. The feature is applied to the four group of EEG 

datasets for each frequency band, while entropy is used to detect the stress pattern 

from the four groups of EEG datasets. Hence, in this study, the ESD ratio or RER and 

SC are utilised as the stress features for the classification process. In the classification 

process, RER are used as input features for the training and testing, while SC are used 
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as classes. The identification of the stress features by the classifier can be effectively 

implemented using the spectral analysis technique [146, 150, 168, 170]. 

                      

4.3 DATA COLLECTION AND RE-GENERATION  

 

This section discusses the process on how to select the data, set-up and buy-off 

the equipment. Equipment validation must be done prior to EEG measurement. 

 

4.3.1 Selection of Datasets 

 

The study began by collecting the EEG data from several experiments. 180 

EEG datasets were collected from 140 non-smoking healthy subjects whose age range 

from 20 to 50 years old. The datasets were categorized into four groups. Group 1 

represents Eyes-Closed (EC) state consisting of 50 EEG data taken from 50 subjects 

after they have answered the same psychoanalysis questionnaires. Group 2 represents 

Eyes-Open (EO) state  consisting 50 EEG data obtained from 50 subjects after they 

had performed IQ test. Meanwhile, Group 3 and Group 4 represent EC state, each 

consisting of 40 EEG data taken from 40 subjects before and after the subjects 

performed Horizontal Rotation (HR), respectively. 

In the process of the collecting EEG data, of all the EEG data collected, a total 

of 37 data were found to be corrupted (Group 1 – 8 data; Group 2 – 3 data; Group 3 – 

13 data; Group 4 – 13 data), and the data were substituted with new data produced by 

implementing normally distributed pseudo-random number technique. This technique 

will generate oscillation data (negative and positive data). In this case, to produce the 

new data, an acceptable noise factor was applied to any good raw data in each group. 

In terms of maximum value and standard deviation, the divergence between the re-

generated data and the original data were maintained below 10%. The noise factor of 

1.5 was employed to regenerate the 37 EEG data, which produced data that have 

characteristics that are almost similar to that of the removed data.  

 

4.3.2 Equipment Set-up 

 

The g.MOBIlab with Bipolar EEG gold-plated and silver-plated electrodes 

were used in this research for recording EEG signals from each subject. The 
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impedance of the electrodes was measured using z-checker and found to be below 5 

kΩ [7, 16, 194]. The impedance of the electrodes are vital so as not to introduce 

additional noise to the EEG reader. In this study, two electrodes were placed on the 

subject’s prefrontal area of human brain region and are denoted by Fp1 (left channel) 

and Fp2 (right channel). One electrode was placed at the center of the forehead to 

represent the ground, which is denoted by Fpz. Meanwhile, the reference electrodes 

were placed at the earlobes, which are denoted by A1 and A2. The placing of the 

electrodes are in accordance with the International 10-20 System. Prior to placing the 

electrodes on the forehead and earlobes, the electrode cap is filled with gel to remove 

noise originating from the skin. Figure 4.4 illustrates the set-up of the EEG 

instrument. 

The EEG signals from the electrodes are sampled at 256 Hz (3.9 milliseconds). 

The condition of the electrodes was verified by conducting the measurement for a few 

seconds without placing the electrodes onto the subjects. When drift or abnormal 

reading is observed, the condition of the electrodes need to be checked to exclude the 

noise from being included in the EEG measurement. If the abnormal reading keeps 

occurring, then the EEG electrodes need to be replaced with a new one. This research 

identified that the artifacts or noises from measuring instrument could be eliminated 

by either keeping electrode impedance below 5 kΩ [7, 16] or changing the faulty 

electrode with a new one. Some of the EEG electrodes that have been frequently used 

might be faulty due to wear and tear. Therefore, before starting any experiment, the 

condition of the EEG electrodes must be checked and only those in good condition are 

used in the experiment. 

 

                                

              Channel 1 (Left)              Channel 2 (Right) 
 

                                                  Fpz 

                                       Fp1       Fp2 
 

                         A1                                  A2 
 

 

 

 

 

 

      Measurement location on the human head       g.MOBIlab and Transducer            Computer 

Figure 4.4: EEG Equipment Set-up 
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In this study, two channels (right and left) are used to capture the EEG signals 

from the subject’s forehead, ares which area are associated with human emotions. 

Previous studies have found that the minimal number of electrodes is sufficient to 

capture the EEG signals for determining human trait or behaviors [195-196, 202-203]. 

After measuring EEG signals, the signals is then sent to the computer using wireless 

method. In order to receive the EEG signals from the EEG amplifier, the MATLAB 

SIMULINK block diagram is constructed as illustrated in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5:  SIMULINK Block Diagram for Capturing EEG Data from EEG Amplifier 

 

A notch filter is used to eliminate noise from the power line and a digital filter 

is used to filter the EEG signals. Here, the frequency of the notch filter is set to 50 Hz. 

It indicates that the filter will reject any signal received from the EEG amplifier with 

frequency of 50 Hz and above. Following this, a de-multiplexer is used to extract data 

from the raw EEG signals into Channel 1 (Right) and Channel 2 (Left), which are then 

saved in MATLAB m-file for analysis. Even though the transmitted EEG signals have 

gone through notch filter and digital filter design, the EEG signals for the Channel 1 

and Channel 2 is still considered raw since the signals have yet to be filtered from its 

main interference signal which come from eyes-movement and eyes-blink. Besides, 

the transmitted EEG signals have yet to be filtered to their sub-bands. Therefore,  the 
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MATLAB coding is developed to obtain the real EEG data and then, to reveal the 

EEG features from the captured EEG data. 

 

4.3.3 Equipment Validation 

 

The equipment was buy-off in 2 areas, the EEG reading in the specified 

frequency range (0.5 – 50 Hz) and the EEG reading from 2 electrodes (left and right). 

90 experiments were carried out to test the equipment reliability. The input sinusoidal 

signal from a signal generator was applied to the electrodes of the g-MOBIlab and the 

output signal was displayed on the oscilloscope. The input signal was set at 10 

different frequencies that covers the range of EEG frequency: 0.5 Hz, 1 Hz, 2 Hz, 5 

Hz, 10 Hz, 15 Hz, 20 Hz, 30 Hz, 40 Hz and 50 Hz (refer to Appendix D). The setting 

of frequency of the input signal was done to follow the characteristics of the EEG 

signals in term of frequency. Meanwhile, the input voltage was varied from 100 µV to 

500 µV. In terms of amplitude, there is an offset of 0.96 µV between Channel 1 and 

Channel 2, where the reading taken by Channel 2 is 0.96 µV higher than that of 

Channel 1 (refer to Appendix D). However, no frequency difference is detected in 

both channels. The results of the equipment buy-off show that the EEG reading 

measured by g-MOBIlab is reliable and the equipment can be used for EEG 

measurement. 

 

4.4 EEG MEASUREMENT PROTOCOL  

 

In this research, in order to generate two conditions of the cognitive state (EC 

and EO), the subjects were involved in two activities; first, they were asked to be in a 

relax state and not do anything, and second, they were requested to answer IQ test 

questions. For the first activity, in a controlled room, the subjects are instructed to idly 

sit in a chair with their eyes closed and covered with eye mask while EEG 

measurements are being taken. This condition is called EC state, and the recording 

period for this activity is three minutes. However, before commencing the 

measurement, the system is initialized for five to ten seconds to check the waveforms 

for any errors or abnormalities. The measurement will only start when no error is 

detected, otherwise, it will not carried out as to ensure that instrumentation noise is not 
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included in the EEG measurement. The condition of the EEG amplifier, transducer 

and electrodes are also thoroughly checked for any discrepancies.  

For the second activity, to stimulate the EO cognitive state, subjects are 

required to answer 20 IQ test questions within ten minutes, while their brain activities 

are simultaneously captured. In order to reduce noise that might be added-up to the 

EEG data, the subjects are requested to minimize their movements while answering 

the questions. Offline data processing on the captured signals are performed using 

advanced signal processing algorithm developed in SIMULINK and MATLAB. The 

questions in IQ test are created based on the modified Ravens’ Standard Progress 

Matrices (SPM) that focuses only on visual and logical thinking. The Graphical User 

Interface (GUI) is created to ease the IQ assessment. The EEG measurement protocol 

is stated in Table 4.1. 

 

         Table 4.1: 

         EEG Measurement Protocol  

5-10 seconds 3 minutes Within 10 minutes 

System initialization & 

checking waveforms 

condition 

EEG recording for 

EC state (do 

nothing); 

Group 1, 3 & 4 

EEG recording for 

EO state (IQ test);  

Group 2 

 

 

4.5 PRE-PROCESSING OF EEG DATASETS  

 

This section describes the procedures to remove artifacts or noises from EEG 

data, to  design an appropriate band-pass filter to obtain the Delta, Theta, Alpha and 

Beta frequency bands from the EEG signals and the energy of each frequency band. 

Also, in this section is the explanation of the steps required to test the EEG data in 

terms of Energy Spectral Density (ESD) for any abnormality. The normality test is 

conducted to ensure the ESD of the EEG signals has the normal Gaussian distribution. 

 

4.5.1 Artifact Removal  

 

The main artifact in this study comes from eye-movements or eye-blinks, 

which are known as ocular artifact or EOG. Therefore, the EOG signals must be 
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separated from the EEG signals as the characteristics of  EOG signals are almost 

similar to that of EEG signals.  

In this study, the EOG signals are removed from the time-based raw EEG 

signals by setting the threshold values of ± 100 µV inside the signal processing 

algorithm. By setting this threshold, the program will automatically remove signals 

that have amplitude above or below ± 100 µV, regardless of the frequency, and 

consequently, the program might change the length of the EEG data. Other artifacts, 

such as Electromyogram (EMG), Electrocardiogram (ECG), power line and sweat, 

give minimal interference to the EEG signal. EMG has amplitude and frequency much 

higher than EEG signals, while ECG has frequency below 1 Hz, and the noise 

originating from the power line has a frequency above 50 Hz. The noise from the 

power line can be removed by applying notch filter [197]. 

 

4.5.2 Frequency Filtering 

 

The research utilizes Finite Impulse Response (FIR) band-pass filter to capture 

the required frequencies from the raw EEG signals as it is very stable, easy to use and 

not requiring a lot of filter parameters [7, 16, 60-61, 177-178]. The filter, applied after 

the process of artifact removal, produces signals in the range of 0.5 Hz to 30 Hz that 

cover the Delta,  (0.5-4 Hz), Theta, θ (4-8 Hz), Alpha,  (8-13 Hz) and Beta,  (13-

30 Hz) of the EEG sub-bands. The right coefficients of the filter are determined as 

shown in Figure 4.6, in which the filter order is varied until the right coefficients are 

obtained. The process of finding suitable filter order is implemented by checking the 

curve at the high-pass frequency and low-pass frequency edges of the frequency 

response of the filter that meets the cutoff specifications as stated in Table 3.1. Once 

the correct filter coefficients are obtained, the EEG signals is filtered by applying the 

coefficients before performing Fourier Transform to the filtered signals in order to 

convert the signals from time-domain to frequency-domain. This study applies 

window-based filter on the clean or noise-free EEG data, where the combination of 

filter length or filter order with window-based filter produces the desired filter 

coefficients to filter those data. As elucidated by Figure 4.6, the filter coefficients 

depend on the results of the filter frequency response produced from the calculation of 

the filter specifications in term of filter order, filter type, cut-off frequencies and type 

of window. Here, cut-off frequencies are required to produce frequency bands of EEG 
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signals. Meanwhile, the length of the filter is used to tune the frequency response of 

the filter to meet the specified cut-off frequencies (refer to Appendix E).  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Flow Chart for the Determination of Filter Coefficients  

 

In MATLAB, the function file fir1 is used to generate the filter coefficients, 

and the filter coefficients are then multiplied by the clean EEG raw data using 

MATLAB function file conv. The filter is designed by adjusting the filter order so that 

the curve or ‘roll-off’ area of the filter’s frequency response justifies the cut-off 

frequency. The important parameters after implementing the filter specifications are 

the frequency response and coefficients of the filter and the results obtained from 

MATLAB will validate whether or not the filter meets the filter specifications. The 

process of this research will not proceed to the spectral analysis stage unless the filter 

is properly designed to produce the frequency bands of the noise-free EEG signals. 

 

 

No 

Yes 

Start 

 

Apply Filter Specifications 

(filter order, filter type, cut-off frequencies, window) 

Filter response meets 

Filter specifications? 

Calculate Filter Coefficients 

Multiplication of Raw Data with Filter Coefficients 

Spectral Analysis 

Clean EEG Data 

Filter Frequency Response 

End 

 



 
 

66 

 

4.5.3 Test of Normality 

 

This section explains the detail process of the normality test on the EEG data. 

In this study, the data is tested for normality using histogram plot after the data 

converted to the PSD (frequency-based) as illustrated by Figure 4.7. The power 

spectrum for all frequency bands and groups present in the EEG data will be checked 

for mean and standard deviation using MATLAB. The shape of the graph should 

follow the normal Gaussian distribution (bell-shaped), otherwise, the experiment must 

be repeated from the beginning as shown in Figure 4.7. The MATLAB function file,  

psd is used to convert the clean EEG signal to power spectrum using Hamming 

window with 50 % overlap. Compared with time-domain, the Gaussian distribution of 

the EEG data can be clearly seen in the frequency-domain, and more EEG features 

can be extracted when the signals are analysed in frequency domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Flow Chart for EEG Normality Test 
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4.6 ANALYSIS OF EEG SIGNALS  

 

This section is the heart of the research as it contains the detailed explanation 

on how the EEG signals are analyzed and how the features are extracted from the 

EEG signals. The MATLAB algorithms for analyzing EEG signals can be seen in 

Appendix F. 

 

4.6.1 Non-parametric Analysis 

 

This research implements non-parametric or spectral analysis of EEG signals 

to obtain the features that might relate to stress. The analysis are conducted off-line 

and carried out in frequency-based platform using DFT technique. In computer signal 

processing packages, the technique is called FFT for the ability of the computer to 

rapidly calculate and analyze the vast data [7, 60, 112, , 177-178]. The FFT technique 

produces two spectrums, which are power spectrum and phase spectrum. In addition, 

this analysis that focuses on the change in the energy of the spectrum due to the 

change in the cognitive state, and is conducted by analysing the ratio of the ESD and 

SC for each frequency band and group.  

 

4.6.2 Energy Spectral Density (ESD) 

  

In this research, the ratio of ESD due to the change in cognitive state from 

doing nothing to answering IQ test questions is used to search for the relative energy 

for each group. The ESD is determined by dividing the area of the PSD with the 

frequency range of the bands. First, the amplitude of each band is calculated in terms 

of Power Spectrum Density after the raw EEG data is converted to spectrum-based 

signal using FFT. The conversion will produce the PSD of Delta, Theta, Alpha and 

Beta bands for each group, after which the ESD for each band and group is calculated. 

In order to determine the RER for each band and group, the total energy for each band 

is calculated, and the RER of the sub-bands are then calculated by dividing the ESD of 

the sub-bands with the total energy. Finally, the logarithm is performed to the RER of 

the sub-bands in order to amplify the value of the RER, especially for the Alpha and 

Beta bands since the amplitude of the Delta and Theta bands are much higher than that 

of the Alpha and Beta bands. 
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4.7 IDENTIFICATION OF STRESS FEATURES  

 

In order to identify the features from EEG signals that might describe the 

stress level of a person, this study has focused on the following features: (1) 

asymmetry ratios, (2) natural logarithm of asymmetry ratios and logarithm of RER, 

(3) entropy of RER, and (4) spectral centroids of RER. Shannon’s Entropy (SE) is 

used to detect any irregularity of the signals and change of the spectral energy, while 

spectral centroids are used to determine the dominant energy from the groups. The 

study on asymmetry is performed since the human brain can be divided into the right 

and left hemispheres. The difference of the brain electrical activities in both 

hemispheres will create difference cognitive state [7, 12, 21, 26-28] and negative 

asymmetry can indicate the existence of the stress [22-25, 29, 31]. All the selected 

features are then used as the input to k-NN classifier for the classification process.  

 

4.7.1 Asymmetry ratio (AR) and Natural log of AR 

 

The asymmetry ratio technique is widely used by researchers to determine the 

difference cognitive or mental state in certain frequency bands [26-28, 37, 42]. In this 

study, the score from asymmetry ratio technique is used to reflect the difference of 

two cognitive states, the condition of not doing anything and answering IQ test 

questions. The questionnaires for the IQ were set-up based on the standard progressive 

matrices of IQ questionnaires for visual [73]. The balance cognitive state occurs when 

the electrical activity in the right hemisphere of the brain equals that of the left 

hemisphere. If the power spectrum at location Fp1 (left hemisphere) is higher than that 

at location Fp2 (right hemisphere), brain activity in the right hemisphere is activated, 

otherwise, brain activity in the left hemisphere is activated. The asymmetry ratio is 

inversely associated with the activation of brain regions [27-29]. 

In this study, the asymmetry ratio technique is applied to all frequency bands 

to determine the asymmetry scores as described by equations 3.11 and 3.12 in Chapter 

Three. The asymmetry scores are determined from the normalization of asymmetry 

ratios and natural log asymmetry ratios and is indicated in percentage. The difference 

score indicates the relative activity of the right and left hemispheres of the human 

brain, where a negative asymmetry score will indicate the activation of the right 

hemisphere, while a positive asymmetry score will indicate the activation of the left 
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brain. The negative asymmetry score is associated with negative emotion [1, 3-4, 12, 

17-18, 27, 33]. 

 

4.7.2 Relative Energy Ratio (RER) 

 

The focus of this study is the difference in energy spectral density due to the 

change in cognitive state from relax state (not doing anything) to wakefulness state 

(answering IQ test questionnaires). The RER for each frequency band and group are 

computed using equations 3.14 to 3.17 as described in Chapter Three. RER is a good 

feature to indicate the existence of stress due to change in neural activities. The RER 

values are then fed to k-NN classifier for the classification process.  

 

4.7.3 Spectral Centroids (SC) 

 

SC are widely used in the fields of speech and audio recognition to identify the 

dominant frequency from noisy speech [133-134].  In this study, SC is used to find the 

dominant relative energy from the frequency bands and groups, which basically 

involves the calculation of the spectrogram of the RER at the average frequency of all 

subjects over the total RER for all subjects as described by equation 3.18 in Chapter 

Three. Thus, this study uses SC as a class for k-NN classification. First, the SC for 

each frequency band in one group is calculated, and then the overall SC for all 

frequency bands is computed. Since four groups are involved in the experiment, there 

will be four SC which becomes the four classes in the classification process.  

 

4.7.4 Shannon Entropy (SE) 

 

SE is used in this research to detect the pattern that might relate to stress from 

the four experimental groups, where RER is applied to obtain a value that can be used 

to indicate a certain pattern of stress. The RER for each frequency band is calculated, 

after which the mean or average value of SE for each group is determined using 

equation 3.19 as stated in Chapter Three. The SE is applied to all experimental groups. 

The classifier performance is calculated based on the three evaluated features, which 

are asymmetry ratio, natural logarithm of  asymmetry ratio and relative energy ratio. 
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4.8 CLASSIFICATION OF STRESS FEATURES  

 

In k-NN classification processes, the AR and the RER of EEG data are 

partitioned into training and testing sets, while spectral centroids are used as a target 

class for the classification process. AR and RER are fed to the classifier’s input 

according to the specified training and testing ratio. In the classification process, other 

than the input features and the testing and training ratio, the k values are varied in 

order to obtain the optimal accuracy, sensitivity and specificity. To implement the k-

NN classification process in MATLAB, the knnclassify function was used to classify 

the EEG features in term of AR, natural log AR and RER. The performance of the 

classifier is then validated using cross-validation techniques. This section explains the 

procedure to classify the selected EEG features starting with classifier configuration, 

training and testing ratio, and the variation of k value according to the size of the 

training set. The results of the classification process are discussed in Chapter 5. 

 

4.8.1 k-NN Setting; Distance and Rule 

 

The k-NN classifier is set according to the training and testing ratio, k value, 

distance and rule. The k-NN classifier distance of Euclidean, City block and Cosine 

are evaluated, while nearest, random and consensus rule are employed. The default 

settings of k-NN classifier for distance is Euclidean and that of rule is nearest. 

 

4.8.2 k-NN Setting; Training and Testing Ratio 

 

The classifier is evaluated using two sets of training to testing ratios. For Set 1, 

the classifier is assessed using 50:50 training to testing ratio, while 70:30 training to 

testing ratio is used for Set 2. For Set 1, 90 data each are selected for the training and 

testing groups; however, 126 data for the training group and 54 data for the testing 

group are selected for Set 2. Different training to testing ratios are employed in the 

classification process in order to determine the best classification accuracy.  
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4.8.3 k-NN Setting; k-Value 

 

After selecting the training and testing ratio, the classifier is assessed using 

different values of k for each set of training to testing ratio. Since the preferred value 

of k for k-NN classifier is 10, the k value for Set 1 (50:50 ratio) and Set 2 (70:30 ratio) 

is varied only from 1 to 10. The overall setting for the k-NN classifier are as shown in 

Table 4.2, Table 4.3 and Table 4.4. 

 

         Table 4.2: 

         k-NN Classification using Asymmetry Ratio as EEG Feature 

 
 

Table 4.3: 

  k-NN Classification using Natural Log Asymmetry Ratio as EEG Feature         

 

 

 

 

 

 

 

Table 4.4: 

  k-NN Classification using Relative Energy Ratio as EEG Feature 

 

 

 

 

 

 

 

Features Training Vs 

Testing 

 

k value Distance Rule 

Asymmetry ratio 50:50 1-10 Euclidean, City 

Block, Cosine 

Nearest, Random, 

Consensus 

 

Asymmetry ratio 70:30 1-10 Euclidean, City 

Block, Cosine 

Nearest, Random, 

Consensus 

 

Features Training Vs 

Testing 

 

k value Distance Rule 

Natural Log 

Asymmetry ratio 

50:50 1-10 Euclidean, City 

Block, Cosine 

Nearest, Random, 

Consensus 

 

Natural Log 

Asymmetry ratio 

70:30 1-10 Euclidean, City 

Block, Cosine 

Nearest, Random, 

Consensus 

 

Features Training Vs 

Testing 

 

k value Distance Rule 

Relative Energy  ratio 50:50 1-10 Euclidean, City 

Block, Cosine 

Nearest, 

Random, 

Consensus 

 

Relative Energy ratio 70:30 1-10 Euclidean, City 

Block, Cosine 

Nearest, 

Random, 

Consensus 
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4.9 CLASSIFICATION PERFORMANCE AND VALIDATION  

 

The performance measure of k-NN classification is based on accuracy, 

sensitivity and specificity, where the performance of each group is determined based 

on the selected stress features and the spectral centroids of the group. The accuracy, 

sensitivity and specificity for a 2x2 matrix can be calculated using formulas as 

described earlier. However, since this research uses EEG datasets that consist of 4x4 

matrices, 4x4 confusion matrix is needed in order to measure its classification 

performance. Table 4.5 shows the table of the confusion matrix, where TP denotes 

true positives, TN denotes true negatives, FP denotes false positives, FN denote false 

negatives. Also, “e” denotes a classification error when any feature does not belong to 

their group and all errors in the table must be calculated. The calculation of accuracy, 

sensitivity and specificity based on the confusion matrix has been detailed in an earlier 

chapter. In accordance with the number of stress features, experimental groups, and 

training to testing ratios, the following six confusion matrices will be produced:  

 Confusion Matrix for Asymmetry ratio with Training to Testing datasets ratio 

of 50:50  

 Confusion Matrix for Natural Log Asymmetry ratio with Training to Testing 

datasets ratio of 50:50 

 Confusion Matrix for Relative Energy ratio with Training to Testing datasets 

ratio of 50:50 

 Confusion Matrix for Asymmetry ratio with Training to Testing datasets ratio 

of 70:30 

 Confusion Matrix for Natural Log Asymmetry ratio with Training to Testing 

datasets ratio of 70:30 

 Confusion Matrix for Relative Energy ratio with Training to Testing datasets 

ratio of 70:30 
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The classification accuracy, sensitivity and specificity is determined based on 

the confusion matrices stated above. 

 

         Table 4.5: 

         Confusion Matrix[182-184] 
   Predicted Class  

  A B C D 

Actual Class A TPA eAB eAC eAD 

(known data) B eBA TPB eBC eBD 

 C eCA eCB TPC eCD 

 D eDA eDB eDC TPD 

 

The classification performance is typically assessed by cross-validation 

technique, which is an established technique to estimate the classifier accuracy and to 

reduce the bias which deals with the random sampling of training and testing datasets. 

There are two popular techniques to validate the classifier performance, which are k-

fold cross-validation and leave-one-out cross-validation. The size of partition to be 

used in k-fold validation is dependent on the size the dataset, and it is impractical to 

use a large partition when the size of the datasets is small. For leave-one-out cross-

validation, the first data is selected as the testing data, while the remaining data are 

used as the training data. Then, the second data is selected as the testing data and the 

rest of the data become the training data. The process is repeated until the last data in 

the dataset has been selected as the testing data. These two techniques are applied in 

this research in order to assess the performance of the classifier. 

 

4.9.1 Classification Error 

 

Besides the classification accuracy, sensitivity and specificity, the 

classification errors in terms of mean squared error (MSE) are calculated in 

accordiance with the k-NN distance. This technique is implemented to determine 

which distance produces a low MSE with the highest accuracy. 
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4.9.2 k-Fold Cross-Validation 

 

This technique creates k-fold partition of the datasets, where k represents the 

size of the partition of the datasets. Since this study involves datasets with matrix size 

of 180x4, the 10-fold cross-validation is preferred; the datasets are split into ten 

partitions, where nine partitions are used for the training set and one partition is for the 

testing set. The accuracy of the classifier is calculated for every fold, and based on the 

size of the datasets, 10-fold cross-validation will produce 18 sets of accuracy value. 

Thus, the overall accuracy is the average of the 18 sets of accuracy values. 

 

4.9.3 Leave-One-Out Cross-Validation 

 

This technique will select one data as the testing data and the rest as the 

training data. The process begins by selecting data Number 1 as the testing data and 

ends when data Number 180 is selected as the testing data. Thus, there will be 180 sets 

of accuracy value. The accuracy is determined from the average value of the 180 sets 

of accuracy values. 

 

4.10 CLUSTERING OF STRESS FEATURES  

 

Besides the classification of the datasets using k-NN classifier, this research 

also focuses on fuzzy technology that employs the clustering technique to cluster the 

stress features from EEG datasets obtained from the four experimental groups. In this 

study, two type of fuzzy clustering techniques are used, which are FCM and FKM.  

 

4.10.1 Fuzzy C-Means (FCM) 

 

FCM will cluster the feature-vector data into several clusters according to the 

specified number of cluster. Based on the datasets and number of clusters, FCM 

analyzes and partitions the datasets into the specified number of clusters, and produces 

three outputs, namely, center matrix, membership grade matrix and objective function. 

When the grade is between 0 and 1, this shows that the datasets has partial 

membership in the cluster. In this study, the datasets is partitioned into four clusters 

that represents the four different groups involved in the study. The datasets with the 
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specified number of clusters are analysed using the fcm function in MATLAB. The 

formula to implement the function is described by equation 3.34 in Chapter 3. The 

maximum number of data in the membership matrix obtained from the analysis will 

serve as an index for partitioning the datasets. The distribution of the datasets in the 

vicinity of the center matrix can then be observed by plotting the indexed datasets. 

The classification accuracy is calculated by taking the index of the membership matrix 

as a class in a k-NN classification.  

 

4.10.2 Fuzzy K-Means (FKM) 

 

Unlike FCM, FKM uses centroids in each cluster, calculated using squared 

Euclidean distance, to index the location of the data in the cluster, and the index is 

used to partition the data with the new centroids. The new index obtained from the 

centroids and clusters is then used as a class in a k-NN classification to determine the 

accuracy of the classification process. In this study, the FKM is implemented using 

kmeans function in MATLAB. The function is implemented using equation 3.36 in 

Chapter Three. The input arguments for the function are datasets, the number of 

clusters and Euclidean distance. This function file will return the index and centroids 

of the data in the cluster. Based on the index, the new datasets in the clusters is 

generated, and consequently, the new centroids is produced.  

 

4.11 STATISTICAL ANALYSES: ANOVA and PEARSON CORRELATION 

STUDY 

 

Statistical analyses, implemented by exporting the features of Social Package 

for Social Science (SPSS) version 17, are carried out in order to determine the 

significance of the extracted features within groups and between groups. Besides, it 

also applied to find the correlation among the selected features. The features consisted 

of the 180x4 matrices where the rows represent the groups and the columns represent 

the EEG bands. The analyses are implemented using Analysis of Variance (ANOVA) 

method and Scatterplot (Pearson correlation) method. In ANOVA, one-way between-

groups ANOVA with Post-Hoc tests is selected. It is because the analysis involves the 

test of one independent variable (EEG features) across the four experimental groups at 

one time. ANOVA is used to find the significant differences between the groups. In 
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this study, the RER of EEG frequency bands, Asymmetry Ratio of EEG frequency 

bands and Natural Log Asymmetry Ratio of EEG frequency bands are selected as 

independent variables while the experimental groups are the dependent variables. 

Post-Hoc is used to discover where the differences exist or lie. In order to figure out 

the existence of the relationship between the change of the cognitive state (represented 

by the EO and EC states) and the PSD of EEG signal for each state, this study uses 

Pearson correlation. The variables being studied are EEG features in term of RER, 

AR, natural log of AR with cognitive states represented by the four experimental 

groups. Therefore, Scatterplot or Pearson correlation study in SPSS is selected. The 

theoretical explanation of the Pearson correlation study is discussed in Chapter 3.   

 

4.12 STRESS INDEX ASSIGNMENT  

 

The stress index is constructed based on the selected EEG features, spectral 

centroids and spectral entropy of the features, the ratio of the average energy for each 

group across the frequency bands and classification results. However, these 

parameters only apply to the EEG Alpha and Beta power for the change of power in 

these frequency bands will indicate the change in cerebral state. In this research, the 

stress index are categorized only into three, which are low stress, moderate stress and 

high stress. There is no category for stress-free as it is believed that even healthy non-

smoking subjects have minimal stress.  

 

4.13 VERIFICATION OF THE STRESS INDICES  

 

Once established, the stress indices are verified using Z-score technique. Z-

score calculates the variation of the distribution of the EEG features (asymmetry ratio 

and energy ratio) in the group. The Z-score value will be produced and will be given a 

location between -1 and 1, where a score of zero indicates no variation of the 

individual data in the group. Thus, from the location of the Z-score, the stress indices 

can be assigned. Besides using Z-score technique, every data in the four experimental 

groups are verified whether or not they fall into the correct index. 
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CHAPTER FIVE 

RESULTS AND DISCUSSIONS 

 

 

5.1 INTRODUCTION  

 

The results obtained from the experiments are presented and discussed in this 

chapter. The study starts with the pre-processing of EEG signals that involves the 

removal of raw data with unacceptable noise level, removal of artifacts, designing of 

filter to capture the sub-bands of the EEG signals, performing normality test on the 

extracted EEG sub-bands, classifying and clustering the EEG features, measuring the 

classification performance, validating the classifier performance, implementing 

statistical analysis on the extracted features, producing the stress index, and finally, 

verifying the stress index. 

 

5.2 EEG SIGNALS PRE-PROCESSING  

 

First, the raw EEG data of each participant was recorded and observed for any 

abnormality or unacceptable noise. Data that contains unacceptable noise is rejected 

and replaced with re-generated data. The normal EEG data for the Channel 1 (left 

channel) and Channel 2 (right channel) is illustrated in Figure 5.1, while the noise 

pattern is shown by Figure 5.2. The results of applying noise to the original data in 

order to obtain the re-generated data are shown in Figure 5.3. All the figures are 

plotted based on the EEG recording for the first and third participants of Group 1. The 

same procedure is implemented for the data captured from the rest of the subjects. 

These figures are placed in this chapter to show how the unacceptable and bad data 

are replaced using data re-generated technique. The raw EEG signals captured from 

the right and left channels of the first participant, as respectively shown in Figure 5.1 

are normal except that certain data on the right channel (Channel 2) and the left 

channel (Channel 1) exceeded 100 µV as shown by the red markers, which are 

removed using artifact removal technique. The EEG data were recorded for a duration 

of three minutes, which is equivalent to 46081 data. It can be seen that the EEG data 

for Channel 1  and Channel 2  are similar when the subject is in the relax state. 
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Figure 5.1: Example of EEG Raw Data Recorded from Channel 1 and Channel 2 

 

Figure 5.2 depicts the noise generated using normally distributed 

pseudorandom numbers technique as described by equation 3.21. The graph consists 

of the generated noise for the two channels, Channel 1 (Left Channel) and Channel 2 

(Right Channel). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Generation of Noise for Both Channels from Normal EEG data 
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Basically, the generated noise is similar to EEG signals but with very low 

amplitude, which is less than 10 µV [179]. After applying noise to the original EEG 

data, the new EEG data is generated as described by equation 3.22 in Chapter 3. 

According to the formula for re-generating EEG data as described by equation 3.22, 

the noise is added to the normal or good EEG data with the noise control factor of 1.5. 

In the process of re-generating EEG data, the maximum and minimum difference 

between the original and re-generated data must not exceed 10% [179]. Consequently, 

the number of re-generated data is reduced to 46070 from 46081, and the re-generated 

data for the left and right channels are shown in Figure 5.3. The length of the 3 

minutes recorded EEG data is 46081. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

-100

-50

0

50

100
Re-generated EEG Data for Channel 1

Number of data

A
m

p
lit

u
d
e
, 

u
V

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

-100

-50

0

50

100
Re-generated EEG Data for Channel 2

Number of data

A
m

p
lit

u
d
e
, 

u
V

 

Figure 5.3: Re-generated EEG Data for Channel 1 and Channel 2 

 

Table 5.1 shows the maximum and minimum difference between the original 

data and re-generated data for Channel 1 and Channel 2. The table shows that only 

Channel 2 has the minimum difference of 9%. However, the introduction of noise to 

the original data is smaller, where the maximum noise is approximately 6 µV as 

shown in Figure 5.2. It is suspected that this is due to the noise (EOG signals) already 

present in the original data. The maximum and minimum difference between the 

50.46 uV 

98.8 uV 
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original and re-generated data is reduced to below 10 % after removing the artifact 

and filtering the raw EEG signals into its sub-bands.  

         Table 5.1: 

         The Percentage Difference between the Original and Re-generated Data 
Parameters  Channel 1 (Left) Channel 2 (Right) 

Maximum Difference (%) 

 

33 39 

Minimum Difference (%) 22 9 

 

After performing artifact removal and segmenting the EEG signals into their 

respective frequency bands, the re-generated data are re-checked. The original and re-

generated EEG data in term of EEG features such as asymmetry ratio are compared 

and the results are shown in Table 5.2. 

 

         Table 5.2: 

         The Maximum and Minimum Difference between the Original data and Re-generated  

         Data for both Channels in terms of Asymmetry Ratio 
Parameters  Asymmetry  

ratio (Delta) 

Asymmetry 

ratio (Theta) 

 

Asymmetry 

ratio (Alpha) 

Asymmetry  

ratio (Beta) 

Maximum 

Difference (%) 

 

0.03 2.80 5.06 8.08 

Minimum 

Difference (%) 

1.14 2.41 0.33 4.81 

 

In order for comparison between normal and abnormal distribution of EEG 

signals, the abnormal EEG data recorded from one of the participants are plotted in 

Figure 5.4. This type of data was removed and replaced with re-generated data. Figure 

5.4 shows that the EEG signals contain a lot of spikes and sometimes have values 

greater than 100 µV, and this might be due to the eyes movement or blinks (EOG 

signals). Similar phenomenon is observed in EEG recordings from Channel 2  as 

shown in Figure 5.4. The maximum EEG values for both Channel 1 and Channel 2 are 

exceeded 100 µV respectively. 
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Figure 5.4: The Abnormal EEG Data Recorded from Channel 1 and Channel 2 

 

The type of the recorded EEG data as shown in Figure 5.4 is called corrupted 

data and therefore, the data need to be removed from the analysis stage. In the 

experiment stage, there were a total of 37 corrupted EEG data from 180 recorded EEG 

data which is equivalent to 20.6% and high enough to affect the analysis stage. As 

shown in Figure 5.5, the magnitude of noise that was added to the original data 

(abnormal data) to re-generate the data was too small, hence, the addition of noise is 

not practicable. As illustrated by Figure 5.5, the added noise to the abnormal EEG 

data is less than  10 V. As the generated noise is of small amplitude, it does not 

affect the original EEG data, as illustrated by Figure 5.6. According to those figures, 

the maximum data are greater than 100 V. Consequently, to replace the corrupted 

EEG data, the EEG data is re-generated using the normal or good EEG data. 
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Figure 5.5: Generation of Noise for Both Channels from Abnormal EEG Data 
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Figure 5.6: The EEG Data Re-generation for Both Channels from Abnormal EEG data  
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5.2.1 Artifact Removal 

 

This technique is implemented to remove the artifact, especially those 

generated from eye-movements and eye-blinks. These activities produces ocular 

artifact or EOG signal, which will reside in the EEG signals since the amplitude and 

frequency of ocular signals are similar to that of EEG signals. As mentioned earlier, 

threshold values were assigned in the MATLAB coding to remove EEG data with 

amplitude above or below 100 µV. The results after applying this threshold value to 

the EEG data from one of the subjects have been shown in Figure 5.3. It is noted that 

before undergoing artifact removal, the maximum EEG values for Channel 1 and 

Channel 2 are 104.43 µV and 200.7 µV, respectively as shown in Figure 1. However, 

after applying the artifact removal technique, the maximum EEG value for Channel 1 

and Channel 2 is reduced to 50.46 µV and 98.3 µV, respectively as shown in Figure 

5.3. Consequently, the total number of data are reduced as 12 EEG data with 

amplitudes above 100 µV have been removed. Similar process is implemented to the 

rest of EEG data obtained from participants in the experimental groups. 

 

5.2.2 Frequency Filtering 

 

The specifications of the filter employed in this study has been described 

earlier, and the filtering process is implemented to categorize the EEG signals into 

their sub-bands. Based on the specifications of the band-pass filter shown in Table 3.1 

(Chapter 3) and Figure 4.5 (Chapter 4), the filter meets the cut-off frequency at 0.0039 

and 0.2344, as noted in Figure 3.1 (Chapter 3). Besides, the magnitude of passband is 

lower than -50 dB. The band-pass filter produces the required coefficients to filter the 

raw EEG signals into Delta, Theta, Alpha and Beta bands, where the frequencies of 

these bands lie in the range of 0.5 Hz to 30 Hz. A plot of the filter coefficients is 

illustrated in Figure 3.4 (Chapter 3), where the size of the filter coefficients 

corresponds to the length of the filter. The characteristics of the designed band-pass 

filter are shown in Table 5.3.  
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          Table 5.3: 

         The Characteristics of Window-based Band-pass Filter 
Cut-off frequency Side Lobe 

Magnitude (dB) 

Size of Filter 

Coefficients 

Filter 

Coefficients 

0.0039, 0.2344 < 50 dB 74 -0.09 to 0.13 

 

After the EEG signals have undergone the band-pass filtering process, the right 

and left channels of the Delta sub-band is illustrated respectively as in Figure 5.7, that 

of Theta sub-band is as in Figure 5.8, that of Alpha sub-band is as in Figure 5.9, and 

that of Beta sub-band is as in Figure 5.10. After applying the threshold value, it is 

noted that all data have amplitude lower than 100 μV. Group 1 consists of subjects 

that are in a relaxed state and not doing anything while their EEG signals were being 

recorded, which explains the similarity of the right and left channels of their EEG sub-

bands.  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

-100

-50

0

50

100

Number of data

A
m

p
lit

u
d
e

EEG Delta Band of Right Channel (Channel 2) After Filtering

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

-100

-50

0

50

100

Number of data

A
m

p
lit

u
d
e
, 

u
V

EEG Delta Band of Left Channel (Channel 1)After Filtering

 

Figure 5.7: EEG Delta band of Right and Left Channel  after Filtering  
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Figure 5.8: EEG Theta band of Right and Left Channel  after Filtering  
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Figure 5.9: EEG Alpha band of Right and Left Channel after Filtering 
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Figure 5.10: EEG Beta band of Right and Left Channel after Filtering 

 

From the figures, in the relaxed cognitive state, it is observed that the EEG 

signals obtained from the experiments follows the patterns and characteristics of the 

Delta, Theta, Alpha and Beta sub-bands as described by Table 2.2 in Chapter 2. 

However, the characteristics changes in the presence of stress as Beta and Theta 

power increases, while that of Alpha decreases. The most observable parameters are 

the changes in magnitudes and frequencies for all the bands. It can be seen that the 

amplitude of the Delta band is higher than that of the Beta band but the frequency of 

the Delta band is much lower than that of the Beta band, which is the characteristic of 

EEG frequency bands as discussed earlier. The characteristic of the EEG data in terms 

of Power Spectral Density is shown in Table 5.4. 

 

         Table 5.4: 

         EEG Sub-bands in term of Amplitude and Frequency  
EEG  

Sub-bands 

Amplitude (μV
2
/Hz) Frequency (Hz) 

 300 - 1600 0.5 - 4 

θ 200 - 600 4 - 8 

 50 - 300 8 - 13 

 10 - 100 13 - 30 
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5.2.3 Normality Test 

 

Normality test was carried out to determine whether or not the distribution of 

the recorded data are normal. After performing normality tests to the Power Spectral 

Density of EEG sub-bands for all experimental groups, histogram plots of ESD ratio 

for Beta band, Alpha band, Theta band and Delta band are as shown in Figure 5.11 to 

Figure 5.14 respectively. It is observed that the ESD data for all subjects in the 

experimental groups have the normal Gaussian distribution, even though the 

distribution of the data either skewed to the left or skewed to the right. The large 

skewness is shown by  Delta band in Figure 5.22 with long tail to the right. It might 

caused by the large variation of the EEG power spectrum (ESD ratio) of the Delta 

band in Channel 1 and Channel 2.  The ESD ratio of Beta and Alpha band is slightly 

skewed to the right (negative skew). Meanwhile, Theta and Delta band are skewed to 

the left (positive skew).  

 

 

 

 

 

 

 

 

 

FIGURE 5.20 

Normality Test for ESD ratio of Alpha band 

                   

                                                                       

 

 

Figure 5.11: Normality Test for ESD ratio of Beta band 
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Figure 5.12: Normality Test for ESD ratio of Alpha band 
 

 

 

Figure 5.13: Normality Test for ESD ratio of Theta band 
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Figure 5.14: Normality Test for ESD ratio of Delta band 

 

5.2.4 Equipment Validation 

 

The EEG device was calibrated according to the voltage, frequency and the 

offset reading of the electrodes (right channel and left channel). The results of the 

equipment buy-off and electrodes offsets at different frequencies are as shown in 

Figure 5.15 to Figure 5.20. The voltages are varied from 100 mV to 500 mV with 50 

mV increment. These voltages are generated by Marconi Signal Generator and labeled 

as VFMSG (Voltage from Marconi Signal Generator). The frequencies of the signal 

generator are varied from 0.5 Hz to 50 Hz with 1 Hz increment, and a total of nine 

experiments were conducted for each frequency. The output voltages are tagged as 

voltage received by g-MOBIlab (VRBG). 

Based on the buy-off results shown by Figure 5.23 to Figure 5.28, there are 

linear relationship between input and output voltages where the voltages received by 

g-MOBIlab are much higher than the voltages supplied by Marconi Signal Generator 

except the voltage received by g-MOBIlab at 10 Hz frequency. At those frequency, 

there is a small different between the input and output voltages even though the 

voltage received by g-MOBIlab fluctuates across the frequency. The buy-off results 

also indicate that g-MOBIlab function as voltage amplifier works effectively.  In term 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
0 

10 

20 

30 

40 

50 

60 

70 

80 

ESD ratio of Delta Band 

Mod 



 
 

90 

 

of frequency, the equipment verification results show that  there is no change for the 

frequencies supplied by Signal Generator and the frequencies received by g-MOBIlab.  

However, in term of the average voltage received by EEG electrodes for all 

experiments, there are an offset of 0.96 as the EEG reading captured by Channel 2 

will be 0.96 higher than EEG reading measured by Channel 1, and consequently, the 

offset is programmed into the MATLAB coding to ensure proper analysis of the 

captured EEG signals. Regarding the affect of the existence of the measurement offset 

value, it is not major here. For instance, if the recorded EEG reading from Channel 1 

is 100 μV, then, the EEG reading from Channel 2 will be calculated as 104 μV, there 

is the difference about 4 μV. Another example, 200 μV EEG value recorded by 

channel 1, will be read about 208 μV by channel 2. As the difference in the EEG 

reading from both channel will be increased when the amplitude of the EEG signal 

increase, it will not affect the analysis of the EEG signals in frequency domain, since 

only clean and normal EEG signals (free of ocular artifact) are used. As discussed in 

section 4.5 (Pre-processing of EEG Datasets), the threshold value of  100 V was 

applied in the signal processing algorithm to remove ocular artifact from EEG signals. 

It means that the signals that are used for spectral analysis are really EEG signals and 

have amplitude within   100 V. 

 

 

Figure 5.15: Input Voltages versus Output Voltages of EEG Amplifier at 0.5 Hz Frequency 
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Figure 5.16: Input Voltages versus Output Voltages of EEG Amplifier at 1.0 Hz Frequency 
 

 

 

 

Figure 5.17: Input Voltages versus Output Voltages of EEG Amplifier at 5.0 Hz Frequency 
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Figure 5.18: Input Voltages versus Output Voltages of EEG Amplifier at 10.0 Hz Frequency 
 

 

 

Figure 5.19: Input Voltages versus Output Voltages of EEG Amplifier at 15.0 Hz Frequency 
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Figure 5.20: Input Voltages versus Output Voltages of EEG Amplifier at 30.0 Hz Frequency 

 

To conclude, g-MOBIlab functionality was verified and it can be used for taking 

EEG measurement based on the results of the equipment validation.  Even though there is an 

offset in the EEG reading, the offset is small and regardless of voltage fluctuation in certain 

frequency, there is a linear relationship between the input voltages, VFMSG and the output 

voltage, VRBG. 

 

5.3 IDENTIFICATION OF STRESS FEATURES  

 

From the spectral analysis of the EEG signals, several parameters were 

selected as features that might relate to stress. The features chosen are asymmetry 

ratio, natural log asymmetry ratio, relative energy ratio, spectral centroids and 

Shannon’s entropy. The analysis began by computing ESD using Fourier Transform 

technique. The block diagram for selecting and classifying the features is illustrated in 

Figure 5.21. As discussed in previous chapters, spectral centroids act as a target class 

during the classification process (refer to Appendix C), and entropy acts as an 

indicator for any abnormal EEG pattern that might occur due to the presence of stress. 

Meanwhile, asymmetry ratio, log asymmetry ratio and energy ratio were evaluated 

and tested in order to determine which of the feature can be used to better classify 

stress. The results of each process shown by the block diagram in Figure 5.21 are 

discussed in this chapter. 
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Figure 5.21: Process of Selecting and Classifying EEG Features 

 

5.3.1 Energy Spectral Density (ESD) 

 

After obtaining the ESD values of each EEG frequency sub-band, the ratio of 

the ESD values is calculated based on the asymmetry and relative energy. The 

asymmetry ratio is calculated using ln-transformed (natural log) and normalized 

methods. For the ln-transformed method, the difference between the natural log of the 

EEG power spectrum at the right hemisphere of the brain and that of the left 

hemisphere are computed. Meanwhile, for the normalized method, the difference 

between ESD values at the right hemisphere and left hemisphere are divided by the 

summation of the ESD values of both hemispheres. For the RER, the relative energy 

ratio of each frequency band is calculated by dividing the mean value of ESD for each 

frequency band over the total energy of all frequency bands. 

 

5.3.1.1 Asymmetry Ratio (AR) 

 

Asymmetry ratio is widely used by researchers to look for dominant neural 

activities, and in this study, an experiment was conducted to calculate the asymmetry 

ratio of each frequency band of the experimental groups. The asymmetry ratio 
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obtained using ln-transformed and normalized methods for each participant are shown 

in Appendix C. Figure 5.22 and Figure 5.23 illustrate the mean value of asymmetry 

ratios and natural logarithm of asymmetry ratios in terms of percentage of each 

experimental group. Almost the same pattern of average asymmetry distribution 

shown by both figures except for asymmetry ratio of Beta band in Group 4. The 

average asymmetry ratios in Group 1 are slightly lower than  Group 2.  It might due to 

the different asymmetry formula to calculate asymmetry ratio as explained in Chapter 

3 (Section 3.3.3). From both figures, it is observed that for all EEG frequency sub-

bands, Group 1 that consists of participants in a relaxed state have negative 

asymmetry ratios, while that of Group 2 who have to perform IQ tests have positive 

asymmetry ratios. In addition, the asymmetry ratio of Group 3 (before rotational bed 

intervention) is similar to that of Group 1, while the asymmetry ratio of Group 4 (after 

rotational bed intervention) is similar to that of Group 2 except for the Beta band. 

These results tally with that of previous studies on asymmetry ratio where the brain 

cognitive state in the right hemisphere will be activated when a person had to perform 

some tasks. The neural activities in the right hemisphere of the human brain are more 

dominant than that of the left hemisphere. Hence, from the results obtained, 

asymmetry ratio can be considered as one of the EEG features. 

 

 

Figure 5.22: Asymmetry Ratio of ESD for all Experimental Groups per EEG sub-bands 

1.64 0.84 
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Figure 5.23: Natural Log Asymmetry ratio of ESD for all Experimental Groups  

per EEG sub-bands 

 

5.3.1.2 Relative Energy Ratio (RER) 

 

Before proceeding to compute RER, the Fourier transform of the EEG signals 

captured from 140 subjects and the computation of the power spectrum from 180 EEG 

datasets are examined. Examples of the formation of the power spectrum for Delta 

band, Theta band, Alpha band and Beta band are illustrated in Figure 5.24 to Figure 

5.27 respectively. The process of spectral analysis of EEG signals began by 

determining the  FFT value from the filtered EEG signals, and then follow with the 

calculation of the PSD. In order to observe the distribution of the power of EEG sub-

bands across the frequency, the power spectral density estimation of the Welch 

spectrum was also calculated. The graphs were plotted from the analysis of the 

recorded EEG signals from one of the participants in Group 1. In all the figures, the 

plots in the first row represent the Fourier transform of the EEG signals for the right 

channel (first column) and left channel (second column). In the second row are the 

results of squaring the values of the Fourier transform in the first row, which results in 

the doubling of its amplitude. The third row represents the power spectral density of 

the EEG signals after applying the length of the FFT (Fast Fourier Transform), 

3.63 -1.59 
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window and window overlapping to the values found in the second row. The forth row 

of the figures describes the estimation of power spectral density using Welch 

spectrum. By using this spectrum, the power spectral density of the EEG signals will 

be calculated based on the Decibel and frequency. It is used to verify the calculation 

of the PSD using FFT. The MATLAB psd and Welch spectrum functions are 

employed to produce the plots.  

Figure 5.24 illustrates how the plot of the Delta band from right and left 

channel, which is located approximately in the range of 0 Hz to 4 Hz and peaking 

around 2 Hz, is obtained based on the filter specifications, band specifications and 

type of window used in the filter specifications. The peak amplitude of the PSD for 

this band is approximately 3000 µV
2
 / Hz, which tallies with the characteristic of the 

Delta band as described by Table 2.2 in Chapter 2 and Figure 3.6 in Chapter 3. As 

decribed by Table 2.2 and Figure 3.6, Delta band has the characteristics of higher 

amplitude at the low frequency compared to the other EEG frequency bands.  It is 

observed that the amplitude of the PSD of the left channel is a little bit higher than 

right channel. However, the plot of the Welch spectrum (the last row of the plot) 

shows about the same distribution of the Delta power for both channels. 

 
 

Figure 5.24: The Spectral Analysis to Produce Delta band 
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Figure 5.25 illustrates how the plot of the Theta band is obtained, which is 

located approximately in the range of 0 Hz to 8 Hz and peaking around 6 Hz. The 

peak amplitude of the power spectral density for this band is approximately 300 – 400 

µV
2
 / Hz, which tallies with the characteristic of the Theta band. As decribed by Table 

2.2 and Figure 3.6 in Chapter 2 and Chapter 3 respectively, Theta band has the 

characteristics of high amplitude at the low frequency. But, the amplitude of Theta 

band is lower than amplitude of Delta band. It is observed that the there is wide 

distribution of the FFT plot for the left channel compared to right channel. It indicates 

the high cognitive activities at the left hemisphere of the human brain.  The FFT plots 

show that there are also high variation of Theta power at left channel compared to 

right channel. However, the PSD value and Welch power spectrum for both channels 

are similar.  

 
 

Figure 5.25: The Spectral Analysis to Produce Theta band 
 

 

 

 

 

 

 

 



 
 

99 

 

Figure 5.26 illustrates how the plot of the Alpha band is obtained, which is 

located approximately in the range of 8 Hz to 13 Hz and peaking around 10 Hz. The 

peak amplitude of the power spectral density for this band is approximately 500 µV
2
 / 

Hz. As decribed by Table 2.2 and Figure 3.6 in Chapter 2 and Chapter 3 respectively, 

Alpha band has the characteristics of low amplitude at the high frequency. From 

Figure 5.26, both channels show about the same amplitude and distribution of FFT 

and PSD value which indicate the balanced brain electrical activities at both brain 

hemispheres. The balanced electrical activities at both channels are confirmed by the 

plot of Welch spectrum. These plots of Alpha band also tallies with the characteristic 

of the electrical activities of Alpha band which indicating that the person with this 

pattern of Alpha band might experience a relax situation. 

 
 

Figure 5.26: The Spectral Analysis to Produce Alpha band 

 

Figure 5.27 illustrates how the plot of the Beta band is obtained, which is 

located approximately in the range of 13 Hz to 30 Hz and peaking around 21 Hz. The 

peak amplitude of the power spectral density for this band is approximately 100 µV
2
 / 

Hz. As decribed by Table 2.2 and Figure 3.6 in Chapter 2 and Chapter 3 respectively, 

Beta band has the characteristics of lower amplitude at the high frequency compared 
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to the other EEG frequency bands. As illustrated by Figure 5.27, there are wide 

distribution for FFT and PSD plots of Beta band. Beside confirming the distribution of 

power spectrum and energy of Beta band versus its range of frequency, the noisy FFT 

plots for both channel indicate that there are high variation of the EEG Beta band at 

both channels. The distribution of the PSD plots of the EEG for the left channel is 

wider than right channel even though the peak value of the PSD plots are almost the 

same for both channels. It might also indicates that the energy of the EEG Beta band 

at the left hemisphere of human brain is higher than the right hemisphere of human 

brain. Thus, there are high electrical activities at that area which might indicate the left 

frontal activation of human brain has occurred. According to the literature review, the 

person with this pattern of EEG Beta band might experience positive emotion such as 

happy or excited [23-28]. The plot of the Welch spectrum for both channels are also 

similar with amplitude around -50dB/Hz which confirming the used of Hamming 

window in designing filter to produce the required filter coefficients to extract the 

EEG frequency bands from their raw data.  

 
 

Figure 5.27: The Spectral Analysis to Produce Beta band 

 

 



 
 

101 

 

In order to observe the pattern of the RER per group as the selected EEG 

features, the RER per group versus total energy of the group for all frequency bands is 

plotted as illustrated by Figure 5.28. The presence of stress is indicated by the changes 

in the power of Alpha band and Beta band, especially that of Group 1 and Group 2, 

while the power of Delta band and Theta band is not taken into account as all data are 

captured when the subjects are fully awake. In Group 1, where the participants were in 

a relaxed state and not doing anything, the RER of Alpha band is higher than that of 

the Beta band. On the contrary, in Group 2, where the participants have to perform the 

IQ test, the RER of Beta band is higher than that of the Alpha band. However, the 

RER of Alpha band of Group 3 and Group 4 is much higher than that of Group 2, 

while the RER of the Beta band of Group 3 and Group 4 are slightly lower than than 

that of Group 2. This indicates that the participants in Group 3 and Group 4 are in a 

more relaxed state than those in Group 2. The trend of RER of Alpha band and Beta 

band of Group 2 might suggest the change in cerebral activities due to the existence of 

stressors or stress factors. On contrary, the high trend of RER of Alpha band in Group 

4 might indicate subjects have experienced relax condition after undergone 

intervention (rotational bed) in which the value of RER almost similar with  the value 

of RER of Alpha band in Group 1. In addition, Figure 5.28 indicates that the variation 

of energy in EEG frequency bands exists among the 4 experimental groups. 

 

 

Figure 5.28: RER per group versus Total Energy of the Group 
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5.3.2 Spectral Centroids 

 

Spectral Centroids (SC) is one of the selected EEG features that can be used to 

search the pattern of stress from EEG signals. The value of SC then will be used as 

classification target in classification process. As discussed earlier, SC are applied on 

the relative energy ratio of all EEG frequency bands to identify the dominant energy 

among the groups when they change their task from doing nothing to perform IQ test , 

and the results of the application are shown in Figure 5.29. Again, as the main focus 

of this study is to examine for changes in Beta band and Alpha band, it is observed 

that the centroids value of the Beta band in Group 2 is higher than that of the Alpha 

band of the same group. It is because the cognitive activities of the  subjects in Group 

2 increase when performing IQ test. Meanwhile, the centroid values of the Beta band 

in Group 1, Group 3 and Group 4 are lower than that of the Alpha band of the same 

group. The centroid value of Alpha band in Group 1 is higher compared to the other 

groups. It indicates that the subjects in Group 1 is really in relax condition. The results 

of the experiment indicate that application of spectral centroids on EEG power 

spectrum can be used to identify human stress.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29: The Spectral Centroids of the Experimental Groups 

 

Meanwhile, the average values of the spectral centroids per group across the 

EEG frequency bands are tabulated in Table 5.5 and its histograms are plotted as 

shown in Figure 5.30. It is observed that there is a significant trend of average 
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centroids per group as illustrated by Figure 5.30. It is noted that the average centroids 

value of Group 2 is the lowest among the groups, and can be considered as one of the 

significant trend even though the difference is only 0.3 (20%) from that of Group 1. 

The highest centroids come from Group 1 (9.87) and the lowest centroids come from 

Group 4 (2.78), while the average centroids value for Group 1, Group 3 and Group 4 

is approximately the same with the difference among them ranging from 0.04 (3%) to 

0.07 (7%). The low value of average centroids of Group 2 represents the EO or alert 

cognitive state of the subjects in those group where they are required to perform IQ 

test. Meanwhile, the similar pattern of average centroids of the other 3 groups indicate 

that the cognitive state of the subjects on those groups are in EC state or relax state. 

Hence, the analysis of the experimental results confirm that SC can be employed to 

indicate the status of the cognitive state of a person effectively.  

         Table 5.5:  

         The Value of Centroids Across EEG Frequency bands for All Groups  
Group Centroids  

of δ 

 

Centroids of 

θ 

Centroids 

of α 

Centroids  

of β 

 

Average 

Centroids 

1 9.87 4.92 7.59 4.35 1.53 

2 5.02 3.31 3.07 3.62 1.23 

3 6.33 3.17 4.78 3.30 1.49 

4 4.88 2.78 4.46 3.67 1.46 

 

 
 

Figure 5.30: The Histogram plot of the Average Centroids for All Groups 
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5.3.3 Shannon Entropy 

 

The results of applying SE to the RER across the frequency bands of every 

group are shown in Figure 5.31. It is observed that using SE has produced results that 

are approximately the same as that obtained when using SC, where Group 2 has the 

lowest entropy value (0.29) compared to other groups. Meanwhile, Group 4 has the 

highest entropy value (0.33). Entropy is applied to the RER of each group to detect 

any abnormal pattern in the EEG signals, and the low spectral entropy value of Group 

2 indicates irregularity in the signals. The analysis result  indicates that, besides the 

average centroid value of the groups, SE can be considered as a reliable feature to 

detect the change in the distribution of energy of EEG signals which might suggest the 

presence of stress. Therefore, both SC and SE can be used to detect the changes of the 

cognitive state from relax to alert state or vice versa.  

 

 

Figure 5.31: The Histogram plot of Shannon Entropy for All Groups 

 

5.4 RESULTS OF THE k-NN CLASSIFICATION OF THE STRESS 

            FEATURES  

 

The selected stress features are classified using k-NN classifier to determine 

which of the experimental groups might be affected by stress. In order to obtain the 

optimal classification results, the k-NN classifier need to be configured according to 
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the value of k, testing to training datasets ratio, and distance and rule. As described 

before, three types of features are fed to k-NN classifier, which are normalization of 

asymmetry of EEG energy spectral density, natural log of asymmetry of EEG energy 

spectral density and relative energy ratio of EEG signals. The k-NN configurations are 

then tuned according to ratio of training to testing datasets and the setting of distance 

and rule, while varying k value in each experiment. With 180 data available from the 

four experimental groups, the k value is varied from 1 to 90 using 50:50 training to 

testing ratio, while the value is varied from 1 to 126 for the 70:30 training to testing 

ratio. However, as explained in earlier chapters, the k value of the k-NN classification 

is typically small, hence only the k value from 1 to 10 are shown in this thesis. The 

overall evaluation results obtained from varying the k value are as attached in 

Appendix C. The discussion in this section starts with the experimental results of k-

NN classification using normalization of asymmetry of ESD with the testing and 

training ratio of 50:50, and is followed with the configuration of the k-NN setting 

according to the distance and rule. 

 

5.4.1 Classification using Normalization of Asymmetry and Natural Log of 

            Asymmetry of ESD 

 

This section discusses the results of the k-NN classification using different 

EEG features and the affect on the classifier performance when the training to testing 

ratios is varied. Besides, the affect of changing the classifier configurations towards 

classification results are also discussed.  

 

5.4.1.1 50:50 Training to Testing Ratio 

 

The accuracy of the stress features classification using k-NN classifier with 

normalization of asymmetry of ESD as an input feature for 50:50 training to testing 

ratio are shown in Figure 5.32, where the maximum classification accuracy obtained is 

65.56% at k = 1 and k = 2. Even though asymmetry can be used to detect the dominant 

brain activity in the right hemisphere or left hemisphere of the human brain, the 

classification accuracy using this feature as input is unsatisfactory. Since the testing to 

training ratio also play a vital role in determining the classifier accuracy, the 

experiment is conducted at different training to testing ratios. For the next experiment, 
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the classification is implemented at the same training to testing ratio but using natural 

log of asymmetry of ESD as the features to be classified, and the results obtained are 

shown in Figure 5.33. 

 

 

1 2 3 4 5 6 7 8 9 10

Euc&Near 65.56 65.56 51.11 56.67 55.56 60.00 64.44 64.44 58.89 57.78

Euc&Rand 65.56 52.22 51.11 56.67 55.56 53.33 64.44 62.22 58.89 50.00

Euc&Con 65.56 27.78 18.89 5.56 1.11 0.00 0.00 0.00 0.00 0.00

City&Near 63.33 63.33 50.00 52.22 45.56 54.44 56.67 64.44 55.56 54.44

City&Rand 63.33 53.33 50.00 52.22 45.56 54.44 56.67 57.78 55.56 53.33

City&Con 63.33 25.56 11.11 7.78 3.33 1.11 0.00 0.00 0.00 0.00

Cos&Near 50.00 50.00 50.00 53.33 54.44 50.00 45.56 48.89 53.33 53.33

Cos&Rand 50.00 43.33 50.00 51.11 54.44 50.00 45.56 50.00 53.33 58.89

Cos&Con 50.00 22.22 11.11 6.67 1.11 1.11 1.11 1.11 1.11 0.00
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Figure 5.32: The Classification Results using Asymmetry of ESD at 50:50 Training and 

Testing ratio 

 

The use of natural log of asymmetry of ESD has slightly improved the 

classification results to 66.67% accuracy at k=1, k=2 and k=7 as shown in Figure 

5.33. Again, the highest classification results were obtained at the classification 

distance and rule of Euclidean and nearest respectively. However, the classification 

accuracy was still low even though the classification accuracy has improved by 1%. 

Therefore, the features are evaluated at 70:30 training to testing ratio in order to 

improve the classification accuracy. 
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1 2 3 4 5 6 7 8 9 10

Euc&Near 66.67 66.67 51.11 57.78 56.67 62.22 66.67 63.33 57.78 56.67

Euc&Rand 66.67 54.44 51.11 55.56 56.67 51.11 66.67 60.00 57.78 50.00

Euc&Con 66.67 30.00 18.89 6.67 1.11 0.00 0.00 0.00 0.00 0.00

City&Near 64.44 64.44 51.11 53.33 45.56 56.67 57.78 63.33 56.67 55.56

City&Rand 64.44 52.22 51.11 54.44 45.56 56.67 57.78 58.89 56.67 56.67

City&Con 64.44 25.56 11.11 8.89 3.33 1.11 0.00 0.00 0.00 0.00

Cos&Near 50.00 50.00 52.22 53.33 54.44 50.00 45.56 48.89 53.33 52.22

Cos&Rand 50.00 53.33 52.22 48.89 54.44 51.11 45.56 52.22 53.33 58.89

Cos&Con 50.00 21.11 10.00 5.56 1.11 1.11 1.11 1.11 1.11 0.00
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Figure 5.33: The Classification Results using Natural Log Asymmetry of ESD 

at 50:50 Training and Testing ratio 

 

5.4.1.2 70:30 Training to Testing Ratio 

 

Figure 5.34 depicts the increase of classification accuracy by approximately 

2% from 66.67% to 68.52% when 70:30 training to testing ratio is used while still 

employing normalization of asymmetry of EEG’s ESD as the input to the classifier. 

The results indicate that, besides the features, the large percentage of training datasets 

has assisted the increase in the classifier performance. However, the highest 

classification was obtained at classifier’s distance of Cosine and rule of nearest, 

random and consensus. It is normal to achieve the highest classification results at a 

small value of k, which is a characteristic of k-NN classifier.  
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1 2 3 4 5 6 7 8 9 10

Euc&Near 68.52 68.52 62.96 55.56 51.85 48.15 40.74 38.89 38.89 35.19

Euc&Rand 68.52 46.30 57.41 46.30 38.89 33.33 35.19 33.33 29.63 31.48

Euc&Con 68.52 20.37 5.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00

City&Near 62.96 62.96 57.41 44.44 44.44 42.59 44.44 42.59 42.59 33.33

City&Rand 62.96 57.41 46.30 38.89 25.93 33.33 35.19 42.59 38.89 31.48

City&Con 62.96 12.96 3.70 1.85 0.00 0.00 0.00 0.00 0.00 0.00

Cos&Near 61.11 61.11 57.41 44.44 46.30 37.04 44.44 38.89 38.89 46.30

Cos&Rand 61.11 44.44 48.15 37.04 37.04 37.04 42.59 35.19 40.74 44.44

Cos&Con 61.11 12.96 3.70 1.85 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 5.34: The Classification Results using Asymmetry of ESD 

at 70:30 Training and Testing ratio 

 

However, with the same training and testing ratio of 70:30, the classification 

using natural log of asymmetry of ESD outperforms the classification using 

normalization of asymmetry of ESD as the input to the classifier. The classification 

results indicate the improvement of the accuracy of 5%. In this case, the classification 

accuracy has increased to 74% as shown in Figure 5.35, and again, the highest 

classification results were obtained at the classification distance of Euclidean and rule 

of nearest, random and consensus. This indicates that the selection of the feature and 

selection of the training and test ratio are very crucial in improving the classification 

accuracy. 
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Figure 5.35: The Classification Results using Natural Log Asymmetry of ESD 

                  at 70:30 Training and Testing ratio 

 

 

5.4.2 Classification using Relative Energy Ratio  

 

Besides asymmetry of ESD, relative energy ratio of ESD is fed to the classifier 

in order to investigate how this feature can affect the classifier performance. The same 

procedure were applied where the data is split into 50:50 and 70:30 of training to 

testing ratio, while the classifier distance and rule are varied.  

 

5.4.2.1 50:50 Training to Testing Ratio  

                   

Figure 5.36 shows the results when relative energy ratio with 50:50 training to 

testing ratio are applied to the k-NN classifier. A classification accuracy of 74.44 % 

was achieved by configuring the classifier with distance of Cityblock distance, and 

rule of nearest, random and consensus where k remains low. It is a slim improvement 

compared to the classification results using Natural Log Asymmery at 70:30 testing 
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and training ratios. When the classifier’s distance and rule are respectively changed to 

Euclidean and nearest, the classification performance dropped to 72%.  

 
 

 

Figure 5.36: The Classification Results using Relative Energy Ratio (RER) of ESD 
at 50:50 Training and Testing ratio 

 

5.4.2.2 70:30 Training to Testing Ratio  

 

Another experiment was conducted to classifiy the experimental group using 

relative energy ratio as an input to classifier, and this time the data is split into 70:30 

training to testing ratio while feeding the same features to the classifier. The 

classification results shown in Figure 5.37 shows that the classification accuracy has 

increased from 74.44% to 88.89%, which is an outstanding improvement in the 

classification process. The classification accuracy is improved by 14.5%. Again, 

besides the selected input features, the best classification results are obtained when the 

classifier are configured to distance of Euclidean and Cityblock, and rule of nearest, 

random and consensus with smaller value of k (k=1).  
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Figure 5.37: The Classification Results using Relative Energy Ratio (RER) of ESD 

at 70:30 Training and Testing ratio 

 

Some observations regarding the use of k-NN to classify EEG features are as 

follows. The k value can be varied according to the size of the data, however, the 

highest classification rate is achieved when k is small. The distance and rule of the 

classifier also affect the classification accuracy, and it is observed that the highest 

classification rate is frequently observed at a distance of Euclidean and rule of the 

nearest. The smallest of k (< 10), a distance of Euclidean and rule of nearest is the best 

combination of k-NN classifier setting to produce better accuracy. Besides the features 

and classifier setting, other parameters that affect the classifier performance is the 

testing to training ratio of the data, where it is noted that the best ratio to use during 

the classification process is 70:30.  

From the experimental results, the highest classification rate achieved is 

88.89% using RER of energy spectral density as a feature to the classifier with 70:30 

training to testing ratio. Meanwhile, for the classification configuration, the setting is 

optimum when Euclidean distance and nearest rule are used. 
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5.4.3 Summary of the Classification Results 

 

The summary of the classification results are tabulated in Table 5.6 and Table 

5.7. Based on the results, the energy ratio of EEG power spectrum is the best feature 

to detect human stress, in which case the classification accuracy increases from 

74.44% to 88.89% when the training to testing ratio is varied from 50:50 to 70:30. 

Meanwhile, the highest accuracy is obtained when either k = 1 or k = 2. The 

classification results indicate that the best feature is RER  and the best training and 

testing ratio is 70:30. Regardless of the features, the classification results using 

training and testing ratio at 70:30 is obviously outperform the classification results 

using 50:50 testing and training ratio. Therefore, the selection of the best EEG 

features and the best training and testing ratio with the optimal classification 

configuration has produced high classification accuracy. 

 

          Table 5.6:  

           Summary of Classification Accuracy using Different Features at 50:50 Training to 

          Testing  ratio 
No. Features 

 

Formula Ratios Accuracy 

(%) 

k 

1 Normalization of 

Asymmetry 

 

(R-L) / (R+L) 50:50 65.56 1,2 

2 Natural log of 

Asymmetry 

 

(In R – ln L) 50:50 66.67 1,2,7 

3 Ratio of Energy of 

each frequency 

bands 

 

ESD (, θ, , ) / 

Total Power 

Spectrum 

 

50:50 74.44 1,2 

 

 

          Table 5.7:  

           Summary of Classification Accuracy using Different Features at 70:30 Training to   

          Testing ratio 
No. Features Formula 

 

Ratios Accuracy 

(%) 

k 

1 Normalization of 

Asymmetry 

 

(R-L) / (R+L) 70:30 68.52 1 

2 Natural log of 

Asymmetry 

 

(In R – ln L) 70:30 74.07 1,2 

3 Ratio of energy of 

each frequency 

bands 

 

ESD (, θ, , ) / 

Total Power 

Spectrum 

 

70:30 88.89 1,2 
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In the classification process, spectral centroids act as a target or class. Thus, 

the spectral centroids across the EEG frequency bands and for all experimental groups 

need to be calculated. The values of the spectral for all features are shown in Table 

5.8. It is noted that the centroids value for Group 2 is highest at 1.72 when 

normalisation of Asymmetry of ESD is used as a feature, while the lowest value (1.23) 

is also achieved in Group 2 when RER is used as the feature.  

         Table 5.8: 

         Spectral Centroids of the Group based on the Selected EEG Features 

Group Normalization of 

Asymmetry of ESD 

Natural Log Asymmetry 

of ESD 

Relative Energy 

Ratio of ESD 

1 1.47 1.30 1.53 

2 1.72 1.25 1.23 

3 1.62 1.25 1.49 

4 1.46 1.30 1.46 

 

The k-NN produces high classification accuracy using power ratio of ESD and 

training to testing ratio of 70:30, while spectral centroids are set as class for the 

classification process. In order to support the classifier performance, the classifier is 

also tested for sensitivity and specificity, and the classification results obtained when 

k is varied from 1 to 10 are shown in Table 5.9 while the rest of the results are shown 

in Appendix C.  

 

         Table 5.9: 

         The Summary of the Classification Accuracy, Sensitivity and Specificity  

         at 70:30 Training to Testing ratio 
k Accuracy (%) 

 

Sensitivity (%) Specificity (%) 

1 88.89 89.09 91.61 

2 88.89 90.00 91.67 

3 75.93 89.23 90.53 
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4 83.33 90.00 89.56 

5 74.07 89.33 90.26 

6 75.93 88.75 90.38 

7 75.93 89.41 90.50 

8 66.67 88.89 91.03 

9 68.52 88.42 90.28 

10 61.11 88.00 90.77 

 

From the table, it is observed that the percentage of sensitivity and specificity 

remain high even when k is varied from 1 to 126, which is the maximum number of 

training data, while 54 of the data are the testing data. However, the classification 

results when k is varied from 1 to 10 is discussed in this thesis. In order to calculate 

the overall accuracy, sensitivity and specificity of the classification, the confusion 

matrix is employed as illustrated in Table 5.10. For this study, the testing data are 

tested for accuracy, sensitivity and specificity. Beside the classification accuracy of 

88.89%, the classification sensitivity and specificity of 100% is observed in Group 4 

and Group 2 respectively.  

 

         Table 5.10: 

         Results of Confusion Matrix  
 

 

 

 

Target Class 

Actual Class 

 1 2 3 4 

1 13 1 1 0 

2 0 12 0 0 

3 0 0 11 1 

4 0 3 0 12 

Accuracy  88.89 88.89 88.89 88.89 

Sensitivity  80.0 86.67 91.67 100 

Specificity  97.23 100 97.37 90 
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Besides the overall classification performance in term of accuracy, sensitivity 

and specificity, the classification performance by group are also measured as depicted 

in Table 5.11. The classification performance of all groups are good. The overall 

classification accuracy for all groups is 88.89%. High sensitivity is observed in Group 

2 while high specificity is noted in Group 4. As discussed in Chapter 3 (Section 3.6), 

sensitivity is defined as true positive rate. It indicates that Group 4 is correctly 

identified as non-stressed group. It also indicates that the intervention process 

(rotational bed) did affect the cognitive activities of the subjects in those group. 

Meanwhile, specificity is defined as true negative rate. It indicates that Group 2 is 

correctly identified as stressed group among the 3 non-stressed groups (Group 1, 

Group 3 and Group 4). 

 

         Table 5.11: 

         k-NN Classification Performance by Group 

GROUP 2 4 3 1 

ACCURACY 88.89% 88.89% 88.89% 88.89% 

SENSITIVITY 86.67 % 100% 91.67% 80.0% 

SPECIFICITY 100% 90% 97.37% 97.23% 

 

 

5.5 CLASSIFICATION ERRORS  

 

Figure 5.38 shows the plot of classification accuracy when k is varied from 1 

to 10 for Asymmetry feature at 50:50 training to testing ratio. Meanwhile, the 

classification error in term of MSE is depicted by Figure 5.39. It is observed that at the 

highest classification accuracy rate (65.56%), the classification error is 0.09% 

(0.0009), and the total classification error is 1% (0.01) when the value of  k is varied 

from 1 to 10. The classification error increases as the value of classifier neighborhood 

k increases, as can be observed in the rapid increase in the classification error when k 

= 8 and above. 
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Figure 5.38: The  Plot of Classification Accuracy Versus k for Asymmetry Feature at 50:50 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.39: The  Plot of Classification Error (MSE) Versus k for Asymmetry Feature 

                          at 50:50 

 

Figure 5.40 shows the plot of classification accuracy when k is varied from 1 

to 10 for Asymmetry feature at 70:30 training to testing ratio. Meanwhile, the 

classification error is shown in Figure 5.41. It is observed that at the highest 

classification accuracy rate (68.52%), the classification error is 1.33% (0.0133)  and 

the total classification error is 18% (0.01) when the value of  k is varied from 1 to 10. 

The classification error starts to increase as the value of classifier neighborhood k 

increases, as can be observed in the rapid increase in the classification error when k = 

3 and above. Meanwhile, it is a rapid decrease of classification accuracy when the 
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value of k increases. It is also observed that the classification error at 70:30 training to 

testing ratio is higher than classification error at 50:50 trainig to testing ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.40: The  Plot of Classification Accuracy Versus k for Asymmetry Feature at 70:30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.41: The  Plot of Classification Error (MSE) Versus k for Asymmetry Feature at  

                        70:30 

 

Figure 5.42 shows the plot of classification accuracy when k is varied from 1 

to 10 for Natural Log Asymmetry feature at 50:50 training to testing ratio. Meanwhile, 

the classification error is shown in Figure 5.43. It is observed that at the highest 

classification accuracy rate (66.67%), the classification error is 0.08% (0.0008)  and 

the total classification error is 1% (0.01) when the value of  k is varied from 1 to 10. 
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The classification error increases at k = 3 before decreasing until  k = 7. Then, the 

classification error increases again when  k above 7, it starts to increase as the value of 

classifier neighborhood k increases, as can be observed in the rapid increase in the 

classification error when k = 3 and above. Meanwhile, it is a rapid decrease of 

classification accuracy when the value of k increases. Regardless of the feature, it is 

also observed that the classification error is almost similar to the classification error 

produced by classification of Asymmetry feature at 50:50 training and testing ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.42: The  Plot of Classification Accuracy Versus k for Natural Log Asymmetry 

           Feature at 50:50 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.43: The  Plot of Classification Error (MSE) Versus k for Natural Log Asymmetry 

                      Feature at 50:50 
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Figure 5.44 shows the plot of classification accuracy when k is varied from 1 

to 10 for Natural Log Asymmetry feature at 70:30 training to testing ratio. Meanwhile, 

the classification error is shown in Figure 5.45. It is observed that at the highest 

classification accuracy rate (74.07%), the classification error is 0.06% (0.0006)  and 

the total classification error is 0.8% (0.0085) when the value of  k is varied from 1 to 

10. It is a normal trend of the classification error until k reach 9. However, the 

classification accuracy increase to 70.37% at k = 10 which result the deacrease of 

classification error to 0.0007.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.44: The  Plot of Classification Accuracy Versus k for Natural Log Asymmetry 

                        Feature at 70:30 

 

 

Figure 5.45: The  Plot of Classification Error (MSE) Versus k for Natural Log Asymmetry 

                      Feature at 70:30 
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Figure 5.46 shows the plot of classification accuracy when k is varied from 1 

to 10 for RER  feature at 50:50 training to testing ratio. Meanwhile, the classification 

error is shown in Figure 5.47. It is observed that at the highest classification accuracy 

rate (74.44%), the classification error is 0.4% (0.0042)  and the total classification 

error is 6% (0.0612) when the value of  k is varied from 1 to 10. There is a normal 

trend for both classification accuracy and error except for the classification error at k = 

5, 6 and 7. At these values of k, the classification error suppose to be in increasing 

trend. It might contributes to the high classification error and affect the classification 

accuracy at those value of k. The classification accuracy decreases when the value of k 

increases. The highest classification always obtained at the lowest value of k. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.46: The  Plot of Classification Accuracy Versus k for RER Feature at 50:50 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.47: The  Plot of Classification Error (MSE) Versus k for RER Feature at 50:50 
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Figure 5.48 shows the plot of classification accuracy when k is varied from 1 

to 10 for RER feature at 70:30 training to testing ratio. Meanwhile, the classification 

error is shown in Figure 5.49. It is observed that at the highest classification accuracy 

rate (88.89%), the classification error is 0.25% (0.0025) and the total classification 

error is 3.9% (0.0386) when the value of  k is varied from 1 to 10. There is a normal 

trend for both classification accuracy and error. The classification error increases as 

the value of classifier neighborhood k increases, as shown by the rapid increase in the 

error when k = 8 and above, which tally with the findings from previous studies where 

the highest classification rate is achieved at the small value of k. At the highest 

classification accuracy, the classification error of 0.0025 can be considered minor.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.48: The  Plot of Classification Accuracy Versus k for RER Feature at 70:30 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.49: The  Plot of Classification Error (MSE) Versus k for RER Feature at 70:30 
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5.6 RESULTS OF CROSS-VALIDATING THE CLASSIFIER  

 

This section will verify the robustness of the classifier by cross-validating the 

classifier using k-fold cross-validation and leave-one-out techniques, as previously 

discussed. The results of 10-fold cross-validation and leave-one out cross-validation 

are shown in Figure 5.50. The 10-fold cross-validation yields an overall accuracy of 

78.89%, which is slightly lower than that of k-NN classification and leave-one cross-

validation. However, its performance can be considered satisfactory as the input data 

to k-NN classifier, regardless of the size of the training and testing data, are divided 

into 10 portions before being validated. Furthermore, its classification performance in 

terms of sensitivity and specificity at 92% and 91% are good. Meanwhile, the overall 

classification accuracy of cross-validating k-NN classifier using leave-one-out 

technique is approximately 5% lower than that obtained from the normal classification 

technique using different training to testing ratios. However, the leave-one-out cross-

validation technique produces 100% sensitivity and specificity. Therefore, from the 

outstanding k-NN classifier performance obtained in terms of overall accuracy, 

sensitivity and specificity, it can be concluded that the classifier is robust as the 

classification results are quite precise.   

 

 

Figure 5.50: The Performance of k-NN Classifier and Cross-Validation  
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5.7 CLUSTERING PERFORMANCE  

 

Clustering of the groups involved in this study using FCM and FKM is 

implemented to support the classification results obtained using k-NN in trying to 

determine the stress group. The results of FCM clustering are shown in Figure 5.51, 

where it is noted that the 180 RER data of EEG energy spectral densities are clearly 

clustered into three groups. The data are clustered according to the EEG frequency 

bands, which are Beta band cluster, Alpha band cluster and Theta band cluster. 

However, the centroids of Theta band and Delta band overlap each other, which 

results in three different clusters. Cluster 1 and cluster 2 indicate RER data at Delta 

and Theta band. Meanwhile, Cluster 3 and Cluster 4 represent RER at Beta band and 

Alpha band, respectively. In addition, it is observed that the data in Cluster 3 are more 

widely distributed compared to that of Cluster 4. Hence, FCM is capable of 

identifying the group that might have stress features. The clustering performance 

achieved is 80% and is calculated using the index of the maximum membership (U) 

for each cluster, where the spectral centroids are applied as a class in classification 

process. Also, the centroids value from four features (RER of Delta band, Theta band, 

Alpha band and Beta band) from the four groups involved in the study are clustered 

accordingly. 
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Figure 5.51: FCM Clustering Results 
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The results of clustering RER from each group and frequency bands using 

FKM is illustrated by Figure 5.52. Unlike FCM clustering, FKM clustering is able to 

produce four prominent clusters. It can be seen that the data distribution in the new 

clustering is less than that of the original clustering as the data that was far away from 

the centroids of the cluster center are removed. The partition of the datasets containing 

the EEG features (RER) using FKM has improved the clustering accuracy by 3%. The 

clustering performance are approximately the same as that of classification accuracy 

using k-NN classifier.  

 

 

Figure 5.52: FKM Clustering Results 

 

5.8 RESULTS OF STATISTICAL ANALYSES 

 

In order to support the results of the classification and clustering processes, the 

RER of the EEG power spectrum that has been selected as the EEG feature, are 

statistically tested for the significant value. Thus, 180 datasets containing the features 

are analyzed using ANOVA  and the results of applying ANOVA to the EEG features 

(RER, Asymmetry ratio and Natural Log Asymmetry ratio) are shown in Table 5.12, 

Table 5.13 and Table 5.14. Referring to Table 5.12, the ratio of Alpha energy to Theta 

0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

3
FKM Clustering

 

 

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Centroids

0 0.5 1 1.5
0.5

1

1.5

2

2.5
FKM New Clustering

 

 

Cluster 1 new

Cluster 2 new

Cluster 3 new

Cluster 4 new

Centroids

Value  

of 

Clust-

er 

Type of Cluster and Centroids 



 
 

125 

 

energy are significant between groups and within groups since their p-value is lower 

than 0.05. The results of ANOVA for Alpha and Theta energy ratios is  F(3, 176) = 

8.62, p = 0.00 and F(3, 176) = 9.48, p = 0.00, respectively. However, the ratio of Beta 

energy to Delta energy between groups and within groups are not significant since 

their p-values are greater than 0.05. The statistical results given by ANOVA match 

with the data distribution in FCM and FKM. 

 

         Table 5.12: 

         ANOVA Results for RER Features across the EEG Frequency Bands 

Features 
Sum of 

Squares df Mean Square F Sig. 

Beta 

Ratio 

Between Groups .205 3 .068 .919 .433 

Within Groups 13.117 176 .075   

Total 13.323 179    

Alpha 

Ratio 

Between Groups 2.095 3 .698 8.617 .000 

Within Groups 14.263 176 .081   

Total 16.358 179    

Theta 

Ratio 

Between Groups .243 3 .081 9.484 .000 

Within Groups 1.501 176 .009   

Total 1.743 179    

Delta 

Ratio 

Between Groups .023 3 .008 2.438 .066 

Within Groups .558 176 .003   

Total .581 179    

 

 

The results obtained after applying ANOVA to EEG asymmetry and natural 

log asymmetry ratios are shown in Table 5.13 and Table 5.14, respectively. There are 

no statistically significant difference observed on asymmetry and natural log 

asymmetry between groups and within groups since their p-value is greater than 0.05. 

For asymmetry ratio, the ANOVA results for Beta band and Alpha band are F(3, 176) 

= 0.68, p = 0.56 and F(3, 176) = 1.06, p = 0.37, respectively. Also, the F and p value 

for the Beta band and Alpha band of natural log asymmetry ratio are almost the same 

as that of the asymmetry ratio. The results of ANOVA indicate that the energy ratios 

of EEG frequency bands are the preferred EEG features in order to produce good 

classification and clustering in determining the stress group. 
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         Table 5.13: 

         ANOVA Results for Asymmetry Ratio across the EEG Frequency Bands 

Features 
Sum of 

Squares df Mean Square F Sig. 

Beta_Asym Between Groups .055 3 .018 .681 .565 

Within Groups 4.764 176 .027   

Total 4.819 179    

Alpha_Asy

m 

Between Groups .044 3 .015 1.063 .366 

Within Groups 2.437 176 .014   

Total 2.481 179    

Theta_Asym Between Groups .081 3 .027 1.811 .147 

Within Groups 2.612 176 .015   

Total 2.693 179    

Delta_Asym Between Groups .077 3 .026 1.013 .388 

Within Groups 4.458 176 .025   

Total 4.535 179    

 

         Table 5.14: 

         ANOVA Results for Natural Log Asymmetry Ratio across the EEG Frequency Bands 

Features 
Sum of 

Squares df Mean Square F Sig. 

Beta_ln_Asym Between 

Groups 

.212 3 .071 .681 .565 

Within Groups 18.259 176 .104   

Total 18.471 179    

Alpha_ln_Asy

m 

Between 

Groups 

.190 3 .063 1.086 .357 

Within Groups 10.285 176 .058   

Total 10.475 179    

Theta_ln_Asy

m 

Between 

Groups 

.343 3 .114 1.843 .141 

Within Groups 10.921 176 .062   

Total 11.264 179    

Delta_ln_Asy

m 

Between 

Groups 

.315 3 .105 .978 .404 

Within Groups 18.871 176 .107   

Total 19.186 179    

 

Besides ANOVA, the Pearson correlation study or scatterplot is conducted in 

order to investigate the relationship between the change of the cognitive states (eyes-

closed and eyes-open) with energy spectral density of the EEG frequency bands in the 

experimental groups. Table 5.15 – 5.17 and Figure 5.53 – 5.55 illustrate the linear 



 
 

127 

 

relationship between EEG features and cognitive state (experimental groups). It is 

observed that there is a linear correlation between the EEG features with the cognitive 

state, EC and EO states (represented by Group 1 and Group 2 respectively). For the 

RER feature, the good correlation  is observed in Group 2 where the correlation 

strength for EEG Beta and Alpha band is 0.576 as illustrated by Table 5.15. 

Meanwhile, for the asymmetry ratio feature, the good correlation is also observed in 

Group 2 where the correlation strength is 0.629 as shown in Table 5.16. Next, for 

natural log asymmetry ratio, the good correlation is observed on Group 2 and Group 4 

where the correlation strength of Beta and Alpha bands is 0.622 as depicted by Table 

5.17. In term of correlation significant, the correlation results indicate the significant 

results where p < 0.05 for all EEG features and groups being studied.  

         Table 5.15: 

         Pearson Correlation Results using RER Feature Across EEG Frequency Bands 

Features Beta Ratio Alpha Ratio Theta Ratio Delta Ratio 

Beta Ratio Pearson Correlation 1 .576
**
 .340

**
 -.564

**
 

Sig. (2-tailed)  .000 .000 .000 

N 180 180 180 180 

Alpha Ratio Pearson Correlation .576
**
 1 .466

**
 -.871

**
 

Sig. (2-tailed) .000  .000 .000 

N 180 180 180 180 

Theta Ratio Pearson Correlation .340
**
 .466

**
 1 -.651

**
 

Sig. (2-tailed) .000 .000  .000 

N 180 180 180 180 

Delta Ratio Pearson Correlation -.564
**
 -.871

**
 -.651

**
 1 

Sig. (2-tailed) .000 .000 .000  

N 180 180 180 180 

 

 

 

 

 

 

 

 

 

 

Figure 5.53: Scatterplot of the RER Feature from the Experimental Groups 
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Only the correlation between EEG Beta and Alpha bands from the 4 

experimental groups are considered in this study since the  changes on the EEG power 

spectrum of Beta and Alpha bands will indicate the existence of stress. Thus, the 

correlation strength and direction of Beta and Alpha bands in Group 1 (EC state) and 

Group 2 (EO state) will be the focus in this study.  However, based on the correlation 

results, correlation strength between Group 1 and Group 2 using asymmetry and 

natural log asymmetry have outperformed the correlation strength using RER feature. 

The correlation strength between 0.5 to 1.0 is considered good. 

    

         Table 5.16:  

         Pearson Correlation Results using Asymmetry Feature Across EEG Frequency Bands 

 

 

 

 
 

 

 

 

 

 

 
Figure 5.54: Scatterplot of the Asymmetry Feature from the Experimental Groups 

 

 

 

 

Features Beta_Asym Alpha_Asym Theta_Asym Delta_Asym 

Beta_Asym Pearson Correlation 1 .629
**
 .500

**
 .247

**
 

Sig. (2-tailed)  .000 .000 .001 

N 180 180 180 180 

Alpha_Asym Pearson Correlation .629
**
 1 .804

**
 .357

**
 

Sig. (2-tailed) .000  .000 .000 

N 180 180 180 180 

Theta_Asym Pearson Correlation .500
**
 .804

**
 1 .699

**
 

Sig. (2-tailed) .000 .000  .000 

N 180 180 180 180 

Delta_Asym Pearson Correlation .247
**
 .357

**
 .699

**
 1 

Sig. (2-tailed) .001 .000 .000  

N 180 180 180 180 
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         Table 5.17: 

         Pearson Correlation Results using Natural Log Asymmetry Feature Across EEG    

         Frequency Bands 

Features 
Beta_ 

ln_Asym 

Alpha_ 

ln_Asym 

Theta_ 

ln_Asym 

Delta_ 

ln_Asym 

Beta_ln_Asy

m 

Pearson Correlation 1 .622
**

 .501
**

 .241
**

 

Sig. (2-tailed)  .000 .000 .001 

N 180 180 180 180 

Alpha_ln_As

ym 

Pearson Correlation .622
**

 1 .808
**

 .352
**

 

Sig. (2-tailed) .000  .000 .000 

N 180 180 180 180 

Theta_ln_As

ym 

Pearson Correlation .501
**

 .808
**

 1 .692
**

 

Sig. (2-tailed) .000 .000  .000 

N 180 180 180 180 

Delta_ln_Asy

m 

Pearson Correlation .241
**

 .352
**

 .692
**

 1 

Sig. (2-tailed) .001 .000 .000  

N 180 180 180 180 

 

        

 

 

 

 

 

 

 

 

 

 

 

Figure 5.55: Scatterplot of the Natural Log Asymmetry Feature from the Experimental 

Groups 
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5.9 ASSIGNMENT OF STRESS INDEX  

 

The elements of stress of any group involved in the study can be determined 

and consequently, the stress index as shown in Table 5.18 can be assigned by studying 

the EEG signals captured from the participants. The can be achieved based, on the 

results obtained after applying Shannon’s entropy on certain selected features of the 

raw EEG signals, finding the spectral centroids of the energy spectral densities of the 

signals, and finally, classifying and clustering the selected features. In the table is 

displayed only the results obtained after applying Spectral Centroids, Shannon 

Entropy, Average Energy of EEG Alpha band and Beta band across the groups, which 

is the focus of this study, while features from the Delta band and Theta band are not 

taken into account in developing the stress index. In this study, Index 1, which 

represents low stress, is assigned to Group 1 as its centroid and entropy are the highest 

among the groups, while its average energy of Beta band is the lowest. Index 2, which 

indicates moderate stress, is assigned to Group 3 and Group 4 as the groups’ average 

energy of Beta band is higher than that of Group1 but lower than that of Group 2, 

while the groups’ centroid of Alpha band is lower than that of Group 1 but higher than 

that of Group 2. Furthermore, the entropy of Group 3 and Group 4 is higher than that 

of Group 2. Consequently, Index 3, which indicate high stress, is assigned to Group 2.  

However, the most noteworthy indicator of stress is the value of the average 

energy ratio of Alpha band and Beta band. It is noted that Group 2 has a much lower 

average energy ratio of Alpha band than that of the other groups, while its average 

energy ratio of the Beta band is higher than that of the other groups. These values and 

the assignment of the stress index match with the findings from previous studies on 

stress assessment using EEG signals [1, 33, 42, 68, 71, 136, 141, 144]. In those 

literature reviews, the major indicator for the existence of stress in human is based on 

the change in EEG Alpha and Beta energy when human encounters stress and the 

human body reacts to the stressors. Hence, it can be concluded that certain selected 

EEG features, the ratio of Average Energy and the spectral centroids in the Alpha-

band and Beta-band, and Shannon Entropy can be used to recognize the level of stress 

from the four experimental groups involved in the study. The application of SC on 

RER of EEG frequency bands and the trend of SE are capable to detect the change in 

cognitive state from relax state to alert state due to the existence of the stressors. 
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         Table 5.18:  

         Assignment of Stress Index 

Group Centroid 

(α) 

Centroid 

(β) 

 

Shannon 

Entropy 

(SE) 

Average 

Energy 

(α)(%) 

 

Average 

Energy 

(β)(%) 

Stress 

Index 

1 7.59 4.35 0.31 8.93 1.17 1 

2 3.07 3.62 0.29 3.79 1.38 3 

3 4.78 3.30 0.3 7.41 1.20 2 

4 4.46 3.67 0.33 8.76 1.33 2 

 

5.10 VERIFICATION OF STRESS INDEX  

  

The assignment of the stress index stated in Table 5.18 need to be verified, and 

one method to verify the index is to use the Z-score technique, which is based on the 

average and standard deviation of the relative energy ratio of Alpha and Beta power in 

the group. The block diagram for stress index verification process using Z-score is 

illustrated in Figure 5.56. The EEG features is first selected before performing Z-

transform to the features.  Researchers have confirmed that Z-Score can be used to 

confirm the index using EEG features [200].  

 

 

 

 

 

 

Figure 5.56:  Block Diagram for Z-score Verification 

 

The Z-score technique is only applied to the Beta and Alpha bands as the 

changes of the Beta and Alpha energy are the main indicator for the presence of stress. 

The Z-score used in this study is described in Table 5.19, where the index for the 

stress is assigned based on the location of the average energy ratio of the bands. Index 

1 will be assigned when the Z-score is less than -1, Index 2 will be assigned when the 

score lies between -1 and +1, while Index 3 will be assigned when the score is greater 

than +1.  

Selection of EEG 

Features  

(RER, AR and Natural 

Log of AR) 
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         Table 5.19: 

         Z-score and Stress Index 

Value of Z-score 

 

Descriptions Assigned Stress Index 

less than -1 

 

Low 1 

greater than 1 

 

High 3 

between 1 and -1 

 

Moderate 2 

 

The average of the Beta and Alpha energy for each group involved in the 

experiments are calculated before implementing the Z-score on the mean energy, and 

the results obtained are shown in Table 5.20. Based on the Z-score of the Beta band, 

Index 3 was assigned to Group 2 as its Z-score is higher than 1, Index 2 was assigned 

Group 3 and Group 4 as both groups have a Z-score between -1 and 1, while Index 1 

was assigned to Group 1 as its score is less than -1. As for the Alpha band, Index 1 is 

assigned to Group 2 as its Z-score is less than -1, while Index 2 is assigned to Groups 

1, 3 and 4 as the Z-score of these groups is between -1 and +1, and no Index 3 was 

assigned to any of the groups. Theoretically, the index assigned to the Alpha band of  

Group 2 should be the greater than 1 and Index 3 would be assigned, which is the 

opposite that of the Beta band of Group 1 with stress Index 1. However, comparing 

the results shown in Table 5.18 and Table 5.20 indicates that the application of Z-

score can be used to verify the assignment of stress index when Beta power across the 

group is used but not quite true when Alpha power is used.  

         Table 5.20: 

         Assignment of Stress Index using Z-score Technique 

                

Alpha 

                    

Beta  

  

Group Power ratio Z-score 

value 

Stress 

index 

Power ratio Z-score 

value                

Stress 

index 

1 0.32083 0.82 2 0.227201 -1.317 1 

2 0.136149 -1.31 1 0.267834 1.030 3 

3 0.228489 -0.25 2 0.247518 -0.143 2 

4 0.314533 0.74 2 0.257447 0.430 2 
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In order to figure out what happens during the implementation of Z-score on 

the power spectrum of EEG frequency bands across the groups (180 data), the values 

of Z-score of Alpha and Beta power are plotted as illustrated in Figure 5.57 and Figure 

5.58, respectively. From the plots, it is observed that there is a no clear significant 

trends for the values of Z-score for Alpha power, except that the average of Alpha 

power from Group 2 (sample number 51 to sample number 100) is smaller than that of  

the other groups. However, there is a trend of high values of Z-score for Beta power 

from Group 2, which indicates high stress index. Here, the Z-score value for Beta 

power in Group 2 is much higher than that of the other groups. Hence, the results from 

the plot match with the assignment of stress index shown in Table 5.14. Figure 5.58 

also indicates that the value of Z-score of Group 1 (sample number 1 to sample 

number 50) is smaller than that of Group 3 and Group 4 (sample number 101 to 180).  
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Figure 5.57:  Distribution of Z-score value for Alpha Power 
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Figure 5.58: Distribution of Z-score value for Beta Power 

 

Besides using Z-score, the verification of the stress index is implemented by 

checking the energy ratio of EEG Beta and Alpha bands of all subjects in the groups. 

In addition, the entropy of EEG data of each participant in the groups is also 

considered in the index verification process. First, the index is verified using the 

energy ratio of EEG data, where the energy ratio of the data within a specified range is 

computed using average and standard deviation of the data. The range of the data is 

represented by the two bold lines shown in Figure 5.59 to Figure 5.60. Since the 

average and standard deviation of the EEG data in the groups is different, the size of 

the range is also different. Figure 5.59 shows that the range of the Group 1 for Beta 

energy is from 0.40 to 2.00, where Index 1 (low stress) was assigned to the group. 

From this range, the number of subjects that belong to this index can be calculated. 

There are 9 data (Beta energy) lies outside the specified range, which means that 18% 

of the data in Group 1 do not belong to Index 1. However, only 4 EEG data (Alpha 

energy) in Group 1, or 8% of the data, do not belong to Index 1, as seen in Figure 

5.60. 

 

 Group 2  Group 1  Group 3  Group 4 
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Figure 5.59:  Verification Results for Stress Index 1 (Beta Energy) – Group 1 
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Figure 5.60: Verification Results for Stress Index 1 (Alpha Energy) – Group 1 

 

For verification of Index 3, the highest level of stress, 7 of the EEG data (Beta 

Energy) representing 14% of the data in Group 2 are found to be located outside the 

specified range, as depicted in Figure 5.61. For Alpha energy in Index 3, 12 of the 

data, which represents 24% of the data, do no belong to the specificied index as 

Max range = 2 

Min range = 0.4 

Max range = 17 

Min range = 1 
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illustrated in Figure 5.62. This scenario might be caused by some variation in the raw 

EEG data. 

 

Figure 5.61: Verification Results for Stress Index 3 (Beta Energy) – Group 2 
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Figure 5.62: Verification Results for Stress Index 3 (Alpha Energy) – Group 2 

 

 

The verification results for Index 2, which represents Group 3 and Group 4, 

shows that only 3 EEG data (8%) of the Group 3 do not follow the specified range for 

Beta energy as shown in Figure 5.63. It is also observed that 7 EEG data of Alpha 

Max range = 2.40 

Min range = 0.1 

Max range = 4.70 

Min range = 3.00 
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energy (18%) in Group 3, as shown in Figure 5.64, do not belong to the given stress 

index. Index 2, which represents moderate stress, is also assigned to participants in 

Group 4. From the verification process for Group 4,  6 EEG data (15%) are located 

outside the specified range for Beta energy as shown in Figure 5.65. For Alpha energy 

in Group 4, 5 EEG data (13%) do not belong to the given stress index as depicted in 

Figure 5.66. 
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Figure 5.63: Verification Results for Stress Index 2 (Beta Energy) – Group 3 

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

R
a

ti
o

 o
f 

A
lp

h
a

 E
n

er
g

y
 (

%
)

Number of Subjects

Verification results of Group 3 data - Alpha Energy

 

Figure 5.64: Verification Results for Stress Index 2 (Alpha Energy) – Group 3 

Max range = 2.3 

Min range = 0.2 

Max range = 13.5 

Min range = 1.5 



 
 

138 

 

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.20
4.40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

R
a
ti

o
 o

f 
B

et
a
 E

n
er

g
y
 (

%
)

Number of Subjects

Verification results for Group 4 - Beta Energy

 

Figure 5.65: Verification Results for Stress Index 2 (Beta Energy) – Group 4 
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Figure 5.66: Verification Results for Stress Index 2 (Alpha Energy) – Group 4 

 

In order to better understand the results of the verification for the assigned 

stress index, the number of subjects from each group belonging to the specified index, 

in terms of Alpha and Beta energy, is counted and plotted as shown by Figure 5.67. 

Based on the figure, the majority of the EEG data fall into the correct indices with the 

highest percentage at 92% and the lowest percentage at 80%. For example, in terms of 
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86 

80 

Beta energy, 86% of the EEG data in Group 2 is assigned with Index 3, and 80% of 

the EEG data of the Alpha energy in Group 2 is assigned with Index 3. Also, stress 

Index 1 that is assigned to Group 1 is verified to cover 82% of the EEG data of Beta 

energy belonging to the index, and 92% of the EEG data of Alpha energy belong to 

the assigned index. Meanwhile, 90% of EEG data of Beta energy for Group 3 belong 

to the assigned Index 3, and 85% of the data from Group 4 belong to the assigned 

Index 4. Therefore, based on the verification results, the assigned index can be 

concluded as a reliable stress index.  
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Figure 5.67: Verification Results for Stress Index Across the Groups 

 

Beside the determination of stress index using spectral centroids, the stress 

index is also established based on the results of the entropy of the EEG data from each 

participant in the group. Though the range of entropy is small (0.29 – 0.33), it can be 

used to verify the specified index and the stress verification process used is similar to 

that used to verify the index based on energy ratio. Figure 5.68 shows 14 out of 50 

(28%) EEG data in Group 1 is located outside the assigned stress Index 1, and Figure 

5.69 also shows 13 of the EEG data (26%) in Group 2 is located outside the assigned 

stress Index 3. Meanwhile, 8 out of 40 (20%) EEG data in Group 3 do not belong to 

the assigned stress Index 2 as illustrated by Figure 5.70, and 33%  or 13 out of 40  

EEG data in Group 4 do not belong to Index 2 as shown in Figure 5.71. The high 
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overlapping of data in the verification of stress index might due to the small range of 

the entropy across the group. 
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Figure 5.68: Verification Results for Stress Index 1, Group 1 based on Entropy  
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Figure 5.69: Verification Results for Stress Index 3, Group 2 based on Entropy 
 

Max range = 0.37 
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Figure 5.70: Verification Results for Stress Index 2, Group 3 based on Entropy 
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Figure 5.71: Verification Results for Stress Index 2, Group 4 based on Entropy 
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In order to see the affect of entropy on the verification of the stress index, the 

percentage of the entropy of the groups that satisfy the proposed stress index is plotted 

as shown in Figure 5.72. It is observed that Group 3 achieved 80% verification of the 

assigned stress index, while Group 1 and Group 2 both accomplished 76% and Group 

4 attained 70% verification. The lower verification percentage using entropy, 

compared to that using Alpha and Beta energy, might due to the small range of the 

entropy across the group, and also the overlapping of the EEG data might occur 

between the groups. The patterns of entropy of the experimental groups indicate that 

entropy can be used as one of the EEG features to indicate the  presence of stress in 

the groups. 

 

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4

P
er

ce
n

ta
g
e 

o
f 

E
n

tr
o
p

y
 

Experimental Group 

Percentage of Entropy per group that satisfy 

the proposed stress index

 
Figure 5.72: Verification Results for Stress Index Across the Groups using Entropy 

 

5.11 CHAPTER SUMMARY  

 

Various experiments were conducted to determine which feature could best 

detect stress in the group involved in the study. Various features from the spectral 

analysis of EEG signals are selected as input to k-NN classifier for the classification 

process. Based on the classification results, the best feature that could detect stress is 
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the relative energy ratio of the spectral density of EEG signals. In addition, the best 

classification setting is 70:30 training to testing ratio that is used with 180 EEG 

datasets that were obtained from 140 subjects, while the best classifier configurations  

to use are Euclidean distance and nearest rule. The performance of the classifier is 

tested for accuracy, sensitivity and specificity using confusion matrices. To support 

the k-NN classification results, the EEG features are clustered using FCM and FKM. 

In addition, ANOVA is applied to verify the robustness of classifier, and then, Pearson 

correlation is employed to determine the relationship among EEG features in the 

experimental groups and finally, the classifier is cross-validated using k-fold cross-

validation and leave-one-out cross-validation. Since the results of accuracy, sensitivity 

and specificity of the classifier using the selected EEG features are high including the 

performance of the cross-validation of the k-NN classifier, the proposed method in 

determination of stress index can be considered robust. Finally, a stress index is 

assigned to each group involved in the study based on the centroids, entropy and 

average energy ratio of Alpha and Beta bands of the EEG signals. From the results of 

the experiments, Index 1 is assigned to Group 1, Index 2 is assigned to Group 3 and 

Group 4, and Index 3 is assigned to Group 2.  

The index assignment is verified using the Z-score technique and by testing 

each data from each participant in the groups using Table 5.19 (Z-score specifications) 

in order to determine how many of them are accurately fall into their respective bins 

or assigned indices. The results of assigning stress index using Z-score technique as 

shown in Table 5.20, produce almost the similar index as stated in Table 5.18 

(assignment of stress index based on the selected EEG features). For the verification 

of the proposed index using the range of the energy ratio for each group, majority of 

the EEG data fall in to their respective indexes with a minimum verification results of 

80%. However, high verification results are not obtained when using entropy which 

might due to the small range of the entropy which is less than 0.05. The spectral 

centroid value excluded in the verification process since it is used to act as a target 

during classification process where the value of the centroid is unique.          

 

 

 

 

 



 
 

144 

 

CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS  

 

 

6.1 CONCLUSION 

 

This thesis presents the results of a study on the generation and performance of 

a stress index based on selected human EEG features using non-parametric technique 

by applying spectral centroid on the  relative energy ratio of EEG Alpha and Beta 

band. The level of stress of a person is numerically represented as Index 1 for low 

stress, Index 2 for moderate stress and Index 3 for high stress.  

The experimental results of the study confirmed that the proposed EEG 

features extraction technique and analysis using non-parametric (spectral) technique, 

capable of revealing the vital features that are buried in the non-stationary EEG 

signals that can be employed to determine human stress level. The EEG features 

extracted and analyzed are asymmetry ratio, energy ratio, spectral centroids and 

entropy, and these features were selected in this study as they can describe the change 

in neural activities precisely when the brain is stimulated with certain task. Besides, 

the selected features are widely used in recognizing human emotions and stress has 

been categorized as negative emotions. However, asymmetry ratio of the signals was 

not used in generating stress index due to its poor classification results. In addition, 

only the extracted features from EEG Beta and Alpha bands were analyzed and 

classified, as previous studies have found that the stress pattern can be indicated by an 

increase in Beta activity and a decrease in Alpha activity.  

This study has succeeded in producing a reliable stress index based on the high 

accuracy rate, sensitivity rate and specificity rate given by the k-NN classifier with 

small classification errors. The overall classification accuracy of 88.89%, 

classification sensitivity of 86.67% and classification specificity of 100% were 

obtained.  

Besides, the classification performance were measured at 78.89% and 83.5% 

using 10-fold cross-validation and leave-one-out cross-validation techniques, 

respectively. The good verification results of the stress index using Z-score technique 

have confirmed the realiability and solidness of the index. The verification of the 
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index was done on the energy ratios of Beta band and Alpha band and on the entropy 

of all groups. From the verification results, the majority of the EEG data fall into the 

proposed index with a minimum verification results of 86% for Index 3, 85% to 90% 

for Index 2 and  82% for Index 1 in terms of energy ratios of Beta band. Meanwhile, 

using energy ratios of Alpha band, 80% verification results were obtained for Index 3, 

80% to 88% for Index 2 and 92% for Index 1. However, the verification results using 

Shannon’s entropy only produces satisfactory results with 76% for Index 1 and Index 

3, and 70 to 80% for Index 2.  

In order to support the proposal of the stress index assignment, the selected 

features from the EEG signals were analyzed using ANOVA and Pearson correlation 

to check the significant difference within the group and between groups and linear 

correlation of the selected EEG features (Asymmetry and Relative Energy Ratio of 

EEG Alpha and Beta bands). The results obtained indicate that energy ratios Alpha 

and Theta bands have significant difference compared to energy ratios of Beta and 

Delta bands, but no significant difference is observed on asymmetry ratio of all EEG 

frequency bands. The results of the ANOVA are validated by the results shown by 

FCM and FKM clustering. The results from Pearson’s correlation suggest that the 

linear correlation exists between selected EEG features across the experimental groups 

with moderate strength. The  strength of Pearson correlation using asymmetry of 

Alpha and Beta bands is 0.629 with p < 0.05. Meanwhile, the correlation strength for 

the EEG features of energy ratios of Alpha and Beta band is slightly lower which is at 

0.576 with p < 0.05. Since the  statistical results of the selected EEG features are at 

moderate level, both features can be used for the classification processes. However, 

the higher classification accuracy rate was obtained using energy ratios compared to 

the classification results using asymmetry ratios.  

Beside statistical analyses, the assigned stress index are verified using Z-score 

technique and range of the EEG features in terms of energy ratios of Beta band, 

energy ratios of Alpha band and the range of entropy of the EEG data from each 

group.   

Even though this study has produced stress index with high accuracy, some 

improvement works need to be implemented to enhance the reliability of the index. 

The suggestions for future work are as follows.  
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6.2 RECOMMENDATIONS FOR FUTURE WORK  

 

The thesis has shown that a reliable stress index based on the energy spectral 

density of the EEG frequency bands can be implemented. This index can be 

recommended to be applied in various fields as stated below:- 

 

 Health sector 

In this field,  the index can be employed to measure the stress level a person 

using their brain signals. This index can be used not only for personal purpose, but for 

medical treatment as well where physicians, medical practitioners or psychologists 

can apply it to measure the stress level of their patients before providing a proper 

consultation and medication. For a real-time usage, a portable stress indicator device 

can be designed to measure and monitor human stress. The brain signal will be an 

input to the device, and using this proposed stress index, the stress index which 

represent the stress level can be displayed in the device. In order to make the subject 

feels comfortable and to eliminate unnecessary noises that might disturb the stress 

index, a wireless EEG sensors might be used.  

 

 Educational sector 

In educational sector, the proposed stress index might be used to monitor the 

stress level of students during lectures or examinations. The monitoring results will 

provide a proper feedback to the lecturers to improve their teaching styles or students 

potential. The index also can be applied to measure the stress level of the 

academicians or lecturers during lecture or preparing examination questions. 

 

 Engineering and Research sector 

In this field, as alternative method of analysis, the stress index can be 

visualized in terms of 2-D or 3-D images to produce a better and comprehensive stress 

index. This study has been implemented based on the analysis of the brain signals in 

two difference cognitive states: relax (not doing anything) and answering IQ tests. 

Therefore, this study can be extended by studying various cognitive states and 

stimulation to the brain such as measuring stress during mental tasks or taking 

important examination. Besides, various EEG features can be explored other than 

asymmetry ratio, energy ratio, spectral centroids and entropy that were used in this 
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study. This study applied threshold technique to remove the noise especially EOG 

signals by specifying the characteristics of the EEG signals to set-up the threshold 

parameters. In future, the EEG signals, EOG signals and ECG signals might be 

combined and used simultaneously. Then, Independent Component Analysis (ICA) 

technique can be employed to differentiate EEG signals from its interference signals 

in order to produce really clean EEG signals for the next process or unique patterns 

from the combined signals can be used for analysis. 
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APPENDIX A 

Human Subject Demographic Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

169 

 

 

 

 

 

 



 
 

170 

 

 

 

 

 

 



 
 

171 

 

APPENDIX B 

Example of IQ Test Questionnaires – Non-Verbal Assessment 
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APPENDIX C 

1. EEG Energy Spectral Density Across Frequency Bands for Group 1 

 

Subject Delta_R Delta_L Theta_R Theta_L Alpha_R Alpha_L Beta_R Beta_L 

1 1618.47 1882.19 491.75 556.20 287.86 321.97 48.02 61.78 

2 2231.18 3136.05 474.52 493.69 105.86 89.38 46.06 34.70 

3 2773.13 2490.88 486.19 435.95 220.89 202.13 100.59 94.47 

4 15824.54 10467.58 984.34 819.27 242.02 221.05 66.20 66.68 

5 2831.32 5749.47 903.03 1416.69 775.43 940.27 68.00 100.59 

6 19718.88 18917.70 2272.11 2158.44 616.71 637.93 71.23 88.38 

7 8007.66 7858.84 1562.72 1545.04 609.16 581.96 86.11 72.73 

8 10148.42 5174.07 1230.09 974.32 1083.59 913.24 89.66 91.69 

9 6826.18 4377.86 759.30 799.18 156.75 151.08 41.37 42.75 

10 1141.56 1496.53 715.73 678.20 1208.01 846.99 147.89 131.23 

11 19920.63 11745.43 1289.05 1139.61 443.26 416.23 68.74 62.89 

12 2457.13 5136.64 775.83 1032.80 472.76 586.19 80.08 85.59 

13 9670.18 9285.50 1443.93 1441.63 422.94 462.42 114.77 115.32 

14 9753.67 8583.19 1850.53 1683.97 639.77 604.75 63.50 63.53 

15 3579.32 2745.33 906.11 693.13 569.16 434.17 81.89 93.39 

16 2720.52 1747.57 644.74 473.02 334.59 330.58 45.52 53.24 

17 3156.58 2589.01 536.01 710.24 247.36 328.40 32.68 34.93 

18 1712.52 2172.49 692.09 791.15 1373.65 1420.97 58.24 63.11 

19 7343.46 9387.98 1550.52 1903.78 325.09 405.39 36.96 48.37 

20 4319.01 5253.46 720.62 937.67 502.89 530.87 37.43 37.01 

21 5629.64 8256.46 1468.24 1617.84 1051.36 902.88 73.80 61.70 

22 4634.11 3570.46 437.61 621.87 80.45 136.68 36.83 46.20 

23 4825.55 2978.56 612.00 462.99 396.94 389.47 46.44 55.70 

24 20367.76 19237.78 4614.00 3693.95 937.35 626.45 104.32 71.66 

25 4088.28 4205.23 883.15 889.50 785.14 713.76 99.15 88.88 

26 3059.17 2314.77 675.24 594.47 408.57 360.84 42.46 50.91 

27 3899.05 3177.60 738.36 842.99 502.06 619.80 109.67 125.53 

28 2874.56 2510.90 1051.76 978.51 2175.57 2105.68 105.96 104.03 

29 13883.16 12864.18 1237.47 1123.10 400.12 360.35 76.22 78.67 

30 1783.72 2486.09 944.77 767.77 924.37 706.64 61.16 61.51 

31 8271.91 7304.96 1347.41 1357.08 1130.80 1322.13 70.80 76.24 

32 3965.14 5348.45 1062.69 1043.51 885.71 725.42 73.07 74.56 

33 3919.85 4785.80 512.11 556.42 181.57 165.04 49.92 52.84 

34 4285.02 4028.12 648.20 623.56 303.64 318.68 58.36 49.73 

35 5238.72 3040.23 693.11 614.36 373.54 425.55 42.55 59.64 

36 5551.34 9972.65 817.90 1179.53 699.56 721.35 226.76 164.21 

37 7376.82 4337.33 1499.60 1119.94 599.90 511.12 83.50 63.52 

38 6632.90 6856.55 1110.19 1286.89 708.31 703.65 39.17 43.33 

39 13219.73 16136.94 1000.32 2530.05 207.95 539.09 68.91 142.71 
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40 2537.49 2819.50 474.10 593.61 301.38 332.42 127.19 125.17 

41 3179.76 5199.47 539.94 726.07 482.99 557.10 47.07 43.37 

42 4045.63 10809.52 1440.35 2192.67 1353.08 1371.77 51.55 54.72 

43 2806.92 5752.25 899.88 1423.35 782.73 945.46 69.50 102.45 

44 7334.46 9402.30 1550.69 1908.49 325.40 403.03 38.93 50.45 

45 4646.60 3616.35 440.37 625.36 82.56 138.51 38.58 48.46 

46 20423.85 19304.02 4627.89 3706.87 941.83 629.94 106.14 74.33 

47 5242.16 3043.33 694.76 614.23 376.42 427.75 44.44 61.95 

48 5555.06 9953.09 821.67 1185.21 702.78 722.70 228.68 164.88 

49 7383.20 4335.49 1502.05 1122.67 602.64 509.91 85.29 65.05 

50 13219.89 16103.30 1001.33 2541.57 208.76 544.68 70.50 145.34 

 

 

2. EEG Energy Spectral Density Across Frequency Bands for Group 2 

 

 

Subject Delta_R Delta_L Theta_R Theta_L Alpha_R Alpha_L Beta_R Beta_L 

1 10206.90 7942.12 1890.31 1617.02 564.67 496.70 384.16 303.82 

2 25824.87 23602.12 5976.11 5420.75 1528.56 1428.45 349.62 297.47 

3 7957.24 6471.60 1580.71 1346.68 350.20 416.70 109.19 176.20 

4 11715.45 7847.78 2538.35 1850.65 550.04 383.18 575.74 183.97 

5 13725.09 17980.57 3383.51 4143.68 747.99 822.15 479.08 422.08 

6 8010.86 7177.60 1880.11 1684.32 341.59 326.38 84.67 90.53 

7 9564.84 8401.29 2039.69 1968.67 398.19 421.18 97.03 125.45 

8 6073.68 6442.81 1149.19 1319.47 267.05 310.03 92.60 108.68 

9 5360.78 4842.79 1318.82 1222.29 387.47 433.35 178.09 252.99 

10 21996.95 16554.16 4875.73 4219.34 1177.16 1075.42 802.00 793.60 

11 13930.89 12808.59 2280.16 2263.39 554.72 609.73 270.25 449.87 

12 14058.72 12611.46 3197.90 2962.65 1099.55 1214.72 234.13 173.18 

13 5491.67 6444.69 1224.68 1139.73 285.81 263.37 66.69 65.63 

14 6577.91 7039.22 1766.76 2046.02 364.21 401.14 97.77 85.76 

15 26486.44 28533.36 6477.70 6772.10 1369.96 1505.31 189.59 224.43 

16 11435.20 12834.18 3149.44 3950.40 695.40 795.11 107.31 103.62 

17 12981.80 12144.45 2801.76 2597.48 639.22 624.86 159.93 189.41 

18 8374.07 9830.59 1952.74 2443.03 364.64 437.77 78.23 73.33 

19 12262.37 13094.96 2045.77 2261.71 423.15 435.81 111.48 100.93 

20 9536.36 7023.68 1943.27 1663.28 401.93 390.28 88.95 101.65 

21 16207.15 21560.77 3231.42 4351.95 662.72 868.47 171.89 175.83 

22 12399.96 11909.80 1586.94 1811.09 370.77 405.39 190.79 108.60 

23 5363.04 4943.64 1146.52 1013.25 264.20 225.53 90.64 124.11 

24 10023.99 7400.09 1921.46 1550.69 394.89 323.44 120.00 119.98 

25 7246.18 5942.19 1481.10 1182.54 274.85 233.94 68.50 64.09 

26 5572.87 6952.59 1047.89 984.01 163.10 139.47 101.95 62.69 

27 13092.22 12513.42 2272.24 2213.73 466.72 460.56 107.70 117.02 
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28 9228.59 11488.58 2045.21 2342.59 465.77 496.41 136.93 219.27 

29 13181.27 14152.85 2641.65 2851.57 471.93 493.03 121.55 106.19 

30 10389.74 17031.07 2089.40 2841.39 431.83 534.32 130.24 124.60 

31 10212.65 12598.95 2353.92 4351.17 604.51 1314.25 411.53 573.90 

32 16075.55 13073.72 4469.26 3630.80 924.62 750.41 293.80 185.55 

33 17643.95 15627.80 3339.50 2953.03 732.36 657.70 175.83 159.52 

34 27873.14 31035.08 5403.91 5970.54 888.87 934.50 216.43 227.00 

35 22944.28 13382.91 4818.05 2788.17 987.54 498.69 270.29 143.34 

36 14208.82 21319.63 2858.68 4578.92 674.43 1100.48 104.65 212.93 

37 20801.06 12250.92 4679.41 2412.94 1045.20 517.75 367.86 161.21 

38 20567.00 29234.34 5927.21 9031.21 1583.40 2208.87 231.94 305.31 

39 10020.11 6969.38 2316.58 1570.54 497.84 369.81 118.27 277.98 

40 21971.92 19780.97 4441.23 3855.73 857.80 725.61 172.52 146.63 

41 19299.50 18796.48 5247.92 3968.97 1302.53 729.76 209.63 113.08 

42 17828.93 14932.07 3202.41 2814.04 614.45 512.89 110.83 107.17 

43 7410.39 7663.51 1802.64 1861.65 398.20 394.77 140.70 127.25 

44 9973.64 11664.96 2195.34 2397.61 479.78 529.32 136.26 341.35 

45 9608.48 10054.22 2130.51 2247.21 738.40 902.21 592.81 1182.41 

46 6367.99 4250.47 1178.00 901.06 268.29 199.24 113.62 50.51 

47 32555.94 15049.54 6393.62 3621.10 1119.65 671.80 172.27 134.93 

48 11829.16 7813.02 2541.33 1850.05 541.20 376.05 561.44 191.10 

49 9370.02 11374.06 2067.09 2337.87 475.54 504.59 140.55 220.40 

50 6814.23 4879.71 1284.49 1097.39 293.21 254.53 118.60 65.23 
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3. EEG Energy Spectral Density Across Frequency Bands for Group 3 

 

 

Subject Delta_R Delta_L Theta_R Theta_L Alpha_R Alpha_L Beta_R Beta_L 

1 6833.62 2600.97 511.56 458.79 273.43 300.54 63.60 70.95 

2 5933.96 10810.80 867.00 1496.21 225.85 314.93 82.28 90.33 

3 6317.49 5952.59 928.83 952.65 310.52 257.19 72.46 63.87 

4 5143.10 3386.42 866.62 658.50 252.83 290.27 65.39 60.17 

5 4099.96 2418.17 1140.67 1275.88 1208.42 1808.85 225.03 453.16 

6 2493.82 2893.84 603.62 602.35 325.76 333.43 73.27 80.68 

7 1480.99 2443.67 916.23 1052.42 764.84 896.74 60.71 115.43 

8 3389.62 3598.15 517.29 633.46 214.93 229.22 64.54 60.39 

9 8461.04 6822.72 1181.80 1020.44 268.19 260.72 43.92 50.89 

10 21955.19 14925.21 4241.45 2457.01 1007.08 672.33 140.51 90.27 

11 6943.64 15058.75 1067.66 1542.51 191.86 205.46 39.36 37.98 

12 8910.71 10413.40 1361.68 1550.39 441.52 446.76 51.61 46.02 

13 6643.71 5810.36 807.48 678.57 599.89 576.85 70.31 45.27 

14 17612.69 18836.47 3954.38 4744.28 1215.77 1280.81 131.94 139.99 

15 2344.59 3142.66 1150.41 1236.00 960.32 860.30 69.31 75.87 

16 5798.05 6765.13 1162.41 1123.23 401.03 355.80 105.47 105.34 

17 1977.39 1976.37 606.00 525.67 657.27 495.09 123.47 99.00 

18 1234.44 1714.47 304.27 322.66 209.30 209.93 23.77 31.33 

19 2997.69 4329.07 795.52 942.31 523.60 564.02 62.38 66.22 

20 13113.07 12467.68 2816.10 2697.51 2444.91 2472.07 151.42 81.70 

21 14489.86 17348.12 1470.19 1643.48 212.87 240.53 48.81 62.85 

22 2860.04 2739.90 470.73 420.10 104.21 100.92 30.41 31.78 

23 7707.98 9762.32 1649.79 1580.60 330.19 628.86 89.52 95.21 

24 11550.11 9651.30 1853.93 1653.71 566.13 455.72 92.80 61.08 

25 3073.15 3578.25 559.83 688.53 272.40 331.31 40.96 58.59 

26 10814.19 10248.18 1711.49 1799.00 188.88 220.72 54.72 48.91 

27 2909.07 4037.85 558.54 611.47 188.55 177.39 19.70 20.91 

28 2397.83 3649.20 490.02 868.57 638.77 848.93 57.07 124.17 

29 1234.44 1714.47 304.27 322.66 209.30 209.93 23.77 31.33 

30 6828.94 2601.53 513.06 461.21 274.88 302.84 65.01 72.74 

31 5913.14 10786.76 869.29 1497.53 227.41 316.49 83.56 92.87 

32 5150.35 3386.97 869.75 660.75 254.77 292.58 67.77 61.85 

33 9428.42 8567.82 1430.76 1691.55 691.82 822.69 80.50 94.40 

34 8470.56 6808.55 1183.87 1025.82 270.63 263.02 45.90 52.66 

35 21978.84 14800.64 4220.47 2460.84 1001.51 679.02 143.47 92.96 

36 17777.25 18931.44 3968.65 4766.11 1220.41 1289.90 133.61 141.16 

37 1976.79 1979.59 609.73 531.67 660.02 499.43 125.05 100.99 

38 2995.56 4336.21 799.27 945.92 525.88 566.19 64.65 68.48 

39 2856.82 2735.43 474.12 422.24 106.98 103.27 32.12 33.57 

40 2910.27 4034.26 563.62 614.02 192.05 180.76 21.50 22.57 
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4. EEG Energy Spectral Density Across Frequency Bands for Group 4 

 

Subject Delta_R Delta_L Theta_R Theta_L Alpha_R Alpha_L Beta_R Beta_L 

1 2536.47 2373.52 480.71 732.20 453.99 527.28 87.09 119.73 

2 8495.61 5617.62 1131.90 1002.20 254.08 298.89 76.38 77.64 

3 9238.77 17031.21 1700.18 3089.75 386.52 706.12 124.87 187.06 

4 1631.86 1925.13 617.25 702.20 191.93 219.82 38.39 39.57 

5 19566.36 17304.76 4211.93 3699.38 955.03 808.37 105.80 110.11 

6 2817.33 2575.47 520.91 484.83 289.36 284.86 71.76 70.69 

7 24286.47 29577.74 3325.16 4838.71 623.70 821.11 82.32 104.53 

8 4579.85 3645.63 1635.91 1476.28 962.43 989.66 56.12 53.03 

9 2994.12 3850.07 469.41 569.82 318.12 346.08 52.86 82.53 

10 4569.33 3330.57 737.32 644.97 206.34 193.98 49.01 47.25 

11 11758.42 10639.25 2292.67 2072.77 667.17 604.46 79.63 99.76 

12 36116.25 29284.58 4691.99 4154.16 624.13 560.36 111.60 120.98 

13 3791.65 2995.82 595.11 662.10 365.40 368.04 56.76 47.05 

14 2144.19 1860.72 434.61 355.85 151.51 133.49 35.75 31.10 

15 10961.58 8202.66 2837.98 2122.56 2155.14 1444.05 166.29 142.02 

16 2582.38 3597.38 913.92 1033.50 1047.99 940.22 60.47 54.82 

17 2567.53 2524.93 625.72 646.84 323.50 337.73 66.87 78.58 

18 1560.57 1313.44 503.25 423.56 541.55 401.40 113.41 85.64 

19 901.08 850.75 397.79 392.42 451.38 433.61 46.36 53.16 

20 3408.33 4806.03 1598.30 1666.17 1042.39 1014.80 70.39 68.94 

21 11058.17 13866.99 2844.98 2937.99 2395.33 2498.87 125.70 84.79 

22 2483.16 1695.53 452.03 375.94 113.85 110.29 35.24 37.42 

23 2003.99 2116.17 315.51 355.94 83.56 103.62 34.58 39.00 

24 7393.93 5077.15 984.75 957.74 276.95 285.37 83.98 76.40 

25 19149.30 16138.09 4097.87 3561.21 972.76 743.63 109.51 78.37 

26 1496.19 1824.47 380.97 432.95 161.21 188.98 34.01 48.04 

27 10572.83 9075.25 2418.46 2043.82 244.00 212.50 61.06 38.25 

28 2022.72 2623.90 636.65 526.93 192.64 163.03 40.14 35.51 

29 1988.26 1358.41 616.84 540.71 1092.51 1230.24 75.69 117.42 

30 2542.35 2374.71 483.66 733.34 456.45 529.58 89.06 121.72 

31 8479.25 5613.80 1132.80 1004.70 256.66 300.67 78.40 79.82 

32 19597.17 17311.15 4232.42 3708.62 959.48 815.75 108.29 112.33 

33 23918.38 29330.58 3285.39 4779.63 627.26 815.66 84.29 105.77 

34 4578.21 3326.10 740.19 643.79 209.64 195.83 51.62 48.87 

35 11772.51 10665.71 2315.47 2088.78 679.13 603.25 80.64 102.79 

36 10924.93 8226.00 2839.70 2135.64 2160.68 1447.80 167.60 26.64 

37 1562.99 1318.70 504.19 426.71 544.05 402.75 115.19 87.44 

38 3401.49 4788.99 1604.28 1667.08 1047.87 1016.97 72.03 70.73 

39 1997.46 2114.61 319.30 357.61 86.76 104.63 36.90 40.40 

40 10571.38 9063.61 2415.67 2042.77 245.42 214.14 62.46 39.84 
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5. EEG Features – Normalization of EEG Asymmetry Ratio for Group 1 

 

 

Subject Asym_Delta Asym_Theta Asym_Alpha Asym_Beta 

1 -0.08 -0.06 -0.06 -0.13 

2 -0.17 -0.02 0.08 0.14 

3 0.05 0.05 0.04 0.03 

4 0.20 0.09 0.05 0.00 

5 -0.34 -0.22 -0.10 -0.19 

6 0.02 0.03 -0.02 -0.11 

7 0.01 0.01 0.02 0.08 

8 0.32 0.12 0.09 -0.01 

9 0.22 -0.03 0.02 -0.02 

10 -0.13 0.03 0.18 0.06 

11 0.26 0.06 0.03 0.04 

12 -0.35 -0.14 -0.11 -0.03 

13 0.02 0.00 -0.04 0.00 

14 0.06 0.05 0.03 0.00 

15 0.13 0.13 0.13 -0.07 

16 0.22 0.15 0.01 -0.08 

17 0.10 -0.14 -0.14 -0.03 

18 -0.12 -0.07 -0.02 -0.04 

19 -0.12 -0.10 -0.11 -0.13 

20 -0.10 -0.13 -0.03 0.01 

21 -0.19 -0.05 0.08 0.09 

22 0.13 -0.17 -0.26 -0.11 

23 0.24 0.14 0.01 -0.09 

24 0.03 0.11 0.20 0.19 

25 -0.01 0.00 0.05 0.05 

26 0.14 0.06 0.06 -0.09 

27 0.10 -0.07 -0.10 -0.07 

28 0.07 0.04 0.02 0.01 

29 0.04 0.05 0.05 -0.02 

30 -0.16 0.10 0.13 0.00 

31 0.06 0.00 -0.08 -0.04 

32 -0.15 0.01 0.10 -0.01 

33 -0.10 -0.04 0.05 -0.03 

34 0.03 0.02 -0.02 0.08 

35 0.27 0.06 -0.07 -0.17 

36 -0.28 -0.18 -0.02 0.16 

37 0.26 0.14 0.08 0.14 

38 -0.02 -0.07 0.00 -0.05 

39 -0.10 -0.43 -0.44 -0.35 

40 -0.05 -0.11 -0.05 0.01 

41 -0.24 -0.15 -0.07 0.04 
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42 -0.46 -0.21 -0.01 -0.03 

43 -0.34 -0.23 -0.09 -0.19 

44 -0.12 -0.10 -0.11 -0.13 

45 0.12 -0.17 -0.25 -0.11 

46 0.03 0.11 0.20 0.18 

47 0.27 0.06 -0.06 -0.16 

48 -0.28 -0.18 -0.01 0.16 

49 0.26 0.14 0.08 0.13 

50 -0.10 -0.43 -0.45 -0.35 
 

 

6. EEG Features – Normalization of EEG Asymmetry Ratio for Group 2 

 

 

Subject Asym_Delta Asym_Theta Asym_Alpha Asym_Beta 

1 0.12 0.08 0.06 0.12 

2 0.04 0.05 0.03 0.08 

3 0.10 0.08 -0.09 -0.23 

4 0.20 0.16 0.18 0.52 

5 -0.13 -0.10 -0.05 0.06 

6 0.05 0.05 0.02 -0.03 

7 0.06 0.02 -0.03 -0.13 

8 -0.03 -0.07 -0.07 -0.08 

9 0.05 0.04 -0.06 -0.17 

10 0.14 0.07 0.05 0.01 

11 0.04 0.00 -0.05 -0.25 

12 0.05 0.04 -0.05 0.15 

13 -0.08 0.04 0.04 0.01 

14 -0.03 -0.07 -0.05 0.07 

15 -0.04 -0.02 -0.05 -0.08 

16 -0.06 -0.11 -0.07 0.02 

17 0.03 0.04 0.01 -0.08 

18 -0.08 -0.11 -0.09 0.03 

19 -0.03 -0.05 -0.01 0.05 

20 0.15 0.08 0.01 -0.07 

21 -0.14 -0.15 -0.13 -0.01 

22 0.02 -0.07 -0.04 0.27 

23 0.04 0.06 0.08 -0.16 

24 0.15 0.11 0.10 0.00 

25 0.10 0.11 0.08 0.03 

26 -0.11 0.03 0.08 0.24 

27 0.02 0.01 0.01 -0.04 

28 -0.11 -0.07 -0.03 -0.23 

29 -0.04 -0.04 -0.02 0.07 

30 -0.24 -0.15 -0.11 0.02 
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31 -0.10 -0.30 -0.37 -0.16 

32 0.10 0.10 0.10 0.23 

33 0.06 0.06 0.05 0.05 

34 -0.05 -0.05 -0.03 -0.02 

35 0.26 0.27 0.33 0.31 

36 -0.20 -0.23 -0.24 -0.34 

37 0.26 0.32 0.34 0.39 

38 -0.17 -0.21 -0.16 -0.14 

39 0.18 0.19 0.15 -0.40 

40 0.05 0.07 0.08 0.08 

41 0.01 0.14 0.28 0.30 

42 0.09 0.06 0.09 0.02 

43 -0.02 -0.02 0.00 0.05 

44 -0.08 -0.04 -0.05 -0.43 

45 -0.02 -0.03 -0.10 -0.33 

46 0.20 0.13 0.15 0.38 

47 0.37 0.28 0.25 0.12 

48 0.20 0.16 0.18 0.49 

49 -0.10 -0.06 -0.03 -0.22 

50 0.17 0.08 0.07 0.29 
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7. EEG Features – Normalization of EEG Asymmetry Ratio for Group 3 

 

 

Subject Asym_Delta Asym_Theta Asym_Alpha Asym_Beta 

1 0.45 0.05 -0.05 -0.05 

2 -0.29 -0.27 -0.16 -0.05 

3 0.03 -0.01 0.09 0.06 

4 0.21 0.14 -0.07 0.04 

5 0.26 -0.06 -0.20 -0.34 

6 -0.07 0.00 -0.01 -0.05 

7 -0.25 -0.07 -0.08 -0.31 

8 -0.03 -0.10 -0.03 0.03 

9 0.11 0.07 0.01 -0.07 

10 0.19 0.27 0.20 0.22 

11 -0.37 -0.18 -0.03 0.02 

12 -0.08 -0.06 -0.01 0.06 

13 0.07 0.09 0.02 0.22 

14 -0.03 -0.09 -0.03 -0.03 

15 -0.15 -0.04 0.05 -0.05 

16 -0.08 0.02 0.06 0.00 

17 0.00 0.07 0.14 0.11 

18 -0.16 -0.03 0.00 -0.14 

19 -0.18 -0.08 -0.04 -0.03 

20 0.03 0.02 -0.01 0.30 

21 -0.09 -0.06 -0.06 -0.13 

22 0.02 0.06 0.02 -0.02 

23 -0.12 0.02 -0.31 -0.03 

24 0.09 0.06 0.11 0.21 

25 -0.08 -0.10 -0.10 -0.18 

26 0.03 -0.02 -0.08 0.06 

27 -0.16 -0.05 0.03 -0.03 

28 -0.21 -0.28 -0.14 -0.37 

29 -0.16 -0.03 0.00 -0.14 

30 0.45 0.05 -0.05 -0.06 

31 -0.29 -0.27 -0.16 -0.05 

32 0.21 0.14 -0.07 0.05 

33 0.05 -0.08 -0.09 -0.08 

34 0.11 0.07 0.01 -0.07 

35 0.20 0.26 0.19 0.21 

36 -0.03 -0.09 -0.03 -0.03 

37 0.00 0.07 0.14 0.11 

38 -0.18 -0.08 -0.04 -0.03 

39 0.02 0.06 0.02 -0.02 

40 -0.16 -0.04 0.03 -0.02 
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8. EEG Features – Normalization of EEG Asymmetry Ratio for Group 4 

 

 

Subject Asym_Delta Asym_Theta Asym_Alpha Asym_Beta 

1 0.03 -0.21 -0.07 -0.16 

2 0.20 0.06 -0.08 -0.01 

3 -0.30 -0.29 -0.29 -0.20 

4 -0.08 -0.06 -0.07 -0.02 

5 0.06 0.06 0.08 -0.02 

6 0.04 0.04 0.01 0.01 

7 -0.10 -0.19 -0.14 -0.12 

8 0.11 0.05 -0.01 0.03 

9 -0.13 -0.10 -0.04 -0.22 

10 0.16 0.07 0.03 0.02 

11 0.05 0.05 0.05 -0.11 

12 0.10 0.06 0.05 -0.04 

13 0.12 -0.05 0.00 0.09 

14 0.07 0.10 0.06 0.07 

15 0.14 0.14 0.20 0.08 

16 -0.16 -0.06 0.05 0.05 

17 0.01 -0.02 -0.02 -0.08 

18 0.09 0.09 0.15 0.14 

19 0.03 0.01 0.02 -0.07 

20 -0.17 -0.02 0.01 0.01 

21 -0.11 -0.02 -0.02 0.19 

22 0.19 0.09 0.02 -0.03 

23 -0.03 -0.06 -0.11 -0.06 

24 0.19 0.01 -0.01 0.05 

25 0.09 0.07 0.13 0.17 

26 -0.10 -0.06 -0.08 -0.17 

27 0.08 0.08 0.07 0.23 

28 -0.13 0.09 0.08 0.06 

29 0.19 0.07 -0.06 -0.22 

30 0.03 -0.21 -0.07 -0.15 

31 0.20 0.06 -0.08 -0.01 

32 0.06 0.07 0.08 -0.02 

33 -0.10 -0.19 -0.13 -0.11 

34 0.16 0.07 0.03 0.03 

35 0.05 0.05 0.06 -0.12 

36 0.14 0.14 0.20 0.73 

37 0.08 0.08 0.15 0.14 

38 -0.17 -0.02 0.01 0.01 

39 -0.03 -0.06 -0.09 -0.05 

40 0.08 0.08 0.07 0.22 
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9. EEG Features – Relative Energy Ratio for Group 
 

 

Delta_log_ratio Theta_log_ratio Alpha_log_ratio Beta_log_ratio 

0.18 0.70 0.94 1.68 

0.09 0.83 1.53 1.91 

0.11 0.87 1.21 1.54 

0.04 1.20 1.79 2.33 

0.17 0.74 0.87 1.88 

0.06 1.00 1.55 2.45 

0.11 0.82 1.23 2.11 

0.11 0.95 0.99 2.04 

0.07 0.93 1.63 2.19 

0.38 0.66 0.49 1.36 

0.04 1.16 1.61 2.43 

0.15 0.77 1.00 1.81 

0.08 0.90 1.41 2.00 

0.10 0.82 1.27 2.26 

0.16 0.76 0.96 1.72 

0.15 0.75 0.98 1.81 

0.12 0.79 1.12 2.05 

0.33 0.75 0.47 1.83 

0.10 0.78 1.46 2.39 

0.11 0.87 1.08 2.22 

0.14 0.79 0.99 2.15 

0.07 0.96 1.64 2.06 

0.10 0.96 1.09 1.98 

0.10 0.78 1.50 2.45 

0.15 0.82 0.89 1.80 

0.15 0.77 0.99 1.91 

0.15 0.80 0.95 1.63 

0.34 0.77 0.44 1.75 

0.05 1.10 1.60 2.29 

0.26 0.65 0.68 1.80 

0.13 0.89 0.93 2.15 

0.15 0.80 0.91 1.95 

0.07 0.98 1.47 2.00 

0.09 0.91 1.22 1.98 

0.10 0.90 1.12 2.01 

0.10 0.99 1.13 1.69 

0.12 0.77 1.15 2.03 

0.11 0.86 1.09 2.32 

0.06 0.98 1.66 2.20 

0.14 0.84 1.06 1.46 

0.11 0.93 1.02 2.08 
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0.16 0.77 0.89 2.30 

0.17 0.74 0.87 1.87 

0.10 0.78 1.46 2.37 

0.07 0.96 1.64 2.04 

0.10 0.78 1.50 2.44 

0.10 0.90 1.12 1.99 

0.10 0.98 1.13 1.69 

0.12 0.77 1.15 2.02 

0.06 0.98 1.65 2.20 

 

 

10. EEG Features – Relative Energy Ratio for Group 2 

 

Delta_log_ratio Theta_log_ratio Alpha_log_ratio Beta_log_ratio 

0.11 0.82 1.34 1.53 

0.12 0.75 1.34 2.00 

0.11 0.80 1.38 1.81 

0.12 0.77 1.44 1.53 

0.12 0.74 1.42 1.67 

0.11 0.74 1.47 2.05 

0.11 0.76 1.45 2.01 

0.10 0.81 1.44 1.89 

0.14 0.74 1.23 1.51 

0.13 0.75 1.36 1.51 

0.09 0.86 1.45 1.66 

0.12 0.76 1.19 1.94 

0.10 0.80 1.44 2.05 

0.13 0.68 1.38 2.00 

0.11 0.73 1.40 2.24 

0.13 0.67 1.35 2.20 

0.11 0.77 1.41 1.96 

0.11 0.73 1.47 2.19 

0.08 0.85 1.55 2.16 

0.11 0.77 1.43 2.05 

0.10 0.79 1.49 2.13 

0.07 0.93 1.57 1.98 

0.11 0.79 1.43 1.79 

0.10 0.80 1.48 1.96 

0.10 0.79 1.51 2.09 

0.08 0.87 1.70 1.96 

0.09 0.84 1.53 2.14 

0.11 0.78 1.44 1.87 

0.10 0.79 1.55 2.17 

0.09 0.83 1.54 2.12 
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0.15 0.68 1.23 1.52 

0.13 0.69 1.37 1.91 

0.09 0.82 1.47 2.09 

0.09 0.80 1.60 2.21 

0.10 0.78 1.49 2.04 

0.10 0.78 1.40 2.15 

0.11 0.77 1.43 1.90 

0.14 0.66 1.26 2.11 

0.12 0.76 1.41 1.75 

0.09 0.80 1.52 2.21 

0.12 0.73 1.39 2.19 

0.09 0.82 1.55 2.26 

0.12 0.73 1.40 1.87 

0.11 0.78 1.44 1.76 

0.14 0.80 1.22 1.19 

0.10 0.81 1.45 1.91 

0.10 0.78 1.52 2.29 

0.12 0.77 1.45 1.53 

0.11 0.78 1.43 1.87 

0.10 0.79 1.43 1.91 
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11. EEG Features – Relative Energy Ratio for Group 3 

 

 

Delta_log_ratio Theta_log_ratio Alpha_log_ratio Beta_log_ratio 

0.07 1.06 1.29 1.92 

0.07 0.92 1.56 2.06 

0.08 0.90 1.42 2.04 

0.10 0.85 1.30 1.93 

0.29 0.72 0.62 1.27 

0.14 0.79 1.05 1.68 

0.29 0.59 0.67 1.64 

0.10 0.88 1.29 1.84 

0.07 0.92 1.53 2.28 

0.09 0.83 1.43 2.29 

0.06 0.98 1.80 2.51 

0.08 0.90 1.42 2.38 

0.09 1.01 1.11 2.12 

0.12 0.74 1.28 2.25 

0.25 0.62 0.73 1.83 

0.10 0.84 1.32 1.88 

0.21 0.76 0.75 1.46 

0.14 0.81 0.99 1.87 

0.15 0.77 0.98 1.90 

0.15 0.82 0.87 2.19 

0.05 1.06 1.89 2.50 

0.08 0.88 1.52 2.04 

0.10 0.83 1.36 2.07 

0.09 0.87 1.40 2.23 

0.11 0.84 1.15 1.94 

0.08 0.85 1.79 2.38 

0.09 0.86 1.37 2.32 

0.18 0.82 0.79 1.70 

0.14 0.81 0.99 1.87 

0.07 1.06 1.28 1.91 

0.07 0.92 1.56 2.05 

0.10 0.85 1.29 1.92 

0.10 0.86 1.18 2.12 

0.07 0.91 1.53 2.26 

0.09 0.83 1.43 2.28 

0.12 0.74 1.28 2.24 

0.21 0.75 0.75 1.46 

0.15 0.77 0.97 1.89 

0.08 0.88 1.51 2.01 

0.09 0.86 1.36 2.29 
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12. EEG Features – Relative Energy Ratio for Group 4 

 

 

Delta_log_ratio Theta_log_ratio Alpha_log_ratio Beta_log_ratio 

0.17 0.78 0.87 1.55 

0.08 0.90 1.49 2.04 

0.09 0.83 1.47 2.02 

0.18 0.61 1.12 1.84 

0.10 0.77 1.42 2.34 

0.12 0.85 1.09 1.70 

0.07 0.89 1.64 2.53 

0.21 0.63 0.84 2.09 

0.10 0.92 1.12 1.81 

0.09 0.85 1.39 2.01 

0.10 0.81 1.35 2.20 

0.06 0.93 1.81 2.51 

0.12 0.85 1.08 1.93 

0.11 0.81 1.26 1.89 

0.17 0.75 0.89 1.96 

0.22 0.72 0.71 1.95 

0.15 0.75 1.04 1.69 

0.24 0.73 0.72 1.40 

0.30 0.65 0.60 1.55 

0.22 0.62 0.82 1.99 

0.16 0.79 0.86 2.23 

0.10 0.81 1.37 1.86 

0.09 0.88 1.43 1.84 

0.08 0.89 1.43 1.97 

0.10 0.77 1.42 2.38 

0.14 0.75 1.12 1.75 

0.10 0.74 1.73 2.40 

0.13 0.73 1.24 1.92 

0.32 0.78 0.48 1.56 

0.17 0.78 0.87 1.54 

0.08 0.90 1.48 2.03 

0.10 0.77 1.42 2.33 

0.07 0.89 1.64 2.52 

0.09 0.85 1.38 1.99 

0.10 0.81 1.34 2.19 

0.16 0.75 0.89 2.16 

0.24 0.73 0.72 1.39 

0.22 0.62 0.82 1.98 

0.09 0.87 1.42 1.82 

0.10 0.74 1.73 2.38 
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13. EEG Features – Entropy for Group 1, 2, 3, 4 

 

 

Entropy 

G1 

Entropy 

G2 

Entropy 

G3 

Entropy 

G4 

0.40 0.32 0.24 0.41 

0.26 0.30 0.23 0.25 

0.32 0.30 0.26 0.27 

0.15 0.32 0.29 0.38 

0.39 0.31 0.50 0.28 

0.21 0.29 0.36 0.33 

0.30 0.29 0.48 0.22 

0.31 0.28 0.29 0.42 

0.22 0.35 0.23 0.31 

0.52 0.33 0.26 0.27 

0.17 0.28 0.19 0.28 

0.36 0.33 0.24 0.20 

0.26 0.28 0.27 0.32 

0.29 0.32 0.30 0.30 

0.38 0.29 0.45 0.38 

0.37 0.32 0.29 0.43 

0.32 0.29 0.45 0.37 

0.47 0.29 0.35 0.47 

0.27 0.25 0.36 0.49 

0.31 0.29 0.36 0.43 

0.34 0.27 0.17 0.37 

0.22 0.23 0.25 0.29 

0.29 0.29 0.28 0.27 

0.26 0.28 0.26 0.26 

0.37 0.27 0.31 0.28 

0.36 0.24 0.22 0.35 

0.38 0.25 0.26 0.25 

0.48 0.29 0.40 0.33 

0.18 0.26 0.35 0.48 

0.46 0.25 0.24 0.41 

0.33 0.37 0.23 0.25 

0.37 0.32 0.29 0.28 

0.23 0.27 0.29 0.22 

0.28 0.25 0.23 0.27 

0.30 0.28 0.26 0.28 

0.30 0.28 0.30 0.38 

0.32 0.29 0.45 0.47 

0.30 0.33 0.36 0.43 
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0.21 0.31 0.25 0.27 

0.36 0.26 0.26 0.26 

0.31 0.30 

0.37 0.25 

0.39 0.31 

0.27 0.30 

0.22 0.38 

0.26 0.28 

0.30 0.27 

0.30 0.32 

0.32 0.29 

0.21 0.29 
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14. FKM Centroid for Group 1 

 

 

Delta Theta Alpha Beta 

0.17317 0.74126 0.87225 1.87985 

0.10753 0.81557 1.23206 2.10705 

0.10925 0.95129 0.99424 2.03605 

0.14595 0.76906 1.00153 1.80719 

0.15812 0.75525 0.95772 1.71542 

0.15264 0.75441 0.97983 1.80817 

0.12349 0.78721 1.12258 2.05287 

0.11025 0.87162 1.07686 2.21945 

0.13759 0.79076 0.98919 2.14822 

0.09747 0.95839 1.09414 1.9806 

0.15141 0.82153 0.89438 1.79591 

0.14514 0.82153 0.89438 1.79591 

0.12728 0.88767 0.93007 2.15234 

0.15075 0.79637 0.91274 1.95071 

0.10271 0.90425 1.11809 2.01127 

0.09530 0.98583 1.13374 1.69417 

0.12418 0.77467 1.14717 2.02553 

0.11008 0.86039 1.09025 2.32365 

0.10924 0.93001 1.01538 2.0761 

0.1569 0.7685 0.89343 2.30236 

0.17419 0.74052 0.86902 1.87123 

0.10308 0.90446 1.11605 1.99448 

0.09576 0.9838 1.13236 1.69131 

0.12442 0.77422 1.14698 2.01621 
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15. FKM centroids for Group 2 

 

 

Delta Theta Alpha Beta 

0.17752 0.70132 0.93646 1.68107 

0.09055 0.83433 1.52972 1.9131 

0.11146 0.86798 1.20642 1.5426 

0.03793 1.20161 1.79211 2.3343 

0.17317 0.74126 0.87225 1.87985 

0.06118 1.00172 1.54966 2.44512 

0.10753 0.81557 1.23206 2.10705 

0.10925 0.95129 0.99424 2.03605 

0.0697 0.92637 1.63076 2.19415 

0.38259 0.65963 0.49106 1.35809 

0.04454 1.15976 1.61089 2.42578 

0.08317 0.90068 1.41379 1.99902 

0.10297 0.81796 1.27129 2.26236 

0.12349 0.78721 1.12258 2.05287 

0.11025 0.87162 1.07686 2.21945 

0.06659 0.95556 1.64394 2.06141 

0.09747 0.95839 1.09414 1.9806 

0.09819 0.77645 1.50177 2.45048 

0.14514 0.77173 0.98927 1.90522 

0.34458 0.76825 0.44423 1.75362 

0.12728 0.88767 0.93007 2.15234 

0.15075 0.79637 0.91274 1.95071 

0.10271 0.90425 1.11809 2.01127 

0.12418 0.77467 1.14717 2.02553 

0.11008 0.86039 1.09025 2.32365 

0.0618 0.98168 1.65616 2.20394 

0.17419 0.74052 0.86902 1.87123 

0.09883 0.78353 1.46011 2.37125 

0.09826 0.77647 1.50097 2.44095 

0.09576 0.9838 1.13236 1.69131 

0.12442 0.77422 1.14698 2.01621 

0.06216 0.98001 1.65232 2.19522 
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16. FKM centroids for Group 3 

 

 

Delta Theta Alpha Beta 

0.17317 0.74126 0.87225 1.87985 

0.10753 0.81557 1.23206 2.10705 

0.04454 1.15976 1.61089 2.42578 

0.14595 0.76906 1.00153 1.80719 

0.15141 0.82153 0.89438 1.79591 

0.15083 0.80163 0.95071 1.62921 

0.15075 0.79637 0.91274 1.95071 

0.0698 0.98081 1.46977 1.99778 

0.10271 0.90425 1.11809 2.01127 

0.13505 0.83552 1.06202 1.46195 

 

17. FKM centroids for Group 4 

 

 

Delta Theta Alpha Beta 

0.17317 0.74126 0.87225 1.87985 

0.10753 0.81557 1.23206 2.10705 

0.04454 1.15976 1.61089 2.42578 

0.14595 0.76906 1.00153 1.80719 

0.15141 0.82153 0.89438 1.79591 

0.15083 0.80163 0.95071 1.62921 

0.15075 0.79637 0.91274 1.95071 

0.0698 0.98081 1.46977 1.99778 

0.10271 0.90425 1.11809 2.01127 

0.13505 0.83552 1.06202 1.46195 
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APPENDIX D 

Equipment Validation Data 

EXP 
NO. CHANNEL FFMSG FRBG 

∆ 
FREQ. 

∆ FREQ.CH1-
CH2 MARK 

1 CH1 0.5 0.5 0 
0 

CH1 = 
CH2   CH2 0.5 0.5 0 

2 CH1 1 1 0 
0 

CH1 = 
CH2   CH2 1 1 0 

3 CH1 2 2 0 
0 

CH1 = 
CH2   CH2 2 2 0 

4 CH1 5 5 0 
0 

CH1 = 
CH2   CH2 5 5 0 

5 CH1 10 10 0 
0 

CH1 = 
CH2   CH2 10 10 0 

6 CH1 15 15 0 
0 

CH1 = 
CH2   CH2 15 15 0 

7 CH1 20 20 0 
0 

CH1 = 
CH2   CH2 20 20 0 

8 CH1 30 30 0 
0 

CH1 = 
CH2   CH2 30 30 0 

9 CH1 40 40 0 
0 

CH1 = 
CH2   CH2 40 40 0 

10 CH1 50 50 0 
0 

CH1 = 
CH2   CH2 50 50 0 

11 CH1 0.5 0.5 0 
0 

CH1 = 
CH2   CH2 0.5 0.5 0 

12 CH1 1 1 0 
0 

CH1 = 
CH2   CH2 1 1 0 

13 CH1 2 2 0 
0 

CH1 = 
CH2   CH2 2 2 0 

14 CH1 5 5 0 
0 

CH1 = 
CH2   CH2 5 5 0 

15 CH1 10 10 0 
0 

CH1 = 
CH2   CH2 10 10 0 

16 CH1 15 15 0 
0 

CH1 = 
CH2   CH2 15 15 0 

17 CH1 20 20 0 
0 

CH1 = 
CH2   CH2 20 20 0 

18 CH1 30 30 0 
0 

CH1 = 
CH2   CH2 30 30 0 

19 CH1 40 40 0 
0 

CH1 = 
CH2   CH2 40 40 0 

20 CH1 50 50 0 
0 

CH1 = 
CH2   CH2 50 50 0 
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21 CH1 0.5 0.5 0 
0 

CH1 = 
CH2   CH2 0.5 0.5 0 

22 CH1 1 1 0 
0 

CH1 = 
CH2   CH2 1 1 0 

23 CH1 2 2 0 
0 

CH1 = 
CH2   CH2 2 2 0 

24 CH1 5 5 0 
0 

CH1 = 
CH2   CH2 5 5 0 

25 CH1 10 10 0 
0 

CH1 = 
CH2   CH2 10 10 0 

26 CH1 15 15 0 
0 

CH1 = 
CH2   CH2 15 15 0 

27 CH1 20 20 0 
0 

CH1 = 
CH2   CH2 20 20 0 

28 CH1 30 30 0 
0 

CH1 = 
CH2   CH2 30 30 0 

29 CH1 40 40 0 
0 

CH1 = 
CH2   CH2 40 40 0 

30 CH1 50 50 0 
0 

CH1 = 
CH2   CH2 50 50 0 

31 CH1 0.5 0.5 0 
0 

CH1 = 
CH2   CH2 0.5 0.5 0 

32 CH1 1 1 0 
0 

CH1 = 
CH2   CH2 1 1 0 

33 CH1 2 2 0 
0 

CH1 = 
CH2   CH2 2 2 0 

34 CH1 5 5 0 
0 

CH1 = 
CH2   CH2 5 5 0 

35 CH1 10 10 0 
0 

CH1 = 
CH2   CH2 10 10 0 

36 CH1 15 15 0 
0 

CH1 = 
CH2   CH2 15 15 0 

37 CH1 20 20 0 
0 

CH1 = 
CH2   CH2 20 20 0 

38 CH1 30 30 0 
0 

CH1 = 
CH2   CH2 30 30 0 

39 CH1 40 40 0 
0 

CH1 = 
CH2   CH2 40 40 0 

40 CH1 50 50 0 
0 

CH1 = 
CH2   CH2 50 50 0 

41 CH1 0.5 0.5 0 
0 

CH1 = 
CH2   CH2 0.5 0.5 0 

42 CH1 1 1 0 
0 

CH1 = 
CH2   CH2 1 1 0 

43 CH1 2 2 0 0 CH1 = 
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  CH2 2 2 0 CH2 

44 CH1 5 5 0 
0 

CH1 = 
CH2   CH2 5 5 0 

45 CH1 10 10 0 
0 

CH1 = 
CH2   CH2 10 10 0 

46 CH1 15 15 0 
0 

CH1 = 
CH2   CH2 15 15 0 

47 CH1 20 20 0 
0 

CH1 = 
CH2   CH2 20 20 0 

48 CH1 30 30 0 
0 

CH1 = 
CH2   CH2 30 30 0 

49 CH1 40 40 0 
0 

CH1 = 
CH2   CH2 40 40 0 

50 CH1 50 50 0 
0 

CH1 = 
CH2   CH2 50 50 0 

51 CH1 0.5 0.5 0 
0 

CH1 = 
CH2   CH2 0.5 0.5 0 

52 CH1 1 1 0 
0 

CH1 = 
CH2   CH2 1 1 0 

53 CH1 2 2 0 
0 

CH1 = 
CH2   CH2 2 2 0 

54 CH1 5 5 0 
0 

CH1 = 
CH2   CH2 5 5 0 

55 CH1 10 10 0 
0 

CH1 = 
CH2   CH2 10 10 0 

56 CH1 15 15 0 
0 

CH1 = 
CH2   CH2 15 15 0 

57 CH1 20 20 0 
0 

CH1 = 
CH2   CH2 20 20 0 

58 CH1 30 30 0 
0 

CH1 = 
CH2   CH2 30 30 0 

59 CH1 40 40 0 
0 

CH1 = 
CH2   CH2 40 40 0 

60 CH1 50 50 0 
0 

CH1 = 
CH2   CH2 50 50 0 

61 CH1 0.5 0.5 0 
0 

CH1 = 
CH2   CH2 0.5 0.5 0 

62 CH1 1 1 0 
0 

CH1 = 
CH2   CH2 1 1 0 

63 CH1 2 2 0 
0 

CH1 = 
CH2   CH2 2 2 0 

64 CH1 5 5 0 
0 

CH1 = 
CH2   CH2 5 5 0 

65 CH1 10 10 0 
0 

CH1 = 
CH2   CH2 10 10 0 
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66 CH1 15 15 0 
0 

CH1 = 
CH2   CH2 15 15 0 

67 CH1 20 20 0 
0 

CH1 = 
CH2   CH2 20 20 0 

68 CH1 30 30 0 
0 

CH1 = 
CH2   CH2 30 30 0 

69 CH1 40 40 0 
0 

CH1 = 
CH2   CH2 40 40 0 

70 CH1 50 50 0 
0 

CH1 = 
CH2   CH2 50 50 0 

71 CH1 0.5 0.5 0 
0 

CH1 = 
CH2   CH2 0.5 0.5 0 

72 CH1 1 1 0 
0 

CH1 = 
CH2   CH2 1 1 0 

73 CH1 2 2 0 
0 

CH1 = 
CH2   CH2 2 2 0 

74 CH1 5 5 0 
0 

CH1 = 
CH2   CH2 5 5 0 

75 CH1 10 10 0 
0 

CH1 = 
CH2   CH2 10 10 0 

76 CH1 15 15 0 
0 

CH1 = 
CH2   CH2 15 15 0 

77 CH1 20 20 0 
0 

CH1 = 
CH2   CH2 20 20 0 

78 CH1 30 30 0 
0 

CH1 = 
CH2   CH2 30 30 0 

79 CH1 40 40 0 
0 

CH1 = 
CH2   CH2 40 40 0 

80 CH1 50 50 0 
0 

CH1 = 
CH2   CH2 50 50 0 

81 CH1 0.5 0.5 0 
0 

CH1 = 
CH2   CH2 0.5 0.5 0 

82 CH1 1 1 0 
0 

CH1 = 
CH2   CH2 1 1 0 

83 CH1 2 2 0 
0 

CH1 = 
CH2   CH2 2 2 0 

84 CH1 5 5 0 
0 

CH1 = 
CH2   CH2 5 5 0 

85 CH1 10 10 0 
0 

CH1 = 
CH2   CH2 10 10 0 

86 CH1 15 15 0 
0 

CH1 = 
CH2   CH2 15 15 0 

87 CH1 20 20 0 
0 

CH1 = 
CH2   CH2 20 20 0 

88 CH1 30 30 0 0 CH1 = 
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  CH2 30 30 0 CH2 

89 CH1 40 40 0 
0 

CH1 = 
CH2   CH2 40 40 0 

90 CH1 50 50 0 
0 

CH1 = 
CH2   CH2 50 50 0 

 

VFMSG VRBG 
∆ VOLTAGE (VFMSG - 

VRBG) 
∆ VOLTAGE 

CH1-CH2 MARK 

100 198.906534 -98.90653396 2.638168424 CH2 > 
CH1 100 201.544702 -101.5447024   

100 265.323312 -165.3233118 -0.154768617 CH1 > 
CH2 100 265.168543 -165.1685432   

100 283.489372 -183.4893721 -0.274650092 CH1 > 
CH2 100 283.214722 -183.214722   

100 246.251004 -146.2510039 0 CH1 = 
CH2 100 246.251004 -146.2510039   

100 126.890168 -26.89016837 0 CH1 = 
CH2 100 126.890168 -26.89016837   

100 163.7941 -63.79409985 -13.22124018 CH1 > 
CH2 100 150.57286 -50.57285967   

100 285.300032 -185.3000318 -2.535715479 CH1 > 
CH2 100 282.764316 -182.7643163   

100 299.309365 -199.309365 3.844535039 CH2 > 
CH1 100 303.1539 -203.1539   

100 47.4031801 52.59681991 0.62479218 CH2 > 
CH1 100 48.0279723 51.97202773   

100 9.28244074 90.71755926 0.327738529 CH2 > 
CH1 100 9.61017926 90.38982074   

150 294.216481 -144.2164813 3.020099658 CH2 > 
CH1 150 297.236581 -147.236581   

150 393.767686 -243.7676858 0.626497106 CH2 > 
CH1 150 394.394183 -244.3941829   

150 423.180057 -273.1800569 -0.398252139 CH1 > 
CH2 150 422.781805 -272.7818047   

150 360.40609 -210.4060897 1.058669163 CH2 > 
CH1 150 361.464759 -211.4647589   

150 170.38903 -20.38902992 11.86735474 CH2 > 
CH1 150 182.256385 -32.25638466   

150 250.987359 -100.9873592 3.036792185 CH2 > 
CH1 150 254.024151 -104.0241514   

150 418.968224 -268.9682238 -1.642473863 CH1 > 
CH2 150 417.32575 -267.3257499   

150 440.586959 -290.5869585 -1.844210801 CH1 > 
CH2 150 438.742748 -288.7427477   

150 69.5431167 80.45688331 -0.587936068 CH1 > 
CH2 150 68.9551806 81.04481938   

150 13.4553639 136.5446361 -2.840538174 CH1 > 
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150 10.6148258 139.3851742   CH2 

200 391.895256 -191.8952557 3.050726345 CH2 > 
CH1 200 394.945982 -194.9459821   

200 522.908756 -322.9087563 -0.004177644 CH1 > 
CH2 200 522.904579 -322.9045786   

200 583.481111 -383.4811105 -1.968108689 CH1 > 
CH2 200 581.513002 -381.5130018   

200 475.929526 -275.9295258 -3.435928053 CH1 > 
CH2 200 472.493598 -272.4935977   

200 238.364259 -38.36425917 4.774144192 CH2 > 
CH1 200 243.138403 -43.13840336   

200 282.529862 -82.52986155 -8.522136624 CH1 > 
CH2 200 274.007725 -74.00772493   

200 566.952748 -366.9527484 -4.836322644 CH1 > 
CH2 200 562.116426 -362.1164258   

200 595.993228 -395.9932279 -4.159657765 CH1 > 
CH2 200 591.83357 -391.8335702   

200 87.9909739 112.0090261 0.619225406 CH2 > 
CH1 200 88.6101993 111.3898007   

200 10.4204456 189.5795544 1.128111612 CH2 > 
CH1 200 11.5485572 188.4514428   

250 515.529533 -265.5295327 -2.752523326 CH1 > 
CH2 250 512.777009 -262.7770093   

250 681.610959 -431.6109592 1.553131977 CH2 > 
CH1 250 683.164091 -433.1640912   

250 705.770713 -455.7707131 -3.346337098 CH1 > 
CH2 250 702.424376 -452.424376   

250 602.910046 -352.9100457 -3.412992305 CH1 > 
CH2 250 599.497053 -349.4970534   

250 307.055378 -57.05537803 0.626092785 CH2 > 
CH1 250 307.681471 -57.68147082   

250 364.530121 -114.5301211 5.611493088 CH2 > 
CH1 250 370.141614 -120.1416141   

250 701.734246 -451.734246 -1.230310866 CH1 > 
CH2 250 700.503935 -450.5039351   

250 745.495567 -495.4955673 -0.952757325 CH1 > 
CH2 250 744.54281 -494.54281   

250 110.146544 139.853456 -1.295525466 CH1 > 
CH2 250 108.851019 141.1489815   

250 14.3176879 235.6823121 0.475138198 CH2 > 
CH1 250 14.7928261 235.2071739   

300 590.073171 -290.0731706 4.612364068 CH2 > 
CH1 300 594.685535 -294.6855346   

300 802.912935 -502.9129354 -1.838218842 CH1 > 
CH2 300 801.074717 -501.0747165   

300 851.029502 -551.0295022 -2.029040834 CH1 > 
CH2 300 849.000461 -549.0004614   

300 725.422402 -425.4224021 -0.447734858 CH1 > 
CH2 300 724.974667 -424.9746673   
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300 361.583297 -61.58329702 -15.80553829 CH1 > 
CH2 300 345.777759 -45.77775872   

300 489.522046 -189.5220458 -16.45922267 CH1 > 
CH2 300 473.062823 -173.0628231   

300 859.448801 -559.4488015 -1.199629463 CH1 > 
CH2 300 858.249172 -558.249172   

300 881.539557 -581.5395567 -2.372455963 CH1 > 
CH2 300 879.167101 -579.1671007   

300 131.078197 168.9218029 1.113983295 CH2 > 
CH1 300 132.19218 167.8078196   

300 18.0196194 281.9803806 0.447067672 CH2 > 
CH1 300 18.4666871 281.5333129   

350 686.145607 -336.1456071 2.25506016 CH2 > 
CH1 350 688.400667 -338.4006673   

350 955.629656 -605.6296564 -2.049797474 CH1 > 
CH2 350 953.579859 -603.5798589   

350 986.655579 -636.6555794 -2.138612432 CH1 > 
CH2 350 984.516967 -634.516967   

350 833.44533 -483.4453305 -0.918058769 CH1 > 
CH2 350 832.527272 -482.5272717   

350 483.979756 -133.9797558 6.8100501 CH2 > 
CH1 350 490.789806 -140.7898059   

350 548.581566 -198.5815664 12.45452783 CH2 > 
CH1 350 561.036094 -211.0360942   

350 1006.35922 -656.3592246 -7.1568682 CH1 > 
CH2 350 999.202356 -649.2023564   

350 1023.49984 -673.4998378 0.791467773 CH2 > 
CH1 350 1024.29131 -674.2913055   

350 150.304901 199.6950987 -0.747394519 CH1 > 
CH2 350 149.557507 200.4424933   

350 20.5984064 329.4015936 -1.210917402 CH1 > 
CH2 350 19.387489 330.612511   

400 783.183202 -383.1832024 6.63435015 CH2 > 
CH1 400 789.817553 -389.8175525   

400 1049.31038 -649.3103848 -1.516767776 CH1 > 
CH2 400 1047.79362 -647.793617   

400 1122.01437 -722.014372 -2.939744377 CH1 > 
CH2 400 1119.07463 -719.0746277   

400 958.168976 -558.1689756 1.503730422 CH2 > 
CH1 400 959.672706 -559.672706   

400 486.757147 -86.75714712 -13.69533231 CH1 > 
CH2 400 473.061815 -73.0618148   

400 581.874742 -181.8747422 -8.939811051 CH1 > 
CH2 400 572.934931 -172.9349312   

400 1147.08052 -747.0805233 -12.75264745 CH1 > 
CH2 400 1134.32788 -734.3278758   

400 1170.92098 -770.9209803 1.418259229 CH2 > 
CH1 400 1172.33924 -772.3392396   

400 175.775258 224.2247423 -0.934363297 CH1 > 
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400 174.840894 225.1591056   CH2 

400 17.5212633 382.4787367 1.029132796 CH2 > 
CH1 400 18.5503961 381.4496039   

450 882.716782 -432.7167819 5.558824775 CH2 > 
CH1 450 888.275607 -438.2756066   

450 1191.06589 -741.0658914 3.010374488 CH2 > 
CH1 450 1194.07627 -744.0762659   

450 1256.36325 -806.3632496 0 CH1 = 
CH2 450 1256.36325 -806.3632496   

450 1103.11493 -653.114926 -11.56103359 CH1 > 
CH2 450 1091.55389 -641.5538924   

450 528.044199 -78.04419886 17.07116805 CH2 > 
CH1 450 545.115367 -95.11536691   

450 696.298635 -246.2986349 -7.488616173 CH1 > 
CH2 450 688.810019 -238.8100187   

450 1251.93173 -801.9317324 -3.536797423 CH1 > 
CH2 450 1248.39494 -798.394935   

450 1332.64329 -882.6432895 -10.83191826 CH1 > 
CH2 450 1321.81137 -871.8113713   

450 192.779788 257.2202118 2.001130588 CH2 > 
CH1 450 194.780919 255.2190812   

450 28.175638 421.824362 -0.901518087 CH1 > 
CH2 450 27.2741199 422.7258801   

500 974.378882 -474.3788825 5.750319525 CH2 > 
CH1 500 980.129202 -480.129202   

500 1293.73281 -793.7328108 -9.664294788 CH1 > 
CH2 500 1284.06852 -784.068516   

500 1375.74051 -875.7405109 -10.6195506 CH1 > 
CH2 500 1365.12096 -865.1209603   

500 1229.22895 -729.2289508 -10.60538846 CH1 > 
CH2 500 1218.62356 -718.6235623   

500 672.37958 -172.3795799 20.99522872 CH2 > 
CH1 500 693.374809 -193.3748087   

500 720.741109 -220.7411087 3.56548009 CH2 > 
CH1 500 724.306589 -224.3065888   

500 1378.56231 -878.5623106 -10.37927293 CH1 > 
CH2 500 1368.18304 -868.1830377   

500 1426.71313 -926.7131268 -2.11428105 CH1 > 
CH2 500 1424.59885 -924.5988457   

500 231.231724 268.7682764 -0.906658537 CH1 > 
CH2 500 230.325065 269.674935   

500 25.7814435 474.2185565 4.886433285 CH2 > 
CH1 500 30.6678768 469.3321232   

  

AVERAGE VOLTAGE 
DIFFERENCE -0.959848727 
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APPENDIX E 

The process to design and implement Window-based Filter to Capture Beta band 

from EEG Signals 

 

Type of EEG Band = Beta band [13 – 30 Hz] 

Sampling Frequency=256 Hz, 

Maximum Frequency =256/2=128 Hz 

Frequency Cut-Off= [0.1016 0.2344] 

Type of Filter = Bandpass 

Window=Hamming 
 

Plot of Frequency Response with Filter Order, N = 70 
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Plot of Filter Coefficient 
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Plot of Frequency Response with Filter Order, N = 100 
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Plot of Filter Coefficient 
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Plot of Frequency Response with Filter Order, N = 200 
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Plot of Filter Coefficient 

0 50 100 150 200 250
-0.1

-0.05

0

0.05

0.1

0.15

Order

M
a
g
n
it
u
d
e

 

 

Plot of Frequency Response with Filter Order, N = 300 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6000

-4000

-2000

0

2000

Normalized Frequency  ( rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

Normalized Frequency  ( rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

 

 

Plot of Filter Coefficient 
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Plot of Frequency Response with Filter Order, N = 400 
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Plot of Filter Coefficient 
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Plot of Frequency Response with Filter Order, N = 500 
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Plot of Filter Coefficient 
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It can be oberserved that there are difference of Frequency responses and filter 

coefficients for each window when N is set to 500. 
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APPENDIX F 

1. MATLAB Coding to Analyze and Filter EEG Signals 

 

clear all; 

load('rightch1.mat'); 
rightbeforefilterx=rightbeforefilter'; 
load('leftch2.mat'); 
leftbeforefilterx=leftbeforefilter'; 

  
% Reset the Offset of raw data 
A_R=rightbeforefilterx(1:end,2); 
mean_rhs=mean(A_R); 
B_L=leftbeforefilterx(1:end,2); 
mean_lhs=mean(B_L); 
if abs(mean_rhs) > abs(mean_lhs) 
    R=A_R-mean_rhs; 
    L=B_L; 
elseif abs(mean_lhs) > abs(mean_rhs) 
    L=B_L-mean_lhs; 
    R=A_R; 
end 
data_unfiltered=[R L]; 
% Regenerate the data by adding noise 
[m,n]=size(data_unfiltered); 
noise=randn(m,n)*1.5;   % Set the noise factor to 1.5 
data_unfiltered_noise=data_unfiltered + noise; 

  
% cut the data :rhs&lhs ***** 7680 = 30sec start time (time for 

sample to become really relax) 
%RL_cut=[R(7680:end,1) L(7680:end,1)]; 
%data_unfiltered=RL_cut; 
%--------------------------------------------------------------------

------------------------------- 
% manual artifact removal : data > 100micro & data <-100micro then 

delete data for RHS&LHS combine 
[i j]=find(data_unfiltered_noise>100); 
data_unfiltered_noise(i,:)=[]; 
[i j]=find(data_unfiltered_noise<-100); 
data_unfiltered_noise(i,:)=[]; 
%--------------------------------------------------------------------

------------------------------- 
% Calculate length of signals 
N=length(data_unfiltered_noise); 
% Define the sampling frequency 
Fs=256; 
% Define the max frequency 
Fs_Max=Fs/2; 
% Define the frequency vector for plotting 
freq=((1:N)*Fs)/(2*N); 
ff=freq'; 
% Define the frequency band of raw data 
dpass=[0.5 4];                  % Delta band 
drange=range(dpass);            % Range of Delta band 
tpass=[4 8];                    % Theta band 
trange=range(tpass);            % Range of Theta band 
apass=[8 13];                   % Alpha band 
arange=range(apass);            % Range of Alpha band 
bpass=[13 30];                  % Beta band 
brange=range(bpass);            % Range of Beta band 
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totalpass=[0.5 30];             % Overall band 
band=[dpass; tpass; apass; bpass]; 
numband=size(band,1);           % Number of band 
cutoff=band/Fs_Max; 
filter_order=74; 
filter_type='bandpass'; 
N_Order=filter_order+1; 
w1=window(@hamming,N_Order); 

  
for j=1:numband 
        %Calculate filter coefficient 
        filter_coef=fir1(filter_order,cutoff(j,:),filter_type,w1); 
        figure(j); 
        for i=1:2           % for each channel (left & right) 
        %Convolve the raw signal with filter coefficient 
        

filt(j).out(:,i)=conv(data_unfiltered_noise(:,i),filter_coef);  

         
        %Calculate FFT calculation 
        fftsignal(j).out(:,i)=abs(fft(filt(j).out(:,i))); 
        %Calculate the PSD from FFT 
        psdsignal(j).out(:,i)=fftsignal(j).out(:,i).^2; 
        p=length(fftsignal(j).out(:,i)); 
        %Calculate the signal frequency 
        freq=(0:(p/2-1))*128/(p/2); 
        %Calculate the mean frequency 
        mpf1(i)=trapz(freq,freq.*psdsignal(j).out(1:p/2,i)') / 

trapz(freq,psdsignal(j).out(1:p/2,i)'); 
        %Calculate Mean Power from PSD (Energy Spectral Density) 
        area1(j,i)=trapz(freq,psdsignal(j).out(1:p/2,i)'); 
        freqrange1=band(j,2)- band(j,1); 
        mp1=area1(j,i)/freqrange1; 
        mpf1f(j,i)=mpf1(i); 
        mp1f(j,i)=mp1; 

         
        %Calculate the PSD using PSD function & window 
        NFFT=1024;WINDOW=256;NOVERLAP=round(WINDOW/2); DFLAG='MEAN'; 
        [pxx,f]=psd(filt(j).out(:,i),NFFT,Fs,WINDOW,NOVERLAP,DFLAG); 
        psdd(j).out(:,i)=pxx;  
        %Calculate the mean frequency 
        mpf2(i)=trapz(f,f.*pxx)/trapz(f,pxx); 
        %Calculate the mean power from the PSD (ESD) 
        area2(j,i)=trapz(f,pxx); 
        freqrange2=band(j,2)- band(j,1); 
        mp2=area2(j,i)/freqrange2; 
        mpf2f(j,i)=mpf2(i); 
        mp2f(j,i)=mp2; 

      
        % Using Spectrum Welch 
        h=spectrum.welch('Hamming',WINDOW,100*NOVERLAP/WINDOW); 
        hpsd=psd(h,filt(j).out(:,i),'NFFT',NFFT,'Fs',Fs); 
        hpsdd(j).out(:,i)=hpsd; 
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2. MATLAB Coding to Perform Spectral Centroids 

 

function [C, CMean, CSD, CMax] = 

SpecCentroid(snd,fs,nfft,window,noverlap) 

  
%CENTROID Calculates spectral centroid of a sound. 
%   C = CENRTROID(SOUND, FS) calculates the spectral centroid of a 

given 
%   sound. Fs is the sample frequency; the window length is the 

minimum of 2048 and 
%   the sample length; overlap is 80%. 
%    
%   [C, CMean, CSD, CMax] = CENRTROID(SOUND, FS) also calculates the 

mean, 
%   standard deviation and maximum of spectral centroid. 
%  
%   C = CENRTROID(SOUND,FS,NFFT);  
%   C = CENRTROID(SOUND,FS,NFFT,WINDOW); 
%   C = CENRTROID(SOUND,FS,NFFT,WINDOW,NOVERLAP) 
%   Read the manual of the SPECGRAM command for the parameters. 
% 
% Example: 
%   [s, fs] = wavread('testsound.wav'); 
%   c = centroid(s, fs); 
% Uses: 
%   Matlab Signal Processing Toolbox 
% 
% References: 
%   Tzanetakis, G., Essl, G. and Cook, P. 
%   In: Proc. Int. Symposium on Music Information  
%   Retrieval (ISMIR), Bloomington, Indiana, 2001  
% 
% Frederik Nagel and Michael Großbach 
% Institute of Music Physiology and Musicians' Medicine 
% Hanover University of Music and Drama  
% Hannover 
% Germany 
% 
% e-mail: frederik.nagel@hmt-hannover.de 
% homepage: http://www.immm.hmt-hannover.de 
% 
% May 29, 2006. 
% 
% See also SPECGRAM, FFT 

  
error(nargchk(2, 5, nargin)) 
if(nargin==2) 
    nfft = min([length(snd) 2048]); 
    window = nfft; 
    noverlap = round(window*.8); 
    s = specgram(snd, nfft, fs, window, noverlap); 
elseif (nargin==3) 
    s = specgram(snd, nfft, fs); 
elseif (nargin==4) 
    s = specgram(snd, nfft, fs, window); 
elseif (nargin==5) 
    s = specgram(snd, nfft, fs, window, noverlap);     
end 
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C = sum((repmat((1:size(s,1))',1,size(s,2)) .* abs(s))) ./ 

sum(abs(s)); 
CMean = mean(C); 
CSD = std(C); 
CMax = max(C); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

218 

 

3. MATLAB Coding for the Classification of the selected EEG Asymmetry 

Features at 50:50 ratio Training and Testing 
 

%EEG DATA CLASSIFICATION USING K-NN ASYMMETRY FEATURES AT 50:50 

TRAINING 
%AND TESTING RATIO 
clear all; 
% Call the file containing the power ratio 
load('Asymmetry.mat'); 
[m n]=size(data); 

  
%Define the length of training group of data 
G1_train=ones(25,1)*1.47; % EEG PSD data with questionnaires (EC 

state) 
G2_train=ones(25,1)*1.72; % EEG PSD data during IQ Test  
G3_train=ones(20,1)*1.62; % EEG PSD data before HR  
G4_train=ones(20,1)*1.46; % EEG PSD data after HR  
Group_Class_Train=[G1_train;G2_train;G3_train;G4_train]; 
%Define the length of testing group of data 
G1_test=ones(25,1)*1.47; % EEG PSD data with questionnaires (EC 

state) 
G2_test=ones(25,1)*1.72; % EEG PSD data during IQ Test  
G3_test=ones(20,1)*1.62; % EEG PSD data before HR  
G4_test=ones(20,1)*1.46; % EEG PSD data after HR  
Group_Class_Test=[G1_test;G2_test;G3_test;G4_test]; 
%Define the Training & Testing Group at 50:50 

  
%Training Group, 50% 
Group_1_TR=data(1:25,2:5); 
Group_2_TR=data(51:75,2:5); 
Group_3_TR=data(101:120,2:5); 
Group_4_TR=data(141:160,2:5); 
Training_Data=[Group_1_TR; Group_2_TR; Group_3_TR; Group_4_TR]; 

  
%Testing Group, 50% 
Group_1_Test=data(26:50,2:5); 
Group_2_Test=data(76:100,2:5); 
Group_3_Test=data(121:140,2:5); 
Group_4_Test=data(161:180,2:5); 
Testing_Data=[Group_1_Test; Group_2_Test; Group_3_Test; 

Group_4_Test]; 

  
% Apply the k-NN classifier 
for k=1:1:90 
KNN_Output(:,k)=knnclassify(Testing_Data,Training_Data,Group_Class_Tr

ain,k,'euclidean','nearest'); 

  
[m1 n1]=size(Testing_Data); 
for jj=1:m1 
    if KNN_Output(jj,k)==Group_Class_Test(jj,1) 
       KNN_result_compare(jj,k)=1; 
    elseif KNN_Output(jj,k)~=Group_Class_Test(jj,1) 
    KNN_result_compare(jj,k)=0; 
    end 
end 
end 
% Group percentage 
% Group 1 
KNN_G1=sum(KNN_result_compare(1:15,1)); 
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KNN_G1_percentage=KNN_G1/15*100; 
KNN_G1_PER=KNN_G1_percentage'; 
% Group 2 
KNN_G2=sum(KNN_result_compare(16:30,1)); 
KNN_G2_percentage=KNN_G2/15*100; 
KNN_G2_PER=KNN_G2_percentage'; 
% Group 3 
KNN_G3=sum(KNN_result_compare(31:42,1)); 
KNN_G3_percentage=KNN_G3/12*100; 
KNN_G3_PER=KNN_G3_percentage'; 
% Group 4 
KNN_G4=sum(KNN_result_compare(43:54,1)); 
KNN_G4_percentage=KNN_G4/12*100; 
KNN_G4_PER=KNN_G4_percentage'; 

  
% Overall group percentage 
KNN_result_compare_sum=sum(KNN_result_compare); 
KNN_result_compare_percentage=KNN_result_compare_sum/m1*100; 
KNN_PER=KNN_result_compare_percentage'; 
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4. MATLAB Coding to Classify the selected EEG Asymmetry Features at 

70:30 ratio Training and Testing 
 

%EEG DATA CLASSIFICATION USING K-NN ASYMMETRY FEATURES AT 70:30 

TRAINING AND %TESTING RATIO 
clear all; 
% Call the file containing the normalization data 
load('Asymmetry.mat'); 
[m n]=size(data); 

  
%Define the length of training group of data 
G1_train=ones(35,1)*1.47; % EEG PSD data with questionnaires (EC 

state) 
G2_train=ones(35,1)*1.72; % EEG PSD data during IQ Test  
G3_train=ones(28,1)*1.62; % EEG PSD data before HR  
G4_train=ones(28,1)*1.46; % EEG PSD data after HR  
Group_Class_Train=[G1_train;G2_train;G3_train;G4_train]; 
%Define the length of testing group of data 
G1_test=ones(15,1)*1.47; % EEG PSD data with questionnaires (EC 

state) 
G2_test=ones(15,1)*1.72; % EEG PSD data during IQ Test 
G3_test=ones(12,1)*1.62; % EEG PSD data before HR  
G4_test=ones(12,1)*1.46; % EEG PSD data after HR  
Group_Class_Test=[G1_test;G2_test;G3_test;G4_test]; 
%Define the Training & Testing Group at 70:30 

  
%Training Group, 70% 
Group_1_TR=data(1:35,2:5); 
Group_2_TR=data(51:85,2:5); 
Group_3_TR=data(101:128,2:5); 
Group_4_TR=data(141:168,2:5); 
Training_Data=[Group_1_TR; Group_2_TR; Group_3_TR; Group_4_TR]; 

  
%Testing Group, 30% 
Group_1_Test=data(36:50,2:5); 
Group_2_Test=data(86:100,2:5); 
Group_3_Test=data(129:140,2:5); 
Group_4_Test=data(169:180,2:5); 
Testing_Data=[Group_1_Test; Group_2_Test; Group_3_Test; 

Group_4_Test]; 

  
% Apply the k-NN classifier 
for k=1:1:126  
KNN_Output(:,k)=knnclassify(Testing_Data,Training_Data,Group_Class_Tr

ain,k,'euclidean','nearest'); 
[m1 n1]=size(Testing_Data); 
for jj=1:m1 
    if KNN_Output(jj,k)==Group_Class_Test(jj,1) 
       KNN_result_compare(jj,k)=1; 
    elseif KNN_Output(jj,k)~=Group_Class_Test(jj,1) 
    KNN_result_compare(jj,k)=0; 
    end 
end  
end 
% Group percentage 
% Group 1 
KNN_G1=sum(KNN_result_compare(1:15,1)); 
KNN_G1_percentage=KNN_G1/15*100; 
KNN_G1_PER=KNN_G1_percentage'; 
% Group 2 
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KNN_G2=sum(KNN_result_compare(16:30,1)); 
KNN_G2_percentage=KNN_G2/15*100; 
KNN_G2_PER=KNN_G2_percentage'; 
% Group 3 
KNN_G3=sum(KNN_result_compare(31:42,1)); 
KNN_G3_percentage=KNN_G3/12*100; 
KNN_G3_PER=KNN_G3_percentage'; 
% Group 4 
KNN_G4=sum(KNN_result_compare(43:54,1)); 
KNN_G4_percentage=KNN_G4/12*100; 
KNN_G4_PER=KNN_G4_percentage'; 

  
% Overall group percentage 
KNN_result_compare_sum=sum(KNN_result_compare); 
KNN_result_compare_percentage=KNN_result_compare_sum/m1*100; 
KNN_PER=KNN_result_compare_percentage'; 
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5. Classification of the selected EEG Natural Log Asymmetry Features at 

50:50 ratio Training and Testing 
 

%EEG DATA CLASSIFICATION USING K-NN NATURAL LOG ASYMMETRY AT 50:50 

TRAINING 
%AND TESTING RATIO 
clear all; 
% Call the file containing the power ratio 
load('knn_log_asymmetry.mat'); 
[m n]=size(data); 

  
%Define the length of training group of data 
G1_train=ones(25,1)*1.3;  % EEG PSD data with questionnaires (EC 

state) 
G2_train=ones(25,1)*1.25; % EEG PSD data during IQ Test 
G3_train=ones(20,1)*1.25; % EEG PSD data before HR  
G4_train=ones(20,1)*1.3;  % EEG PSD data after HR  
Group_Class_Train=[G1_train;G2_train;G3_train;G4_train]; 
%Define the length of testing group of data 
G1_test=ones(25,1)*1.3;  % EEG PSD data with questionnaires (EC 

state) 
G2_test=ones(25,1)*1.25; % EEG PSD data during IQ Test 
G3_test=ones(20,1)*1.25; % EEG PSD data before HR 
G4_test=ones(20,1)*1.3;  % EEG PSD data after HR  
Group_Class_Test=[G1_test;G2_test;G3_test;G4_test]; 
%Define the Training & Testing Group at 50:50 

  
%Training Group, 50% 
Group_1_TR=data(1:25,2:5); 
Group_2_TR=data(51:75,2:5); 
Group_3_TR=data(101:120,2:5); 
Group_4_TR=data(141:160,2:5); 
Training_Data=[Group_1_TR; Group_2_TR; Group_3_TR; Group_4_TR]; 

  
%Testing Group, 50% 
Group_1_Test=data(26:50,2:5); 
Group_2_Test=data(76:100,2:5); 
Group_3_Test=data(121:140,2:5); 
Group_4_Test=data(161:180,2:5); 
Testing_Data=[Group_1_Test; Group_2_Test; Group_3_Test; 

Group_4_Test]; 

  
% Apply the k-NN classifier 
for k=1:1:90 
KNN_Output(:,k)=knnclassify(Testing_Data,Training_Data,Group_Class_Tr

ain,k,'euclidean','nearest'); 

  
[m1 n1]=size(Testing_Data); 
for jj=1:m1 
    if KNN_Output(jj,k)==Group_Class_Test(jj,1) 
       KNN_result_compare(jj,k)=1; 
    elseif KNN_Output(jj,k)~=Group_Class_Test(jj,1) 
    KNN_result_compare(jj,k)=0; 
    end 
end 
end 
% Group percentage 
% Group 1 
KNN_G1=sum(KNN_result_compare(1:15,1)); 
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KNN_G1_percentage=KNN_G1/15*100; 
KNN_G1_PER=KNN_G1_percentage'; 
% Group 2 
KNN_G2=sum(KNN_result_compare(16:30,1)); 
KNN_G2_percentage=KNN_G2/15*100; 
KNN_G2_PER=KNN_G2_percentage'; 
% Group 3 
KNN_G3=sum(KNN_result_compare(31:42,1)); 
KNN_G3_percentage=KNN_G3/12*100; 
KNN_G3_PER=KNN_G3_percentage'; 
% Group 4 
KNN_G4=sum(KNN_result_compare(43:54,1)); 
KNN_G4_percentage=KNN_G4/12*100; 
KNN_G4_PER=KNN_G4_percentage'; 

  
% Overall group percentage 
KNN_result_compare_sum=sum(KNN_result_compare); 
KNN_result_compare_percentage=KNN_result_compare_sum/m1*100; 
KNN_PER=KNN_result_compare_percentage'; 
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6. Classification of the selected EEG Natural Log Asymmetry Features at 

70:30 ratio Training and Testing 

 

%EEG DATA CLASSIFICATION USING K-NN NATURAL LOG ASYMMETRY FEATURE AT 

70:30 
%TRAINING AND TESTING RATIO 
clear all; 
% Call the file containing the normalization data 
load('knn_log_asymmetry.mat'); 
[m n]=size(data); 

  
%Define the length of training group of data 
G1_train=ones(35,1)*1.3;  % EEG PSD data with questionnaires (EC 

state) 
G2_train=ones(35,1)*1.25; % EEG PSD data during IQ Test  
G3_train=ones(28,1)*1.25; % EEG PSD data before HR  
G4_train=ones(28,1)*1.3;  % EEG PSD data after HR  
Group_Class_Train=[G1_train;G2_train;G3_train;G4_train]; 
%Define the length of testing group of data 
G1_test=ones(15,1)*1.3;  % EEG PSD data with questionnaires (EC 

state) 
G2_test=ones(15,1)*1.25; % EEG PSD data during IQ Test 
G3_test=ones(12,1)*1.25; % EEG PSD data before HR  
G4_test=ones(12,1)*1.3;  % EEG PSD data after HR  
Group_Class_Test=[G1_test;G2_test;G3_test;G4_test]; 
%Define the Training & Testing Group at 70:30 

  
%Training Group, 70% 
Group_1_TR=data(1:35,2:5); 
Group_2_TR=data(51:85,2:5); 
Group_3_TR=data(101:128,2:5); 
Group_4_TR=data(141:168,2:5); 
Training_Data=[Group_1_TR; Group_2_TR; Group_3_TR; Group_4_TR]; 

  
%Testing Group, 30% 
Group_1_Test=data(36:50,2:5); 
Group_2_Test=data(86:100,2:5); 
Group_3_Test=data(129:140,2:5); 
Group_4_Test=data(169:180,2:5); 
Testing_Data=[Group_1_Test; Group_2_Test; Group_3_Test; 

Group_4_Test]; 

  
% Apply the k-NN classifier 
for k=1:1:126  
KNN_Output(:,k)=knnclassify(Testing_Data,Training_Data,Group_Class_Tr

ain,k,'euclidean','nearest'); 

  
[m1 n1]=size(Testing_Data); 
for jj=1:m1 
    if KNN_Output(jj,k)==Group_Class_Test(jj,1) 
       KNN_result_compare(jj,k)=1; 
    elseif KNN_Output(jj,k)~=Group_Class_Test(jj,1) 
    KNN_result_compare(jj,k)=0; 
    end 
end 
end 
% Group percentage 
% Group 1 
KNN_G1=sum(KNN_result_compare(1:15,1)); 
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KNN_G1_percentage=KNN_G1/15*100; 
KNN_G1_PER=KNN_G1_percentage'; 
% Group 2 
KNN_G2=sum(KNN_result_compare(16:30,1)); 
KNN_G2_percentage=KNN_G2/15*100; 
KNN_G2_PER=KNN_G2_percentage'; 
% Group 3 
KNN_G3=sum(KNN_result_compare(31:42,1)); 
KNN_G3_percentage=KNN_G3/12*100; 
KNN_G3_PER=KNN_G3_percentage'; 
% Group 4 
KNN_G4=sum(KNN_result_compare(43:54,1)); 
KNN_G4_percentage=KNN_G4/12*100; 
KNN_G4_PER=KNN_G4_percentage'; 

  
% Overall group percentage 
KNN_result_compare_sum=sum(KNN_result_compare); 
KNN_result_compare_percentage=KNN_result_compare_sum/m1*100; 
KNN_PER=KNN_result_compare_percentage'; 
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7. Classification of the selected EEG RER Features at 50:50 ratio Training 

and Testing 

 
%EEG DATA CLASSIFICATION USING K-NN USING RELATIVE ENERGY RATIO (RER) 

WITH 
%50:50 RATIO 
clear all; 
% Call the file containing the normalization data 
load('knn_power_ratio.mat'); 
[m n]=size(data); 

  
%Define the length of training group of data 
G1_train=ones(25,1)*1.53; % EEG PSD data with questionnaires (EC 

state) 
G2_train=ones(25,1)*1.23; % EEG PSD data during IQ Test  
G3_train=ones(20,1)*1.49; % EEG PSD data before HR  
G4_train=ones(20,1)*1.46; % EEG PSD data after HR  
Group_Class_Train=[G1_train;G2_train;G3_train;G4_train]; 

  
%Define the length of testing group of data 
G1_test=ones(25,1)*1.53; % EEG PSD data with questionnaires (EC 

state) 
G2_test=ones(25,1)*1.23; % EEG PSD data during IQ Test 
G3_test=ones(20,1)*1.49; % EEG PSD data before HR 
G4_test=ones(20,1)*1.46; % EEG PSD data after HR 
Group_Class_Test=[G1_test;G2_test;G3_test;G4_test]; 

  
%Training Group, 50% 
Group_1_TR=data(1:25,2:5); 
Group_2_TR=data(51:75,2:5); 
Group_3_TR=data(101:120,2:5); 
Group_4_TR=data(141:160,2:5); 
Training_Data=[Group_1_TR; Group_2_TR; Group_3_TR; Group_4_TR]; 

  
%Testing Group, 50% 
Group_1_Test=data(26:50,2:5); 
Group_2_Test=data(76:100,2:5); 
Group_3_Test=data(121:140,2:5); 
Group_4_Test=data(161:180,2:5); 
Testing_Data=[Group_1_Test; Group_2_Test; Group_3_Test; 

Group_4_Test]; 

  
% Apply the k-NN classifier 
for k=1:1:90  
KNN_Output(:,k)=knnclassify(Testing_Data,Training_Data,Group_Class_Tr

ain,k,'euclidean','nearest'); 

  
[m1 n1]=size(Testing_Data); 
for jj=1:m1 
    if KNN_Output(jj,k)==Group_Class_Test(jj,1) 
       KNN_result_compare(jj,k)=1; 
    elseif KNN_Output(jj,k)~=Group_Class_Test(jj,1) 
    KNN_result_compare(jj,k)=0; 
    end 
end 
end 
% Group percentage 
% Group 1 
KNN_G1=sum(KNN_result_compare(1:15,2:5)); 
KNN_G1_percentage=KNN_G1/15*100; 
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KNN_G1_PER=KNN_G1_percentage'; 
% Group 2 
KNN_G2=sum(KNN_result_compare(16:30,2:5)); 
KNN_G2_percentage=KNN_G2/15*100; 
KNN_G2_PER=KNN_G2_percentage'; 
% Group 3 
KNN_G3=sum(KNN_result_compare(31:42,2:5)); 
KNN_G3_percentage=KNN_G3/12*100; 
KNN_G3_PER=KNN_G3_percentage'; 
% Group 4 
KNN_G4=sum(KNN_result_compare(43:54,2:5)); 
KNN_G4_percentage=KNN_G4/12*100; 
KNN_G4_PER=KNN_G4_percentage'; 

  
% Overall group percentage 
KNN_result_compare_sum=sum(KNN_result_compare); 
KNN_result_compare_percentage=KNN_result_compare_sum/m1*100; 
KNN_PER=KNN_result_compare_percentage'; 
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8. Classification of the selected EEG RER Features at 70:30 ratio Training 

and Testing 

 

%EEG DATA CLASSIFICATION USING K-NN USING RELATIVE ENERGY RATIO (RER) 

at 
%70:30 training and testing ratio 
clear all; 
% Call the file containing the normalization data 
load('knn_power_ratio.mat'); 
[m n]=size(data); 

  
%Define the length of training group of data with the centroids of 

RER 
G1_train=ones(35,1)*1.53; % EEG PSD data with questionnaires at EC 

state 
G2_train=ones(35,1)*1.23; % EEG PSD data during IQ Test 
G3_train=ones(28,1)*1.49; % EEG PSD data before HR  
G4_train=ones(28,1)*1.46; % EEG PSD data after HR 
Group_Class_Train=[G1_train;G2_train;G3_train;G4_train]; 
 

%Define the length of testing group of data with the centroids of RER 
G1_test=ones(15,1)*1.53; % EEG PSD data with questionnaires at EC 

state 
G2_test=ones(15,1)*1.23; % EEG PSD during IQ Test 
G3_test=ones(12,1)*1.49; % EEG PSD before HR  
G4_test=ones(12,1)*1.46; % EEG PSD after HR 
Group_Class_Test=[G1_test;G2_test;G3_test;G4_test]; 
 

%Define the Training & Testing Group at 70:30 

  
%Training Group, 70% 
Group_1_TR=data(1:35,2:5); 
Group_2_TR=data(51:85,2:5); 
Group_3_TR=data(101:128,2:5); 
Group_4_TR=data(141:168,2:5); 
Training_Data=[Group_1_TR; Group_2_TR; Group_3_TR; Group_4_TR]; 

  
%Testing Group, 30% 
Group_1_Test=data(36:50,2:5); 
Group_2_Test=data(86:100,2:5); 
Group_3_Test=data(129:140,2:5); 
Group_4_Test=data(169:180,2:5); 
Testing_Data=[Group_1_Test; Group_2_Test; Group_3_Test; 

Group_4_Test]; 

  
% Apply the k-NN classifier 
for k=1:1:126  
KNN_Output(:,k)=knnclassify(Testing_Data,Training_Data,Group_Class_Tr

ain,k,'euclidean','nearest'); 

  
[m1 n1]=size(Testing_Data); 
for jj=1:m1 
    if KNN_Output(jj,k)==Group_Class_Test(jj,1) 
       KNN_result_compare(jj,k)=1; 
    elseif KNN_Output(jj,k)~=Group_Class_Test(jj,1) 
    KNN_result_compare(jj,k)=0; 
    end 
end 
end 
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% Group percentage 
% Group 1 
KNN_G1=sum(KNN_result_compare(1:15,2:5)); 
KNN_G1_percentage=KNN_G1/15*100; 
KNN_G1_PER=KNN_G1_percentage'; 
% Group 2 
KNN_G2=sum(KNN_result_compare(16:30,2:5)); 
KNN_G2_percentage=KNN_G2/15*100; 
KNN_G2_PER=KNN_G2_percentage'; 
% Group 3 
KNN_G3=sum(KNN_result_compare(31:42,2:5)); 
KNN_G3_percentage=KNN_G3/12*100; 
KNN_G3_PER=KNN_G3_percentage'; 
% Group 4 
KNN_G4=sum(KNN_result_compare(43:54,2:5)); 
KNN_G4_percentage=KNN_G4/12*100; 
KNN_G4_PER=KNN_G4_percentage'; 

  
% Overall group percentage 
KNN_result_compare_sum=sum(KNN_result_compare); 
KNN_result_compare_percentage=KNN_result_compare_sum/m1*100; 
KNN_PER=KNN_result_compare_percentage'; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

230 

 

9. Confusion Matrix 

 

function [confmatrix] = cfmatrix(actual, predict, classlist, per) 
% CFMATRIX calculates the confusion matrix for any prediction  
% algorithm that generates a list of classes to which the test  
% feature vectors are assigned 
% 
% Outputs: confusion matrix 
% 
%                 Actual Classes 
%                   p       n 
%              ___|_____|______|  
%    Predicted  p'|     |      | 
%      Classes  n'|     |      | 
%  
% Inputs:  
% 1. actual / 2. predict 
% The inputs provided are the 'actual' classes vector 
% and the 'predict'ed classes vector. The actual classes are the 

classes 
% to which the input feature vectors belong. The predicted classes 

are the  
% class to which the input feature vectors are predicted to belong 

to,  
% based on a prediction algorithm.  
% The length of actual class vector and the predicted class vector 

need to  
% be the same. If they are not the same, an error message is 

displayed.  
% 3. classlist 
% The third input provides the list of all the classes {p,n,...} for 

which  
% the classification is being done. All classes are numbers. 
% 4. per = 1/0 (default = 0) 
% This parameter when set to 1 provides the values in the confusion 

matrix  
% as percentages. The default provides the values in numbers. 
% 
% Example: 
% >> a = [ 1 2 3 1 2 3 1 1 2 3 2 1 1 2 3]; 
% >> b = [ 1 2 3 1 2 3 1 1 1 2 2 1 2 1 3]; 
% >> Cf = cfmatrix(a, b); 
% 
% [Avinash Uppuluri: avinash_uv@yahoo.com: Last modified: 08/21/08] 

  
% If classlist not entered: make classlist equal to all  
% unique elements of actual 
if (nargin < 2) 
   error('Not enough input arguments.'); 
elseif (nargin == 2) 
    classlist = unique(actual); % default values from actual 
    per = 0; % default is numbers and input 1 for percentage 
elseif (nargin == 3) 
    per = 0; % default is numbers and input 1 for percentage 
end 

  
if (length(actual) ~= length(predict)) 
    error('First two inputs need to be vectors with equal size.'); 
elseif ((size(actual,1) ~= 1) && (size(actual,2) ~= 1)) 
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    error('First input needs to be a vector and not a matrix'); 
elseif ((size(predict,1) ~= 1) && (size(predict,2) ~= 1)) 
    error('Second input needs to be a vector and not a matrix'); 
end 
format short g; 
n_class = length(classlist); 
line_two = '----------'; 
line_three = '_________|'; 
for i = 1:n_class 
    obind_class_i = find(actual == classlist(i)); 
    prind_class_i = find(predict == classlist(i)); 
    confmatrix(i,i) = length(intersect(obind_class_i,prind_class_i)); 
    for j = 1:n_class 
        %if (j ~= i) 
        if (j < i) 
        % observed j predicted i 
        confmatrix(i,j) = length(find(actual(prind_class_i) == 

classlist(j)));  
        % observed i predicted j 
        confmatrix(j,i) = length(find(predict(obind_class_i) == 

classlist(j))); 
        end 
    end 
    line_two = strcat(line_two,'---',num2str(classlist(i)),'-----'); 
    line_three = strcat(line_three,'__________'); 
end 

  
if (per == 1) 
    confmatrix = (confmatrix ./ length(actual)).*100; 
end 
% output to screen 
disp('------------------------------------------'); 
disp('             Actual Classes'); 
disp(line_two); 
disp('Predicted|                     '); 
disp('  Classes|                     '); 
disp(line_three); 
for i = 1:n_class 
    temps = sprintf('       %d             ',i); 
    for j = 1:n_class 
    temps = strcat(temps,sprintf(' |    %2.1f    ',confmatrix(i,j))); 
    end 
    disp(temps); 
    clear temps 
end 
disp('------------------------------------------'); 
%TP,FP,FN,TN 
% True Postive [TP] = Condition Present + Positive result  
% False Positive [FP] = Condition absent + Positive result [Type  
% I error]  
% False (invalid) Negative [FN] = Condition present + Negative result 

[Type  
% II error]  
% True (accurate) Negative [TN] = Condition absent + Negative result 
disp('--------------------------------------');  
disp(' Actual Classes');  
disp(line_two); 
temps = sprintf(' TP ');  
for i = 1:n_class  
    temps = strcat(temps,sprintf(' | %2.1f ',confmatrix(i,i)));  
end  
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disp(temps);  
clear temps 
temps = sprintf(' FP ');  
for i = 1:n_class  
    temps = strcat(temps,sprintf(' | %2.1f ',sum(confmatrix(i,:))-

confmatrix(i,i) ));  
end  
disp(temps);  
clear temps  
temps = sprintf(' FN ');  
for i = 1:n_class  
    temps = strcat(temps,sprintf(' | %2.1f ',sum(confmatrix(:,i))-

confmatrix(i,i) ));  
end  
disp(temps);  
clear temps 
temps = sprintf(' TN ');  
for i = 1:n_class  
    temps = strcat(temps,sprintf(' | %2.1f ',sum(diag(confmatrix))-

confmatrix(i,i) ));  
end  
disp(temps);  
clear temps 
temps =sprintf('SEN'); 
for i=1:n_class 
    temps = strcat(temps,sprintf(' | 

%2.4f',(confmatrix(i,i)/(confmatrix(i,i)+sum(confmatrix(:,i))-

confmatrix(i,i)))));  
end 
disp(temps);  
clear temps 
temps=sprintf('SPEC'); 
for i=1:n_class 
    temps = strcat(temps,sprintf(' | %2.4f',(sum(diag(confmatrix))-

confmatrix(i,i))/(sum(diag(confmatrix))-

confmatrix(i,i)+sum(confmatrix(i,:))-confmatrix(i,i))));  
end 
disp(temps);  
clear temps 
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10. Cross-validation of the k-NN Classifier using FKM 

 

% CROSS VALIDATION OF EEG FEATURES USING FKM AND CROSSVALIND 
clear all; 
%Load EEG features 
load('knn_power_ratio.mat'); 
a2=data(1:180,2:5); 
opts = statset('Display','final'); 
[idx,ctrs] = 

kmeans(a2,4,'Distance','sqEuclidean','Replicates',5,'Options',opts);  

  
for z=1:1:4 
sum1(z,:)=sum(idx(1:50,1)==z); 
sum2(z,:)=sum(idx(51:100,1)==z); 
sum3(z,:)=sum(idx(101:140,1)==z); 
sum4(z,:)=sum(idx(141:180,1)==z); 
end 
%sum1,sum2,sum3,sum4==group kita #1,#2,#3,#4 
      %g1  g2  g3  g4 >> group kmeans 
%sum1  11  10  23  6 
%sum2  10  40   0  0 
%sum3  12  11  12  5 
%sum4  14  9   12  5 
% select the group 
% group kita #1 >> 23(g3) 
% group kita #2 >> 40(g2) 
% group kita #3 >> 12(g1) 
% group kita #4 >> 5(g4) 
%Re-assign the groups 
%data group 1:50 >> kmeans group #3 so b1==3 
%data group 51:100 >> kmeans group #2 so b2==2 
%data group 101:140 >> kmeans group #1 so b1==1 
%data group 141:180 >> kmeans group #4 so b2==4 
b1=3;b2=2;b3=1;b4=4; 
A=find(idx(1:50,:)==b1);[mm1,nn1]=size(A); 
B=find(idx(51:100,:)==b2);[mm2,nn2]=size(B); 
C=find(idx(101:140,:)==b3);[mm3,nn3]=size(C); 
D=find(idx(141:180,:)==b4);[mm4,nn4]=size(D); 
E=size(A)+size(B)+size(C)+size(D); 
g1=5;g2=40;g3=20;g4=5; 

  
%Relate the EEG data according to the FKM index to produce FKM new 

groups 
X_NEW=[A;B;C;D];  
data_kmean=a2(X_NEW,:); 
[k,l]=size(data_kmean); 
group=[repmat(1,mm1,1);repmat(2,mm2,1);repmat(3,mm3,1);repmat(4,mm4,1

)]; 
%Define the number of fold according to the k value of the FKM 
fold=ceil(k/10); 
indices = crossvalind('Kfold',group,fold); 

  
%cross-validation process k-fold >> to check training data validity 

>> target 100% accuracy 

  
for iii = 1:fold     
test3(:,iii) = (indices == iii); 
train3(:,iii) = ~test3 (:,iii);   
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Class(:,iii)= 

knnclassify(data_kmean(test3(:,iii),:),data_kmean(train3(:,iii),:),gr

oup(train3(:,iii),:)); 
test_g(:,iii)=group(test3(:,iii)~=0,1); 

  
end 
[m n] = size(Class); 
for j=1:m 
if Class(j)==test_g(j) 
    result(j)=1; 
elseif Class(j)~=test_g(j) 
    result(j)=0; 
end 
end 
%check the performance of k-fold cross-validation 
total_percentage=mean(result)*100; 
per_av=mean(mean(total_percentage,2)); 
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11. Cross-validation of the k-NN Classifier without using FKM 

 

%EEG DATA CLASSIFICATION USING K-NN : k-Fold Cross Validation 
clear all; 
% Call the file containing the normalization data 
load('knn_power_ratio.mat'); 
[m n]=size(data); 

  
%Define the length of training group of data 
G1_train=ones(45,1)*1.53; % EEG PSD data with questionnaires (EC 

state) 
G2_train=ones(45,1)*1.23; % EEG PSD data during IQ Test data 
G3_train=ones(32,1)*1.49; % EEG PSD data before HR  
G4_train=ones(32,1)*1.46; % EEG PSD data after HR 
Group_Class_Train=[G1_train;G2_train;G3_train;G4_train]; 
 

%Define the length of testing group of data 
G1_test=ones(5,1)*1.53; % EEG PSD data with questionnaires (EC state) 
G2_test=ones(5,1)*1.23; % EEG PSD data during IQ Test  
G3_test=ones(8,1)*1.49; % EEG PSD data before HR  
G4_test=ones(8,1)*1.46; % EEG PSD data after HR  
Group_Class_Test=[G1_test;G2_test;G3_test;G4_test]; 
 

%Define the Training & Testing data for 10-fold cross validation 
test_data1=data(1:5,2:5); 
test_data2=data(51:55,2:5); 
test_data3=data(101:108,2:5); 
test_data4=data(141:148,2:5); 

  
Tr_1=data(6:50,2:5); 
Tr_2=data(56:100,2:5);     
Tr_3=data(109:140,2:5); 
Tr_4=data(149:180,2:5); 
Testing_data=[test_data1;test_data2;test_data3;test_data4]; 
Training_data=[Tr_1;Tr_2;Tr_3;Tr_4]; 

  
% Apply the k-NN classifier 
for k=1:1:50 
KNN_Output(:,k)=knnclassify(Testing_data,Training_data,Group_Class_Tr

ain,k,'euclidean','nearest'); 

  
[m1 n1]=size(Testing_data); 
for jj=1:m1 
    if KNN_Output(jj,k)==Group_Class_Test(jj,1) 
       KNN_result_compare(jj,k)=1; 
    elseif KNN_Output(jj,k)~=Group_Class_Test(jj,1) 
    KNN_result_compare(jj,k)=0; 
    end 
end 
end 

  
% Overall group percentage 
KNN_result_compare_sum=sum(KNN_result_compare); 
KNN_result_compare_percentage=KNN_result_compare_sum/m1*100; 
KNN_PER=KNN_result_compare_percentage'; 

  
data=KNN_Output; 
[m2 n2]=size(data); 
for b=1:1:n2 
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for a=1:1:m2 

     
    if data(a,b)==1.23 
        data2(a,b)=1; 
    elseif data(a,b)==1.46 
        data2(a,b)=2; 
    elseif data(a,b)==1.49 
        data2(a,b)=3;   
    elseif data(a,b)==1.53 
        data2(a,b)=4; 
    end 
end 
end 

  
data3=Group_Class_Test; 
[m n]=size(data3); 
b=1; 
for a=1:1:m 

     
    if data3(a,b)==1.23 
        data22(a,b)=1; 
    elseif data3(a,b)==1.46 
        data22(a,b)=2; 
    elseif data3(a,b)==1.49 
        data22(a,b)=3;   
    elseif data3(a,b)==1.53 
        data22(a,b)=4; 
    end 
end 
 

% Measure the performance of the cross validation  
class_perf=classperf(data2(:,1),data22); 
performance_CorrectRate=class_perf.CorrectRate; 
performance_Sensitivity=class_perf.Sensitivity; 
performance_Specificity=class_perf.Specificity; 
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12. Cross-validation of the k-NN Classifier using LOO 

 

%CROSS-VALIDATION OF k-NN CLASSIFICATION USING LEAVE-ONE-OUT (LOO) 
%LOL for k-NN 
%g1,.....=nth group no of observations; 
%data_g=[g1;g2;g3;......]; 
%name your data as "a" 
%define the group 
g1=11;g2=10;g3=23;g4=6; 
data_g=[g1;g2;g3;g4]; 
data_g_sort=sort(data_g); 
fold=data_g_sort(1,1); 

  
group=[repmat(1,g1,1); repmat(2,g2,1); repmat(3,g3,1); 

repmat(4,g4,1)]; 

  
for i=1:1:fold 
    a=data(1:180,2:5); 
    data_train_test=a; 
    data_class=group; 

         
    t1=i; 
    t2=i+g1; 
    t3=i+g1+g2; 
    t4=i+g1+g2+g3; 
    t_all=[t1;t2;t3;t4]; 

     
    test_data(i).out=data_train_test(t_all,:); 
    class_test(i).out=data_class(t_all,:); 

     
    data_train_test(t_all,:)=[]; 
    train_data(i).out=data_train_test; 
    data_class(t_all,:)=[]; 
    class(i).out=data_class; 

  
end    
for TT=1:1:fold 

  
    test_data2=test_data(TT).out; 
    train_data2=train_data(TT).out; 
    class2=class(TT).out; 
    class_test2=class_test(TT).out; 

     
    [m1 n1]=size(test_data2); 
for k=1:1:10 % put your max K-values here 
    

KNN(TT).out(:,k)=knnclassify(test_data2,train_data2,class2,k,'euclide

an','nearest');   

     
for jj=1:m1 
if KNN(TT).out(jj,k)==class_test2(jj,1) 
        KNN_result_compare(TT).out(jj,k)=1; 
elseif KNN(TT).out(jj,k)~=class_test2(jj,1) 
        KNN_result_compare(TT).out(jj,k)=0; 
end 
    end 
end 
KNN_result_compare_sum(TT).out=sum(KNN_result_compare(TT).out); 
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KNN_result_compare_percentage(TT).out=(KNN_result_compare_sum(TT).out

/m1)*100; 
 KNN_sum(TT,:)=KNN_result_compare_percentage(TT).out; 
 end 
KNN_av_LOL=mean(KNN_sum); 
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13. FCM Clustering 

 

%FCM CLUSTERING OF EEG FEATURES 
clear all; 
% Call the file containing the power ratio data 
load('knn_power_ratio.mat'); 
[m n]=size(data); 
%Apply Fuzzy C-Mean with 4 number of cluster 
datax=data(1:180,2:5); 
[center,U,objFcn] = fcm(datax,4,NaN); 
maxU = max(U); 
index1 = find(U(1, :) == maxU); 
index2 = find(U(2, :) == maxU); 
index3 = find(U(3, :) == maxU); 
index4 = find(U(4, :) == maxU); 

  
%Plot the maximum membership grade, U 
MAXU=maxU'; 
hist(MAXU(1:180,1)); 
% Create xlabel 
xlabel('Grade of membership, U','FontName','Times New 

Roman','fontsize',10,'fontweight','b'); 
%xlabel('Grade of Membership, U'); 

  
% Create ylabel 
ylabel('Number of membership grade','FontName','Times New 

Roman','fontsize',10,'fontweight','b'); 
%ylabel('Number of membership grade'); 

  
% Create title 
%title('Histogram plot of FCM Membership Grade'); 
title('Histogram plot of FCM Membership Grade','FontName','Times New 

Roman','fontsize',10,'fontweight','b'); 

  
% Calculate Centroids for each cluster using index obtained from 
% membership, U 
ind1=index1';[m1,n1]=size(ind1); 
ind2=index2';[m2,n2]=size(ind2); 
ind3=index3';[m3,n3]=size(ind3); 
ind4=index4';[m4,n4]=size(ind4); 
dataind1=datax(ind1,1); [mm1,nn1]=size(dataind1); 
dataind2=datax(ind2,2); [mm2,nn2]=size(dataind2); 
dataind3=datax(ind3,3); [mm3,nn3]=size(dataind3); 
dataind4=datax(ind4,4); [mm4,nn4]=size(dataind4); 
% apply centroid to indexed data with index size 
cenind1=centroid(dataind1,m1); 
cenind2=centroid(dataind2,m2); 
cenind3=centroid(dataind3,m3); 
cenind4=centroid(dataind4,m4); 

  
% Plot the Iteration graph 
figure 
plot(objFcn) 
title('Objective Function Values') 
xlabel('Iteration Count') 
ylabel('Objective Function Value') 

  
% Plot the FCM for all clusters 
figure 
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line(datax(ind1, 1), datax(ind1, 2),'linestyle',... 
'none','marker', '+','color','b'); 

  
line(datax(ind2,1),datax(ind2,2),'linestyle',... 
'none','marker', '*','color','y'); 

  
line(datax(ind3, 3), datax(ind3, 4),'linestyle',... 
'none','marker', 'o','color','g'); 

  
line(datax(ind4,3),datax(ind4,4),'linestyle',... 
'none','marker', 'x','color','r'); 

  
title('FCM Clustering','FontName','Times New 

Roman','fontsize',10,'fontweight','b'); 
hold on 
plot(center(1,1),center(1,2),'ko','markersize',15,'LineWidth',2) 
plot(center(2,1),center(2,2),'ko','markersize',15,'LineWidth',2) 
plot(center(3,3),center(3,4),'ko','markersize',15,'LineWidth',2) 
plot(center(4,3),center(4,4),'ko','markersize',15,'LineWidth',2) 
legend('Cluster 1','Cluster 2','Cluster 3','Cluster 

4','Centroids','Location','NW') 
legend ('show'); 
set(legend,'Orientation','horizontal','Location','SouthOutside',... 
    'FontName','Times New Roman','fontsize',10,'fontweight','b'); 
%set(legend,'Location','SouthOutside'); 
hold off 
Center1_val=maxU(1,index1); 
Center2_val=maxU(1,index2); 
Center3_val=maxU(1,index3); 
Center4_val=maxU(1,index4); 
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14. FKM Clustering 

 

%CLUSTERING THE EEG FEATURES USING FKM 
clear all; 
GrA=50;%size group A 
GrB=50;%size group B 
GrC=40;%size group C 
GrD=40;%size group D 

  
% Call the file containing the power ratio data 
load('knn_power_ratio.mat'); 
[m n]=size(data); 
%Apply Fuzzy C-Mean with 4 number of cluster 
datax=data(1:180,2:5); 
title('FKM Clustering','FontName','Times New 

Roman','fontsize',10,'fontweight','b'); 
%hold on 
opts = statset('Display','final'); 
[idx,ctrs] = 

kmeans(datax,4,'Distance','sqEuclidean','Replicates',5,'Options',opts

); 
subplot(1,2,1) 
plot(datax(idx==1,1),datax(idx==1,2),'y.','MarkerSize',12); 
hold on 
plot(datax(idx==2,1),datax(idx==2,2),'r.','MarkerSize',12) 
hold on 
plot(datax(idx==3,3),datax(idx==3,4),'b.','MarkerSize',12) 
hold on 
plot(datax(idx==4,3),datax(idx==4,4),'g.','MarkerSize',12) 

  
plot(ctrs(1,1),ctrs(1,2),'kx','MarkerSize',12,'LineWidth',2) 
plot(ctrs(2,1),ctrs(2,2),'kx','MarkerSize',12,'LineWidth',2) 
plot(ctrs(3,3),ctrs(3,4),'kx','MarkerSize',12,'LineWidth',2) 
plot(ctrs(4,3),ctrs(4,4),'kx','MarkerSize',12,'LineWidth',2) 
title('FKM Clustering','FontName','Times New 

Roman','fontsize',10,'fontweight','b'); 
legend('Cluster 1','Cluster 2','Cluster 3','Cluster 

4','Centroids','Location','NW') 
legend ('show'); 
set(legend,'Orientation','vertical','Location','SouthOutside',... 
    'FontName','Times New Roman','fontsize',10,'fontweight','b'); 
%set(legend,'Location','SouthOutside'); 
hold off  

  
A_idx=find(idx(1:GrA,:)==1); 
B_idx=find(idx(GrA+1:GrA+GrB,:)==2); 
C_idx=find(idx(GrA+GrB+1:GrA+GrB+GrC,:)==3); 
D_idx=find(idx(GrA+GrB+GrC+1:GrA+GrB+GrC+GrD,:)==4); 
%     
A=datax(A_idx,:);[mm1,nn1]=size(A); 
B=datax(B_idx,:);[mm2,nn2]=size(B); 
C=datax(C_idx,:);[mm3,nn3]=size(C); 
D=datax(D_idx,:);[mm4,nn4]=size(D); 
%  
X_NEW=[A;B;C;D]; 
x2=X_NEW; 
opts2 = statset('Display','final'); 
[idx2,ctrs2] = 

kmeans(x2,4,'Distance','sqEuclidean','Replicates',5,'Options',opts);              
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subplot(1,2,2) 
plot(x2(idx2==1,1),x2(idx2==1,2),'y.','MarkerSize',12) 
hold on 
plot(x2(idx2==2,1),x2(idx2==2,2),'r.','MarkerSize',12) 
hold on 
plot(x2(idx2==3,3),x2(idx2==3,4),'b.','MarkerSize',12) 
hold on 
plot(x2(idx2==4,3),x2(idx2==4,4),'g.','MarkerSize',12) 
%  
plot(ctrs2(1,1),ctrs2(1,2),'ko','MarkerSize',12,'LineWidth',2) 
plot(ctrs2(2,1),ctrs2(2,2),'ko','MarkerSize',12,'LineWidth',2) 
plot(ctrs2(3,3),ctrs2(3,4),'ko','MarkerSize',12,'LineWidth',2) 
plot(ctrs2(4,3),ctrs2(4,4),'ko','MarkerSize',12,'LineWidth',2) 
%  
title('FKM New Clustering','FontName','Times New 

Roman','fontsize',10,'fontweight','b'); 
legend('Cluster 1 new','Cluster 2 new','Cluster 3 new','Cluster 4 

new','Centroids','Location','NW')  
%  
legend ('show'); 
set(legend,'Orientation','vertical','Location','SouthOutside',... 
    'FontName','Times New Roman','fontsize',10,'fontweight','b'); 
%set(legend,'Location','SouthOutside'); 
hold off 
groupmat=[repmat(1,mm1,1);repmat(2,mm2,1);repmat(3,mm3,1);repmat(4,mm

4,1)]; 
[k,l]=size(x2); 
fold=4; 
indices = crossvalind('Kfold',groupmat,fold); 

  
for iii = 1:fold     
test3(:,iii) = (indices == iii); 
train3(:,iii) = ~test3 (:,iii);   

  
Class(:,iii)= 

knnclassify(x2(test3(:,iii),:),x2(train3(:,iii),:),groupmat(train3(:,

iii),:)); 
test_g(:,iii)=groupmat(test3(:,iii)~=0,1); 

  
end 
[mmm nnn] = size(Class); 
for j=1:mmm 
if Class(j)==test_g(j) 
    result(j)=1; 
elseif Class(j)~=test_g(j) 
    result(j)=0; 
end 
end 

  
total_percentage=mean(result)*100; 
per_av=mean(mean(total_percentage,2)); 
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