

DESIGN OF TRANSFC

H-BRIDGE MOSFET

AS A SWITCHING DEVICE

MUHAMMAD RAFIQ BIN MUHAMAD AMIN

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering (Power Systems)

> Faculty of Electrical & Electronics Engineering Universiti Malaysia Pahang

> > JUNE 2013

TABLE OF CONTENT

CHAPTER			TITLE	PAGE
	DECL	ARATION		I-II
	DEDI	CATION		III
	ACKN	OWLEDGEMEN	ſ	IV
	ABST	RACT		V
	ABST	RAK		VI
	TABL	E OF CONTENTS		VII
	LIST	OF TABLES		XI
	LIST OF FIGURES			XII
	LIST OF SYMBOLS			XV
	LIST	OF APPENDICES		XV
1	INTR	ODUCTION		1
	1.1	Background		. 1
	1.2	Problem Statemer	nt	2
	1.3	Objective		2
	1.4	Scope of Project		3

2 LITERATURE REVIEW

2.1	Introduction	4
2.2	Direct current versus alternating current	4
2.3	Analog Circuit	5
	2.3.1 Microcontroller2.3.2 Inverter2.3.3 H-bridge MOSFET2.3.4 Boost Converter	5 6 7 9
2.4	MOSFET Driver	10

2.5	Pulse Width Modulation (PWM)	11
2.6	Sine Wave Oscillator	12
	2.6.1 Bubba Oscillator	13

3 METHODOLOGY

14

4

3.1	Introc	luction	14
3.2	Projec	t Design	14
3.3	Desig	n Circuit	15
	3.3.1	Boost Converter Circuit 3.3.1.1 Components Specification	15 17
	3.3.2 3.3.3 3.3.4	Inverter Circuit High-Low Side Driver IR2110 Filter Design	20 21 28

RESULT AND DISCUSSION
4.1 Introduction
4.2 Analysis Failure in Boost Converter Circuit
4.3 Analysis Failure in Inverter Circuit

CONCLUSION365.1Conclusion36

5.2 Recommendation 36

31

31

31

32

38

REFERENCES

4

5

APPENDICES	40

LIST OF TABLES

Table No.	Tite	Page
2.1	H-bridge basic operation	8
3.1	IR2110 Pin/Lead Definitions	26

LIST OF FIGURES

Figure No.	Tite	Page
2.1	High-frequency transformer invertér	6
2.2	Low-frequency transformer inverter	7
2.3	Transformerless inverter without DC chopper	7
2.4	Transformerless inverter with DC chopper	7
2.5	Basic circuit for H-bridge MOSFET	8
2.6	Basic principle operation of boost converter	9
2.7	MOSFET driver circuit	10
2.8	PWM signal and source signal	12
2.9	Bubba oscillator	13
3.1	Boost converter simulates using MATLAB software	16
3.2	Output graph result using MATLAB software	17
3.3	Electrolytic capacitor, 470uF with rating 250V	17
3.4	Schottky diode	18
3.5	High voltage rating IGBT	18
3.6	Four pins optocoupler with low input current	19
3.7	Chokes inductor with high temperature withstand	19

3.8	Boost converter circuit	20
3.9	Inverter Circuit with DC Chopper	20
3.10	Inverter flow chart design	21
3.11	Sine wave generator using LM348 quard bipolar Op-amp	22
3.12	Sine wave signal being measured at first output Op-amp	22
3.13	Carrier wave being measured by oscilloscope using TL084	23
3.14	Complete inverter circuit by using analog circuitry to	23
	generate pure sine wave	
3.15	High side MOSFET	24
3.16	Low side MOSFET	24
3.17	IR2110 functional block diagram	25
3.18	IR2110 Pin/Lead Assignments	25
3.19	Inverter circuit using IR2110 driver at H-bridge MOSFET	27
3.20	A low pass filter inverter	28
3.21	A toroidal line inductor in filter design	29
3.22	A film capacitor with AC voltage rating	29
3.23	Filtered inverter output is tested with 240Vac from	30
	H-Bridge inverter with 50Hz	
3.24	Filter with selected parameter and type is tested on	30
	breadboard	
4.1	The defection soldering between inductor's leg and board	32
4.2	Inverter circuit hardware	33

4.3	Sinusoidal signal measured at first Op-amp	33
4.4	Sinusoidal signal measured at fourth Op-amp	34
4.5	The distortion occurred at signal wave carrier	34

LIST OF SYMBOLS

APPENDIX TITE

PAGE

I	Ampere
V	Voltage
DC	Direct Current
AC	Alternating Current
PIC	Peripheral Interface Controller
I/O	Input/output
VDD	Supply Voltage

LIST OF APPENDIX

APPENDIX	TITE	PAGE
Α	Datasheet Of IRF740	40
В	Datasheet Of IR2110	42
С	Datasheet Of LM348	44
D	Datasheet Of LM3302	46
E	Datasheet OF TL084	48
F	Datasheet Of Toroidal Inductor	50
G	Datasheet Of Film Capacitor	51
Н	Datasheet Of 40HFL Diode	52

DESIGN OF TRANSFC

H-BRIDGE MOSFET

AS A SWITCHING DEVICE

MUHAMMAD RAFIQ BIN MUHAMAD AMIN

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering (Power Systems)

> Faculty of Electrical & Electronics Engineering Universiti Malaysia Pahang

> > JUNE 2013

ABSTRACT

This thesis presents the performance of efficiency of and low the cost of transformerless inverter which is convert high voltage DC into pure sine wave 220Vac, 50Hz power. A microcontroller is used to generate pulse width modulation technique for a greater efficiency. The four MOSFETs switching components with configuration of 'H' shape (H-bridge) were chosen to handling a maximum of 500 Watts

ABSTRAK

Tesis ini membentangkan prestasi kecekapan dan kos rendan penyongsang pengubah yang menukarkan DC voltan tinggi ke sinus gelombang tulen 220VAC, 50Hz kuasa. Mikropengawal adalah digunakan untuk menjana lebar denyut teknik modulasi untuk kecekapan yang lebih besar. Empat MOSFET menukar komponen dengan konfigurasi 'H' bentuk (H-*bridge*) telah dipilih untuk mengendalikan maksimum 500 Watts.

CHAPTER 1

INTRODUCTION

1.1 Background

The purpose of this report were to describe the design and prototype testing (simulation) of the inverter which more effectively by not using transformers. By using a low DC voltage (12 Vdc) convert to a high AC voltage (220 Vrms, 50Hz) with approximately 500 Watts of power.

As said before, this project converts from a low DC voltage value it can switch to a high AC voltage which is maintained by two processes. The first process is, multiplied DC voltage to be higher using the boost converter to get a higher voltage. High voltage value is then converted to an AC signal with pulse width modulation technique applied. Other methods commonly used in addition to this are to use a transformer to double the AC signal to a higher level. Conventional methods applied to the inverter.

1.2 Problem Statement

In Malaysia, not all receive power grid especially in the rural areas. This is a considerable problem which is supported by specific reasons. Among them are in the medical field where the power grid is very important for doctors who need to see and monitor their patient during surgery. Then, many companies nowadays grab this opportunities to create an inverter with high efficiency or even better on purpose of solving the problem by providing low-cost devices that are capable of supplying the power grid in particular range. In addition, the importance of backup power supply from inverter that changes from DC source (batteries) to AC output which is necessary to operate electronic components like television, blander, electrical driller etc

1.3 Objective

- i. To design the inverter without transformer (with DC chopper) to increase efficiency of the inverter.
- ii. Generating PWM using analog components, the output will be a clean sinusoid, with very little switching noise

1.4 Scope Of Project

- i. Design an inverter circuit using electronic switching
- ii. Using PIC as controller to boost up the voltage by controlling the PulseWidth Modulation (PWM) at the MOSFET's gate.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The literature review is to describe in general and theoretically on all parts of the inverter transforemerless. Literature review also evidence to support the research topic and make it easier to understand both in general or specific and also to complete the project successfully. All journal articles and conference papers and useful resources are described briefly in this literature review.

2.2 Direct Current Versus Alternating Current.

In everyday life, there are only two forms of electrical current that is direct current (DC) and alternating current (AC) which both have advantages and disadvantages. DC power is simply the application of a constant voltage across a load resulting in a constant current. Battery is the most common power source of power DC and many other forms of power sources along its generation. It is now used extensively in all digital circuitry shown in form of digit which represent the basic 1 (high) and 0 (low) bits that used by computer[1]. In transmission line in the late 19th, electrical energy is started to distribute with direct current (DC) and it was unfortunately lack of efficiency due to power loss in conductors and the voltage cannot be stepped up for transmission of power at high voltages. Thus, AC source was found to be more efficient can be generated at high voltages while the voltage can be stepped up or stepped down by transformers with ease and efficiency. [2]This

REFERENCES.

- R. Oliver, C.William. "Three-Level PWM DC/AC Inverter Using a Microcontroller." M.A. thesis 2012, NECAMSID, United State of America, USA,2012.
- [2] D.M. Larruskain1, I. Zamora, A.J. Mazón1, O. Abarrategui, J. Monasterio.
 "Transmission and Distribution Network: AC versus DC,M.A. thesis, University of the Basque Country of Bilbao, Spain, 2005
- [3] M. Syed Tahmid, "DC Motor With PIC16F877A- Practical example of PIC PWM," PIC : edaboard.com, Nov. 23,2012 [Dec.10.2012]
- [4] PennWell Corporation. "What You Need To Know About Solar Design" Internet : <u>http://www.elp.com/articles/powergrid_international/print/volume-17/issue-1/features.html</u>. Jan.1,2012 [Dec.20,2012]
- [5]"H-Bridges- The Basics, Introduction." Internet : www.modularcircuits.tantosonline.com. Apr.10,2011 [Nov.20, 2012]
- [6]]"IR2110 International Rectifier"Internet : <u>http://www.irf.com/product-info/datasheets.Mar</u>. 24,2005 [Oct.20,2012]
- [7] Z. Salam. Class Lecturer, Topic : " DC to AC Conversion (Inverter)" Faculty of Electrical and Electronic Engineering, Universiti Teknologi Malaysia, Johor, Malaysia, Jan.1,2002.
- [8]W.Hart Daniel. *Power Electronics*.Valparaiso,Indiana: Mc Graw Hill,2011,pp.211-216
- [9]"Boost Converter Intro with Arduino" Internet : <u>http://www.ReiBot.org</u>. Aug 7,2011 [May.15,2013]
- [10]"Boost Converter" Internet : <u>http://www.wikipedia.com/boost-converter</u>. Dec.10,2012 [Nov.10, 2012]
- [11]M. Ron, P.Richard. (2001.Mar. "Application Report." Sine-Wave Oscillator.[Online], pp.3-19. Available

http://www.ti.com/lit/an/sloa060/sloa060.pdf. [Apr. 3,2013]

[12]" RS Components" Internet : <u>http://www.malaysia.rs-online.com</u>. Oct.10,2010 [Jan.13, 2013]

[13] "Jaycar Electronics" Internet : <u>http://www1.jaycar.com.au/images_uploaded/optocoup.pdf_Feb.7,2011</u> [Jan.20, 2013]

[14]"IR2110 International Rectifier Application Note AN-978 "Internet : <u>http://www.irf.com/technical-info/appnotes/an-978.pdf</u>. Nov.10,2006 [Feb.20,2013]