PRODUCTION OF MESOXALIC ACID FROM GLYCEROL OXIDATION BY LACCASE/2,2,6,6-TEtramethylpiperidine-1-OxyL (LACASSE/TEMPO) SYSTEM: EFFECT OF PROCESS PARAMETERS AND KINETIC STUDY

HONG CHI SHEIN

Thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical and Natural Resources Engineering
UNIVERSITI MALAYSIA PAHANG

SEPTEMBER 2016
TABLE OF CONTENTS

DECLARATION
TITLE PAGE i
ACKNOWLEDGEMENTS iii
ABSTRAK iv
ABSTRACT v
TABLE OF CONTENTS vi
LIST OF TABLES ix
LIST OF SCHEMES x
LIST OF FIGURES xi
LIST OF SYMBOLS iii
LIST OF ABBREVIATIONS :iv

CHAPTER 1 INTRODUCTION

1.1 Background 1
1.2 Motivation 2
1.3 Problem statement 3
1.4 Objectives 3
1.5 Scope of study 3
1.6 Significant of study 4

CHAPTER 2 LITERATURE REVIEW

2.1 Glycerol from biodiesel production plant 5
 2.1.1 Introduction 5
 2.1.2 Physical and chemical properties of glycerol 7
 2.1.3 Impurities of glycerol from biodiesel industry 8
 2.1.4 Glycerol to value added chemicals 9
2.2 Oxidation of glycerol 12
2.3 Laccase-Mediator System (LMS) 17
2.4 Laccase 20
 2.4.1 Introduction 20
 2.4.2 Molecular Properties 21
 2.4.3 Characteristics of laccase 23
 2.4.3.1 Influence of pH on laccase activity 23
 2.4.3.2 Influence of temperature on laccase activity 24
 2.4.3.3 Influence of inhibitors on laccase activity 24
 2.4.4 Application of laccase 25
 2.4.4.1 Decolourisation of Dyes 25
 2.4.4.2 Biosensors and Biofuel Cells 26
 2.4.4.3 Paper Industry 27
 2.4.4.4 Food and Beverage Industry 28
2.5 TEMPO 28
2.6 Kinetic model 30
2.7 Summary 32

CHAPTER 3 METHODOLOGY 33

3.1 Overview 33
3.2 Chemicals and materials 34
3.3 Preliminary Experiment 35
3.4 Catalysis Study – Effect of reaction conditions 35
3.5 Analytical Method 37
 3.5.1 Analysis of oxidation products 37
 3.5.2 Laccase activity assay 37
 3.5.3 Electrochemical measurement 38
 3.5.4 Native PAGE (n-PAGE) imaging method 38
3.6 Kinetic model development 39
CHAPTER 4 RESULTS AND DISCUSSION

4.1 Preliminary experiment 41
4.2 Effect of important parameters on the glycerol oxidation 47
 4.2.1 Effect of temperature 47
 4.2.2 Effect of different pH 52
 4.2.3 Effect of Gly to TEMPO ratio 57
 4.2.4 Effect of TEMPO to Laccase ratio 62
 4.2.5 Comparison with baseline data 65
4.3 Kinetic Study 66

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 75

5.1 Conclusion 75
5.2 Recommendations 77

REFERENCES 78
APPENDIX A 93
APPENDIX B 97
APPENDIX C 140
APPENDIX D 143
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Characteristic of different categories of glycerol</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Valuable chemicals attained from different reactions with glycerol.</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Parameters and the range of study.</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>The best condition and MA attained for each parameter.</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>k values (obtained from MATLAB), activation energy and pre-exponential factor for the four temperatures studied.</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Flowchart of the methodology</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental set up diagram.</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Sequence of computing in MATLAB(ODE = Ordinary Differential Equation; SSE = Sum of Squares Error).</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Reaction pathway, denotation of components and steps.</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Estimated world biodiesel production until Year 2024</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of glycerol.</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Glycerol oxidation pathways.</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The role of a mediator in the enzymatic reaction.</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Proposed mechanism for laccase/TEMPO-catalysed oxidation of alcohols</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Catalytic cycle of a four-copper laccase.</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Mechanism of alcohol/oxidation with TEMPO/NaOCl.</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>Reaction pathway on selective oxidation of glycerol.</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>HPLC chromatograms for sample taken at t = 76 hrs; (a) DAD signal,</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>(b) RID signal.</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Concentration of Gly and products with respect to time for the oxidation of glycerol by 30 mM TEMPO with the presence of 10U/ml Laccase at 25 °C as control (■ = Gly; ■ = Gled; ▲ = GA; ▼ = TA; ◆ = MA). Insert plots showing the magnification of the products appearance region.</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Composition of Gly and products (MA) versus time for the oxidation of Gly catalysed by TEMPO/laccase in 24 hrs (reproduction of data from Liebminger et al. (2009), ■ = Gly; □ = MA; current preliminary results, ◊ = Gly, ◊ = MA).</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Gel imaging result under gel documentation system (AlphaEase® FC Imaging System) with the lens control settings of brightness 28, zooming 70, focus 0.7, fluorescein, SYBR Gold (520nm), normal sensitivity/high resolution.</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>Cyclic voltammogram of laccase. Measurement obtained at a scan rate of 0.1 V/s.</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of temperature on the composition of reaction mixtures. Symbols represent: (■ = 5 °C; ◼ = 19 °C; ▲ = 33 °C; ▼ = 47 °C; ◆ = 61 °C). (a) Glycerol, (b) glyceraldehyde, (c) glyceric acid, (d) tartronic acid, (e) mesoxalic acid; pH = 4.5; stirring speed = 180 rpm; Gly/TEMPO (molar ratio) = 10:3 and TEMPO/laccase = 9:3 (unit ratio = mM: U/ml).</td>
<td>48</td>
</tr>
</tbody>
</table>
4.7 Percentage conversion of glycerol and products concentration at 76 hrs of reaction for various temperatures (= Gled; = GA; = TA and = MA; = Gly).

4.8 Concentration of glycerol and products obtained from oxidation of glycerol at different pH. Symbols represent: = pH 3.5; = pH 4; = pH 4.5; = pH 5; = pH 5.5; = pH 6; = pH 6.15; reaction temperature = 19 °C; stirring speed = 180 rpm; Gly/TEMPO (molar ratio) = 10:3 and TEMPO/laccase = 9:3 (unit ratio = mM: U/ml).

4.9 Percentage conversion of glycerol and products concentration at 76 hrs of reaction for various pH. (= Gled; = GA; = TA and = MA; = Gly).

4.10 The time of compound detection versus pH of the reaction mixture. Symbols represent: = Gled; = GA; = TA; = MA.

4.11 Concentration profile of reactant and products obtained from oxidation of glycerol at different ratio of Gly to TEMPO (molar ratio). Symbols represent: = 1:0; = 100:3; = 50:3; = 10:3; = 1:3; reaction temperature = 19 °C; stirring speed = 180 rpm; pH = 5.5 and TEMPO/laccase = 9:3 (unit ratio = mM: U/ml).

4.12 Percentage conversion of glycerol and products concentration at 76 hrs of reaction for various ratio of Gly to TEMPO (= Gled; = GA; = TA; = MA; = Gly).

4.13 Concentration of products obtained from oxidation of glycerol at different ratio of TEMPO to laccase (unit ratio = mM: U/ml). Symbols represent: = 9:0; = 9:1; = 9:2; = 9:3; = 9:4; reaction temperature = 19 °C; pH = 5.5; stirring speed = 180 rpm and Gly/TEMPO (molar ratio) = 1:3.

4.14 Percentage conversion of glycerol and products concentration at 76 hrs of reaction for various ratio of Gly to TEMPO (= Gled; = GA; = TA; = MA; = Gly).

4.15 Proposed mechanism on glycerol oxidation by laccase/TEMPO system.

4.16 Parity plots for the temperature studied: (a) 5 °C; (b) 19 °C; (c) 33 °C; (d) 47 °C; (e) 61 °C. Symbols represent: (= Gly; = Gled; = GA; = TA; = MA).

4.17 Arrhenius plots for the steps: (a) = step 1; (b) = step 2; (c) = step 3; (d) = step 4.
LIST OF SYMBOLS

ε extinction coefficient
l light path
A absorbance
min minute
hrs hours
k rate constant
°C degree celcius
K Kelvin
Cx Concentration of compound x
cP centipoise
ppm part per million
M mol/L
Pa pascal
r reaction rate
E₀ redox potential
LIST OF ABBREVIATIONS

ABTS 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
APHA American Public Health Association
BaCl₂ Barium chloride
CI Chilling injury
CPHM 4-chlorophenylhydrazone of mesoxalic acid
CV Cyclic voltammetry
DAD Diode Array detector
DHA Dihydroxyacetone
DNA Deoxyribonucleic acid
EDTA Ethylenediaminetetraacetic acid
FA Formic acid
GA Glyceric acid
GCE Glassy carbon electrode
Gled Glyceraldehyde
Gly Glycerol
H₅IO₆ Periodic acid
HA Hydroxylapatite
HIV Human immunodeficiency virus
HPLC High-performance liquid chromatography
ILA Insulin-like activity
L-DOPA L-3,4-dihydroxyphenylalanine
LMS Laccase mediated system
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>Mesoxalic acid</td>
</tr>
<tr>
<td>Na$_2$C$_3$O$_5$</td>
<td>Sodium mesoxalate</td>
</tr>
<tr>
<td>NHE</td>
<td>Normal hydrogen electrode</td>
</tr>
<tr>
<td>ODE</td>
<td>Ordinary differential equation</td>
</tr>
<tr>
<td>OECD-FAO</td>
<td>Organisation for Economic Co-operation and Development-Food and Agriculture Organization</td>
</tr>
<tr>
<td>pI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>PLGA</td>
<td>Poly(lactic-co-glycolic acid)</td>
</tr>
<tr>
<td>RID</td>
<td>Refractive index detector</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcriptase</td>
</tr>
<tr>
<td>SCE</td>
<td>Saturated calomel electrode</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>TA</td>
<td>Tartronic acid</td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-Tetramethylpiperidine-1-oxyl</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
</tbody>
</table>
PRODUCTION OF MESOXALIC ACID FROM GLYCEROL OXIDATION BY LACCASE/2,2,6,6-TETRAMETHYLPIPERIDINE-1-OXYL (LACASSE/TEMPO) SYSTEM: EFFECT OF PROCESS PARAMETERS AND KINETIC STUDY

HONG CHI SHEIN

Thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical and Natural Resources Engineering
UNIVERSITI MALAYSIA PAHANG

SEPTEMBER 2016
ABSTRAK

ABSTRACT

The increase of fossil fuel price has prompted the oil industry to look for renewable energy sources, biodiesel. Glycerol, the main by-product of biodiesel production has the potential of being a low-cost and extremely versatile building block. Significantly, glycerol has been touted as a promising compound in obtaining valuable chemicals via oxidation route. In this study, oxidation of glycerol by using 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) in the presence of laccase to produce a potential anti HIV drug ingredient which is mesoxalic acid was investigated. The study was conducted by reacting glycerol with TEMPO and laccase from *Trametes versicolor* and varying the reaction conditions such as temperature (5 °C – 61 °C), pH (3.50 - 6.15), molar ratio of glycerol to TEMPO (1:0 - 100:3) and ratio TEMPO to laccase (mM: U/ml) (9:0 - 9:4). A preliminary experiment in which the reaction conditions was fixed at 25 °C, pH 4.5, 10:3 of glycerol/TEMPO ratio and TEMPO/laccase ratio of 9:3 was conducted as screening before the investigation of reaction conditions on the oxidation products. Kinetic study was performed to investigate the reaction rate. Oxidation reactants and products were quantified by using HPLC whilst laccase activity was determined by using ABTS assay. The best reaction conditions after conducting experiments were found to be 19 °C, pH 5.5, ratio 1:3 of glycerol to TEMPO and ratio 9:3 of TEMPO to laccase. A homogeneous model was used to fit the kinetic data via MATLAB. TEMPO was catalysed by the copper-dependent oxidase, laccase to oxoammonium cations which involved in the aerobic oxidation. The presence of laccases allowed the regeneration of oxoammonium cations, thus, the oxidation process could proceed as long as laccase were active. This different mechanistic pathway was attributed to the difference in redox potential between TEMPO and laccase. The selective oxidation of glycerol by laccase/TEMPO results in no dihydroxyacetone detected. It demonstrated that the primary hydroxyl group had been selectively oxidised to glyceraldehyde. Mesoxalic acid attained was 0.0712 M at the suboptimal reaction conditions obtained. It was two-fold increment from that in the preliminary results. This clearly showes the importance of reaction conditions towards the products formation. Moreover, this study also shows that mesoxalic acid formation consumed less energy in the best condition compared to the conventional method which required high temperature. The activation energy for the formation of mesoxalic acid from tartronic acid was 107.17 kJ/mol which indicated the minimum energy required for it to occur was the highest compared to other steps. The highest in pre-exponential factor and rate constant for this reaction step suggested that the collision of molecules was the greatest. Hence, the temperature affected greatly on the formation of mesoxalic acid.
REFERENCES

