

Contents lists available at ScienceDirect

Carbohydrate Polymers

journal homepage: www.elsevier.com/locate/carbpol

霐

Bablu Hira Mandal^{a,b}, Md. Lutfor Rahman^c, Mashitah Mohd Yusoff^a, Kwok Feng Chong^a, Shaheen M. Sarkar^{a,*}

^a Faculty of Industrial Sciences and Technology, University Malaysia Pahang, Gambang 26300, Pahang, Malaysia

^b Department of Chemistry, Jessore University of Science and Technology, Jessore 7408, Bangladesh

^c Faculty of Science and Natural Resources, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia

ARTICLE INFO

Article history: Received 21 July 2016 Received in revised form 30 August 2016 Accepted 6 September 2016 Available online 13 September 2016

Keywords: Corn-cob Cellulose Copper Poly(hydroxamic acid) Huisgen reaction

ABSTRACT

Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930 h^{-1}) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity.

© 2016 Elsevier Ltd. All rights reserved.