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ABSTRACT

Parameter optimization can be achieved by many methods such as Monte-Carlo, full,
and fractional factorial designs. Genetic algorithms (GA) are fairly recent in this respect
but afford a novel method of parameter optimization. In GA, there is an initial pool of
individuals each with its own specific phenotypic trait expressed as a ‘genetic
chromosome’. Different genes enable individuals with different fitness levels to
reproduce according to natural reproductive gene theory. This reproduction is
established in terms of selection, crossover and mutation of reproducing genes. The
resulting child generation of individuals has a better fitness level akin to natural
selection, namely evolution. Populations evolve towards the fittest individuals. Such a
mechanism has a parallel application in parameter optimization. Factors in a parameter
design can be expressed as a genetic analogue in a pool of sub-optimal random
solutions. Allowing this pool of sub-optimal solutions to evolve over several
generations produces fitter generations converging to a pre-defined engineering
optimum. In this paper, a genetic algorithm is used to study a seven factor non-linear
equation for a Wheatstone bridge as the equation to be optimized. A comparison of the
full factorial design against a GA method shows that the GA method is about 1200
times faster in finding a comparable solution.
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INTRODUCTION

Parameter optimization is an important field of engineering that seeks to find some
optimum (i.e., minimum or maximum) point in a design space (Phadke, 1989). Classical
methods for such optimization include the Monte Carlo and the full or fractional
factorial methods. More recently several new methods have emerged including the
genetic algorithms, the particle swarm optimization and ant colony optimization. In this
paper, the author compares the more ¬intensive full factorial method against the genetic
algorithm method using the Wheatstone bridge equation as a function to be optimized.
Consider the Wheatstone bridge circuit as shown in Figure 1. The bridge circuit is used
to identify the value of the unknown resistor y . Mathematically,
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where A, B, C, D and F are resistors, E is the applied voltage and G is the galvanometer
(Taguchi, 1987). Given nominal values of variables, A, … , G, there are infinitely many
combinations of values which will give a target value of y . The objective of
parameter design is to find not only the given target value of y , say 2 Ω, but to do
so in a region of space where small variations in the variables (e.g., resistors, voltage,
galvanometer readings) and other noise variations (e.g., humidity, temperature) do not
affect the measured value y .
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Figure 1. Wheatstone bridge circuit.

Let i for i = 1, … , 7 represent, respectively, the variables A, …, G. Then it is
necessary to find values of i such that y . Hence, the measure of y is a target
performance measure, or TPM (Logothetis, 1989). Further, the variance associated with

y for i can be estimated by the change i
i

y
y 




 . Since the variance

      kk VarVarVarVar    2121 , the variance 2 of all the
variables can be estimated by Eq. 2, (Logothetis, 1992).
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However, choosing to evaluate the variance directly is not a good method since
variance is not a scale invariant quantity. Therefore, the quantity /y , i.e. the inverse
coefficient of variation can be used. This however, distinguishes y from y which is

not pertinent to the present case. Hence, one can use the function  2/*  y as a
noise performance measure or NPM. This measure can be further improved by using a
logarithmic function. Suppose,  is confounded with some unknown noise effect ,
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and y , then taking logarithms,  logloglog y . The effect of  is then
reduced to a constant which can be ignored in differences of ylog . Therefore, one can
use the noise performance measure or NPM as shown in Eq. 3 to improve additivity
(Logothetis, 1989).

 2/log10  y (3)

Referring to
Figure 2, the optimization problem is now Step 1, to use NPM to minimize the

variance of a factor; and Step 2, to use TPM to minimize the bias, i.e.   0y and
achieve the target value as best as possible. Such a method of optimization was first
proposed by Taguchi as the two step optimization and referred to as robust design
(McEwan et. al., 1992).
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Figure 2. Effect of NPM and TPM on response.

OPTIMIZATION TECHNIQUES

Full Factorial Method

In a full factorial method, one can evaluate yTPM . Eq. 1 can be partial differentiated
with respect to each variable, e.g. for factor A,
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If the tolerance about the nominal value of A is known or set as A then,

A
A
yy 


 . The variance of y for a given combination of variables ican then be

found from 
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Table 1. Parameter values for factors.

Factors A B C D E F G
Min value 20 1.99 2 2 1.2 2 -0.0002
Max value 500 2.01 50 50 30.0 50 +0.0002
Tolerance 0.003 0.003 0.003 0.003 0.050 0.003 0.0002

Unit ohm ohm ohm ohm volt ohm ampere
Optimum 1 3 2 2 7 1 1

Using j = 1, …, k levels for each factor, the factor values are set according to
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A full factorial is initiated with all factor levels at level 1 and then incrementing
factor G’s level by 1 until k. Then factor F’s level 1 is incremented by 1 for k levels of
G. The process is repeated for factors E, D, C, B and so on until all k levels of A are
completed. The TPM and NPM values were calculated for 152,097,287 
combinations of factor levels using a simple Excel program. Partial results are shown in
Figure 3.

A B C D E F G
1 2 3 4 5 6 7 DA DB DC DD DE DF DG y s2

h
1 1 1 1 1 1 1 0.00 0.01 0.01 0.01 0.00 0.00 0.06 2.05253 0.0035 30.75

1 1 1 1 1 1 2 0.00 0.01 0.01 0.01 0.00 0.00 0.06 2.03580 0.0035 30.68

… … … … … … … … … … … … … … … … …

8 8 8 8 8 8 8 0.00 0.01 0.03 0.01 0.02 0.00 0.39 1.61312 0.1559 12.23

Statistics

2097152

…

#

1

2

Tolerances

Figure 3. Partial results of full factorial experiment.

Every time a TPM value is within 2 ± 0.00005 Ω, the TPM and NPM values are
noted and recorded by the program. The factor combination with the highest NPM (i.e.
1, 3, 2, 2, 7, 1, 1) is then taken as the optimum factor level combination. The
corresponding optimum values are  9611.999y and dB45.447 . Noise factors
built around the nominal ± 1×tolerance gives a typical graph as shown in

Figure 4. The reduction in variation is dramatic (110 times) while also achieving
the target value of 2.0 Ω.
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Figure 4. Comparison of unoptimized–optimized responses from full factorial.

Genetic Algorithms

The GA method of optimization begins with the expression of engineering factors in
binary code although other codes are also possible (Coley, 1999). Consistent with the
full factorial, the range of factor values j to be tried is set up with k = 8 values according
to the binary levels 000, 001, 010, 011, 100, 101, 110, 111. This corresponds to a gene
length of 3 and chromosome length of 21 binary digits as shown in
Figure 5.

For a combination,  111010000 ,;; GBAF  corresponding to  821 ,,, GBAF  , the
gene representation is translated to the factor value and substituted into Eq. (1) to
calculate y . Using the same factor levels, the variance is calculated by substitution of

the factor values into 
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The NPM is calculated as
2
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and lastly, the fitness function F is

calculated as shown Figure 5.

# 1 2 3 4 5 6 … 19 20 21 DA DB DC DD DE DF DG y s2 h F
1 0 1 1 0 1 0 … 0 1 0 0.00 0.01 0.01 0.01 0.00 0.00 0.03 2.00128 0.0008 36.82 0.010

2 0 1 1 0 0 0 … 0 1 0 0.00 0.01 0.01 0.01 0.00 0.00 0.03 1.99874 0.0012 35.20 0.012

… … … … … … … … … … … … … … … … … … … … … …

10 0 1 1 0 1 0 … 0 1 0 0.00 0.01 0.01 0.01 0.00 0.00 0.16 2.02031 0.0258 22.00 0.467
Opt 0 1 1 0 1 1 … 0 1 0 0.00 0.01 0.01 0.01 0.00 0.00 0.03 1.99874 0.0012 35.20 0.012

Factor A Factor B Factor G Tolerances Statistics

Figure 5. Example of calculations with genetic algorithm.
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Fitness function

For parameter optimization, the selection of the fitness function poses some difficulty
since we require to achieve a specified value of and . Attaining a specified target
value with the smallest variability implies that both the mean and variance need to be
considered. Consistent with the full factorial, if we set a target of y =2.0 Ωand η= 45
dB, it is possible to optimize   452  yf but the resulting surface response is a
saddle as shown in
Figure 6A. Clearly, it is not possible to find a suitable minimum on a saddle.

However, the function   22 452  yF produces a surface response as
shown in

Figure 6B. Although the region of interest is fairly flat (which is a good thing to
have) it is possible to determine the minima. In this paper, this fitness function F is
used.
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Figure 6. Response surfaces of fitness functions.

Reproduction

In the GA method, a random sample of 10 individuals was set up and the fitness
function was evaluated corresponding to Generation 0. Using this parent generation,
individuals for the next generation (Generation 1) were selected (by roulette wheel,
tournament, etc.), crossed over (with probability p and position x along the
chromosome) and mutated (with probability q and position z along the chromosome) to
form the next generation as shown in
Figure 7, (Haupt and Werner, 2007; Haupt and Haupt, 2004). The fitness function for
each chromosome is evaluated and used in subsequent selection processes. This
reproduction is continued until a specific criterion (e.g. number of generations, tolerance
of target value, etc.) is reached. At this point, the optimum gene pool is noted. Since a
GA can produce different solutions at different times it is suggested to run several
searches.
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Figure 7. Genetic algorithm method

RESULTS AND DISCUSSION

Tracing the fitness function of a random population over 20 generations (
Figure 8) showed that the population converges rapidly to a solution in an amazing time
of less than 3.0 seconds.
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Figure 8. Twenty generations of GA reproduction.
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Figure 9 compares the optimum solution to the unoptimized solution for the
genetic algorithm with a typical variance reduction in the breakthrough region of 150
times. As in the full factorial, the reduction in variation is dramatically obvious while
achieving the target value of 2.0 Ω.
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Figure 9. Comparison of unoptimized–optimized responses from genetic algorithms.

Comparison of Full Factorial and Genetic Algorithm

It now remains to compare the full factorial method with the GA method. To do this,
optimum conditions from each method were exposed to similar noise conditions (i.e.
nominal ± 1×tolerance). The result of such a comparison is shown in Figure 10. It is
clearly seen that the results are comparable both in terms of target value and variance.
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Figure 10. Comparison of full factorial and genetic algorithm.



Application of genetic algorithms for robust parameter optimization

219

Approaching the parameter optimization as a full factorial experiment for seven
variables, each at eight levels, results in 2,097,152 permutations. This took 3657
seconds (61 minutes or approximately 1 hour) on a Pentium IV, 2.20 GHz processor
with 1 GB of RAM. The genetic algorithm method took only 3 seconds to arrive at a
comparable solution on the same computer. That is, the time taken was reduced by a
factor of 1219. Although full factorial methods provide highly repeatable results they
are very time consuming. If an eighth factor was introduced into Eq. 1, the computation
time will increase linearly by eight times, i.e. to eight hours. However, genetic
algorithms provide a radically different approach to finding the solution. Even if a linear
increase was expected, this would only increase the time to 24 seconds. Another
drawback of the full factorial is the grid size of factor-level values. If a smaller grid size
is used the experimentation time would increase exponentially. Thus, large multi-level
factors would become impractical. If however, the grid size is decreased to fewer levels,
it is possible that a global optimum is missed. Such a problem is avoided in genetic
algorithms by the use of the selection, crossover and mutation processes that provides a
superior method of escaping local optima.

CONCLUSION

From the foregoing research, genetic algorithms provides a comparable solution to the
Full Factorial design. Genetic algorithms achieved the optimization in 3 seconds while
the full factorial took 3657 seconds. Genetic algorithms starts with a population of
guesses distributed randomly throughout the search space rather than a single point.
Genetic algorithms then uses selection, crossover and mutation to generate new
solutions that are closer to the fitness function. Newer solutions evolve within the
population towards a convergence to the global optimum.

FUTURE WORK

This paper studied the optimization of a function with a point target. For the Wheatstone
bridge circuit, the target was set to 2.0 Ω. But would this ‘optimum condition’ also hold
for a target value of 4.0 Ω? Consider another example in the optimization of a car
braking system for an average speed of say 80 km/hr. Such optimization is unlikely to
be ideal for all speeds. Thus, braking may be abrupt at low speeds and dragging at high
speeds. To optimize such a system, a range of speeds (signal levels) must be optimized.
The author is currently developing genetic algorithms for use in such applications where
the optimization is the gradient of a regression line.
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