
r---j~~~~uii]IINIIi~ll :
0000080224

DESIGN 0 f DbCUlJbK AND CUl'\f"l KOLLER ---- --···
PROGRAM FOR MIDI AUTO SAXOPHONE

MUHAMMAD HALIFI BIN MUHAMAD

Report submitted in partial fulfillment of the requirements

for the award of Bachelor of Mecha1fonics En~ineering

Faculty of Manufacturing Engineering

UNIVERSITI MALAYSIA PAHANG

JUNE 2013

JUDUL:

UNIVERSITI MALAYSIA PAHANG

-BORANG PENGESAHAN STATUS TESis•

DESIGN OF MIDI DECODER.AND CONTROLLER PROGRAM
FOR MIDI AUTO SAXOPHONE

SESI PENGAJIAN: 2012/2013

Saya MUHAMMAD HALIFI BIN MUHAMAD (900827-11-5011)
(HURUF BESAR)

mengaku membenarkan tesis (Satjana Muda/SarjaBa /Deleter Palsafah)* ini disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

pengajian tinggi.
4. **Sila tandakan (...J)

SULIT

TERHAD

(Mengandungi maklumat yang berdatjah keselamatan
atau kepentingan Malaysia seperti yang termaktub
di dalam AKT A RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasilbadan di mana penyelidikan dijalankan)

...J TIDAK TERHAD

Disahkan oleh:

Alamat Tetap:

46-1 KG TELAGA PAP AN
24300 KERTEH
TERENGGANUDARULIMAN

PROF IR DR AHMAD FAIZAL
BIN MOHD ZAIN
(Nama Penyelia)

Tarikh: 11 JULAI 2013 Tarikh: 11 JULAI 2013

CAT AT AN: *
**

•

Potong yang tidak berkenaan.
Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
dikelaskan sebagai atau TERHAD.
Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Satjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

ii

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project report and in my opinion this project is

satisfactory in terms of scope and quality for the award of Bachelor of Mechatronics

Engineering.

Signature

Name of Supervisor

Position

Date

:Professor

:11 July 2013

111

STUDENT'S DECLARATION

I hereby declare that the work in this report is my own except for quotations and

summaries which have been duly acknowledged. The thesis has not been accepted for

any degree and is not concurrently submitted for award of another degree.

Signature

Name

ID Number

Date

: Muhammad Halifi Bin Muhamad

: FB09037

: 11 July 2013

IV

Dedicated to my beloved parents,

Mr Muhamad Bin Zakaria and Mrs Normah Binti Salleh.

---- - -- - ------ · _______ ___j

v

ACKNOWLEDGEMENTS

Completing my degree is probably the most challenging activity of my first 23

years of my life. The best and worst moments of my journey as student of Mechatronics

Engineering have been sharing with many people. It has been a great privilege to spend

several years in the Faculty of Manufacturing Engineering at University Malaysia

Pahang, and its members will always remain dear to me.

My first debt of gratitude must go to my advisor, Prof Ir Dr Ahmad Faizal Bin

Mohd Zain. He patiently provided the vision, encouragement and advice necessary for

me to proceed through my journey to gain knowledge and complete my project.

I wish to thank my parents, Muhamad bin Zakaria and Normah binti Salleh.

Their love provided my inspiration and was my driving force. I owe them everything

and wish I could show them just how much I love and appreciate them.

Special thanks to my fellow friends, Diana, Anas, Shukran, Anis Hazwana,

Khairunnisa and Afifah for their support, guidance and helpful suggestions. Not forget

to all Mechatronic Engineering friends that willing to cooperate with me to complete

my study for 4 years. Their guidance has served me well and I owe them my heartfelt

appreciation.

Members of Faculty of Manufacturing Engineering also deserve my sincerest

thanks, their friendship and assistance has meant more to me than I could ever express. I

could not complete my work without invaluable friendly

--------~ ~- --

vi

ABSTRACT

The saxophone is a musical instrument that lends itself to be controlled electronically.

When air is blown into the mouthpiece, tones are produced through a combination of

saxophone key pressd. A MIDI decoder program is used to extract the MIDI data that

send by the computer and send the instructions to the controller program. the controller

program sends the instruction signals to the 18 servo motors to depress the saxophone

keys and solenoid valve to control the air flow into the saxophone mouthpiece. Each of

the 30 musical notes is programmed to get the correct press of saxophone keys

combination. An array of 18 switching signal is used for determining which tones to be

produced by the saxophone. This cause the significant signal delay to produce a lag

between the data input and key presses. At the end of the project, the MIDI decoder was

able to deliver correct switching signals according to the saxophone fingering chart

although there was a lag between the data input and key presses on the saxophone.

Vll

ABSTRAK

Saksofon adalab salab satu instrumen muzik yang membenarkan ia dikawal secara

elektronik. Apabila udara ditiup ke dalam muncung saksofon, bunyi di keluarkan

melalui kombinasi kunci-kunci saksofon yang ditekan. Program dekoder MIDI

digunakan untuk mengeluarkan data MIDI yang dihantar oleh komputer dan

menghantar araban kepada program pengatur. Program pengatur akan menghantar

isyarat araban kepada 18 motor servo untuk menekan kunci kunci saksofon dan injap

solenoid untuk mengawal aliran udara ke dalam muncung saksofon. Setiap 30 nota

muzikal diprogram untuk mendapatkan kombinasi kunci saksofon yang ditekan dengan

betul. 18 signal suis yang disusun di dalam rangkaian diguna untuk menentukan bunyi

manakab yang perlu dikeluarkan oleh saksofon. Ini menyebabkan penangguhan signal

untuk menghasilkan kelewatan di antara kemasukkan data dan kunci yang ditekan. Di

akhir projek, program decoder MIDI berupaya menghantar signal suis yang tepat

berdasarkan carta kekunci saksofon walaupun terdapat kelewatan di antara kemasukkan

data dan kunci yang ditekan pada saksofon.

viii

TABLE OF CONTENTS

Page

SUPERVISOR'S DECLARATION ii

STUDENT'S DECLARATION iii

DEDICATION lV

ACKNOWLEGDEMENTS v

ABSTRACT Vl

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiii

CHAPTER I INTRODUCTION 1

1.1 Introduction 1

1.2 Project Background 1

1.3 Problem Statement 3

1.4 Project Objective 4

1.5 Project Scope 4

1.6 Expected Outcome 4

1.7 Thesis Outline 5

CHAPTER2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Musical Instrument Digital Interface 6

2.2.1 MIDI Message 7

2.2.2 MIDI Decoder Program 9

2.2.3 USB MIDI Converter 12

2.3 Alto Saxophone 13

2.3.1 Mechanic of Saxophone 15

2.3.2 Alto Saxophone Fingering Chart 15

2.4 Arduino Microcontroller Board

2.4.1 Arduino Mega 2560 Microcontroller Board

2.4.2 Arduino Software

2.5 Universal Asynchronous Receiver Transmitter

CHAPTER3 METHODOLOGY

3.1 Introduction

3.2 Process Flow of Project

3.3 Block Diagram of Complete System

3.4 MIDI Decoder Program to Extract MIDI Data

3.5 Controller Program to Control Saxophone Keys

3.5.1 Controller Programming Flowchart

3.6 Opto Coupler Circuit for MIDI Shield

CHAPTER4 RESULT AND DISCUSSION

4.1

4.2

4.3

4.4

4.5

Introduction

Propagation Delay Time in Arduino Programming

Pulse Width Modulation Duty Cycle

Result of Controller Programming Output

Propagation Delay Time at Opto Coupler Circuit

CHAPTERS CONCLUSION AND RECOMMENDATION

5.1

5.2

5.3

Introduction

Conclusion

Recommendation

REFERENCES

16

17

18

20

22

22

22

23

25

27

28

30

31

31

31

33

37

41

43

43

43

44

45

ix

X

APPENDICES 46

A Project Flowchart 46

B Saxophone Fingering Chart 47

c PCB Drawing for MIDI Shield Board 49

D ATmega2560 Microcontroller Pin Configuration 50

E Arduino Programming 51

Table No.

2.1

4.1

LIST OF TABLES

Musical Note Data

Result of Calculation of Servo Duty Cycle

Page

6

30

xi

xii

LIST OF FIGURES

Figure No. Page

1.1 MIDI Auto Sax Part 2

1.2 W ASEDA Flutist Robot 3

2.1 MIDI Converter Using Case Diagram 10

2.2 MIDI Converter Activity Diagram 11

2.3 USB-MIDI Interface 12

2.4 Alto Saxophone Structure 14

2.5 Saxophone Fingering Chart 16

2.6 Example of ATMEL A VR Microcontroller 17

2.7 Arduino Mega 2560 board 18

2.8 Example of Arduino Sketch Program 19

2.9 U ART Data Arrangement 20

3.1 Block Diagram of Complete System 24

3.2 MIDI Decoder Program Flowchart 26

3.3 Saxophone Fingering Chart 27

3.4 Controller Program Flowchart 29

3.6 Opto Coupler Circuit 30

4.1 Propagation Delay Time in Arduino Mega 2560 32

Programming

4.2 Angular Distance of Hand of Servo Motor Need to Travel 34

4.3 Programming of Controller Program 38

4.4 Example ofNotes Switching 39

4.5 MID I Shield Board 40

4.6 Opto Coupler Circuit Attach to Oscilloscope 41

4.7 Example of C4 Notes pressed 42

4.8 Propagation Delay between Input and Output of the Opto 42

Couple

MIDI

UART

PWM

USB

LED

IDE

MSB

LIST OF ABBREVIATIONS

Musical Instrument Digital Interface

Universal Asynchronous Receiver Transmitter

Pulse Width Modulation

Universal Serial Bus

Light Emitting Diode

Integrated Development Environment

Most Significant Bit

xiii

CHAPTER!

INTRODUCTION

1.1 Introduction

This chapter will briefly explain about the introduction of this project. The

general information about the project is including the discussion of topics related to this

project. These chapters consist of the project background, problem statement,

objectives, project scope and expected outcome. The information in this chapter is

important to make further study of the problem.

1.2 Project Background

Music is an art that involves a combination of sounds that can consign human feelings

and thoughts. Of all the music instruments, saxophone is one kind that is contributing a

lot to the music industry nowadays. The saxophone is a musical instrument that belongs

to woodwind instrument family. Originally it is popular with military bands; saxophone

soon became a part of popular music and jazz. They are made of brass and played with a

single reed mouthpiece similar to playing clarinet. But, do we offend see the saxophone

can play automatically?

Alternatively, the saxophone is the suitable instrument to apply the self-playing

concept. Briefly about the saxophone, they were built in many types such as Alto

Saxophone, Soprano Saxophone, Tenor Saxophone and many more. As the other

instrument, saxophones were assembling in many parts. The main part of the saxophone

Ia the mouthpiece which consists of the mouthpiece and the reed, the hollow body part,

and the saxophone keys. Each type of saxophones was different in note key they can

- --------------

2

play, the numbers of key pressed and the octave note. Usually, the alto saxophone is the

one that chosen by many people due to the note that can be play are standard. The MIDI

Auto-Sax will use the Alto Saxophone as the instrument. The Alto saxophone has 23

keys on the body to control which note will produc when it sounds.

The invention of the MIDI Auto-Sax i actually an initiative to build up an

autonomous Alto saxophone that played via MIDI by combining few elements

including MIDI decoder program, Digital I/0 and m chanical and pneumatic actuator.

A saxophone that can tune automatically through the MIDI is the aim of this project.

The MIDI Auto-Sax is one of Musical Robot that will conduct the saxophone

automatically. The autonomous parts are controlled by the computer program or the

microprocessor.

r-
"""'

MIDI CONTROLLER
DECODER PROGRAM

MIDI

AUTO SAX

MECHANICAL PNUEMATIC
STRUTURE BLOWER

\.. ~

Figure 1.1: MIDI Auto Sax Part

The MIDI Auto Sax is divided into four parts as shown in Figure 1.1. The MIDI

der and controller program is the software part of the device while the mechanical

slr ture and pneumatic blower are the hardware part which consist of electronic,

pn umatic and mechanical elements. This intention of this project is to complete the

• ftware part of the MIDI Auto Sax device.

3

Figure 1.2: WASEDA Flutist Robot

The general idea of this device is the MIDI input converts by the decoder to send

out output to play the instrument. Taking W ASEDA Flutist Robot in Figure 1.2 as an

xample, it is a well-known robot that is capable of playing a wind instrument such as

axophone, clarinet and flute. These are the humanoid robots that are programmed

ed on human minds and body. The program and the body are the mechanism to

k the robot act.

In Problem Statement

In real life, the way to play saxophone is complicated and need a very well

It in d t play the instruments. Maybe some people like to hear and very fanatic on

ound but cannot afford to pay the saxophone player to play the saxophone

· y. Through the technology development become more sophisticated nowadays,

f self-playing musical instrument can be applied to the Saxophone and see

y tern can play the saxophone compare to human. In ord r to control the

will file is the suitable format t nd the musical

4

When it comes to MIDI, there a few questions on how making the Musical message can

be sent to the device to play the saxophone.

• How to extract the MIDI message from a MIDI file?

• How to control the Servo Motors and Solenoid Valve from the input data?

1.4 Project Objective

• To design the MIDI decoder that extracts the MIDI message

• To construct a program to control the Servo motors and solenoid valve on the

Alto saxophone

1.5 Project Scope

• The MIDI Auto Saxophone device is only can play Alto Saxophone

• Read only MIDI data

• A program to control the 18 servo motors to press the keys of saxophone, 1 servo

motor to control the reed and a solenoid valve to allow the air enter the

saxophone mouthpiece

• Constant air pressure flow to the mouthpiece

1.6 Expected Outcome

• The MIDI message can be extracted and send through the USB port

• The servo motors on the saxophone keys are correctly pressed according to the

Saxophone Fingering Chart

• The Pneumatic valve can switch according to the signal sent by the

microcontroller

5

1. 7 Thesis Outline

This thesis is a documentary delivering the idea generated, concept applied,

activities done, and finally the project product. It consists of five chapters. Following is

the chapter by chapter description of information in this thesis.

Chapter 1 explains about the introduction of the project. The general information

about the project is including the discussion of topics related to this project. These

chapters consist of the project background, problem statement, objectives, project scope

and expected outcome. The information in this chapter is important to make further

study of the problem.

Chapter 2 is a literature review of theoretical concepts applied in the project.

This chapter explains about the topic that is related to MIDI, alto saxophone,

microcontroller and data communication. The sources are taken from the journals,

articles, books and website. The literature review is helping in order to provide

important information regarding the previous research which is related to this project.

Chapter 3 describe about the method used to decode the MIDI message and send

the switching signal and PWM to the servo motors and pneumatic solenoid valve. The

research methodology is a set of procedures or methods used to conduct the research.

Methodology is needed for a guideline in order to ensure the result is accurate based on

the objective.

Chapter 4 will discuss the result obtain from the project and discuss the related

result of the project. The result of this project will include the result of the program,

output signal that needs to come out and the calculation of the Pulse Width Modulation

duty cycle.

Chapter 5 explain about the conclusion and recommendation of the whole

project paper. This chapter will discuss mainly about the conclusion of the whole

project. Other than that, this chapter also will briefly explain the recommendation for

tho future development of the project.

CHAPTER2

LITERATURE REVIEW

2.1 Introduction

This chapter will explain about the topic that is related to MIDI, data

communication, microcontroller and alto saxophone. The sources are taken from the

journals, articles, books and website. The literature review is helping in order to provide

important information regarding the previous research which is related to this project.

The information gathered in this chapter is important before proceeding to the analysis

and further study of the project.

2.2 Musical Instrument Digital Interface (MIDI)

MIDI (Musical Instrument Digital Interface) is a protocol used to transmit

musical instructions to a music device or instrument that is capable of converting the

instructions into musical sounds [ll. The musical instructions were in digital waveform

and transmitted through the MIDI cable to the device. The MIDI data can be stored in

an architecture file format which is called MIDI file (.mid). In MIDI, there was also a

standard MIDI text event. It contains the text data, such as trademark, song title, and

copyright information. They were commonly stored in midi file along with the MIDI

message data. But, the standard MIDI text events were only benefited to human to show

the information of the MIDI file . They typically not transmitted along to the MIDI

device.

7

2.2.1 MIDI Message

The MIDI messages have their own protocol that is arranged in sequence. There

are the note message, tempo events, controller events, and duration event for example.

All of these events were sent to the synthesizer in digital message which is in Byte. The

MIDI serial data were flowing at the rate of 31250 bits per second and being organized

in 1 O-bit words £
21. The first of the 10 bits is called as the start bit which is always 0 for

midi data. The next 8 bits were indicated the information data. The last 1 bit is the stop

bit which is always 1. MIDI data were sent in asynchronous data transmission. A MIDI

message consists of status byte and followed by 0, 1 or 2 data byte. The MSB bit of the

status byte is always 1 and the MSB of data byte is always 0. The MIDI messages are

shown below:

Status Byte

1 TTTNNNN

T - Type of Status message

N - Channel Number

X - Data in Binary

1 stData Byte

oxxxxxxx
znd Data Byte

oxxxxxxx

The status byte is used to identify and instruct the receiving devices that the

particular MIDI function and channel is being addressed. The MIDI channels were up to

16 channels for user used. The data byte is used to encode the actual numeric values that

are attached to the accompanying status byte. The velocity data byte was used to

indicate the volume. The velocity can be defined from 0 to 127 in decimal. Table 2.1

ahows the MIDI musical note data that are arranged in sequence and numbered in

decimal value £31.

8

Table 2.1: Musical Note Data (in decimal)

M u s I c N 0 T E

c C# D D# E F F# G G# A A# B

0 0 1 2 3 4 5 6 7 8 9 10 11

1 12 13 14 15 16 17 18 19 20 21 22 23

0 2 24 25 26 27 28 29 30 31 32 33 34 35

c 3 36 37 38 39 40 41 42 43 44 45 46 47

T 4 48 49 50 51 52 53 54 55 56 57 58 59

A 5 60 61 62 63 64 65 66 67 68 69 70 71

v 6 72 73 74 75 76 77 78 79 80 81 82 83

E 7 84 85 86 87 88 89 90 91 92 93 94 95

8 96 97 98 99 100 101 102 103 104 105 106 107

9 108 109 110 111 112 113 114 115 116 117 118 119

10 120 121 122 123 124 125 126 127 - - - -

There are 12 notes in an octave and MIDI can support up to 11~ octaves. This

means, the total notes can be read and write in MIDI protocol is 128 notes. The music

notes start with the C note of the first octave which in the table the first octave is

indicated as 0. The last note in the first octave is B and the note after B note is repeated

again with the C note in the next octave. The note sequence remains the same until the

octave of 11. In, 10 octave, there are only 8 notes. Each of the notes is identified in

MIDI by their number of arrangements.

The Alto saxophone note range is between A#3 to D#6. But, in this project, note

range is up one octave for easier song compiler in a computer. The range of the note

should receive from the computer is A#4 to D#7 as highlighted in Table 2.1. The data

value of the computer must be in between 58 to 87 to make the saxophone play. Else,

the saxophone will not play the other musical note data.

9

2.2.2 MIDI Decoder Program

MIDI decoder is used to decode and extract the message in the MIDI files. After

extracting the MIDI messages, the extracted data are sent to the synthesizer to produce

the sound according to the message sent.

Based on Figure 2.1, the user will start by giving an input to the application

regarding the location of the MIDI file £
41. The file directory can be done in two_ ways;

using the open dialog box, where the user can browse the location of MIDI file and

choose it and by entering the file path manually in the text box. Then the file validity

will be checked whether the MIDI files chosen are MIDI type 2, a non MIDI file, non­

existent file or correct format of MIDI data. If the file is detected as MIDI type 2, a non

MIDI file, or non-existent file, the system will show the error dialog box to notify the

user the file is not correct. It correct path is confirmed; the user can run the MIDI

converter.

Figure 2.2 shows the activity diagram of MIDI converter. After the MIDI file is

chosen, the application will read the header of the file and check whether it is in type 0

or 1 MIDI file. If the parameter is confirmed, the application will start to read the events

contained in the MIDI file until the end. Then the application will show the result

generated from the converter.

I Show open dialog j <-.... < •• ln •• c.l·u·d·e··>······
<Extend> ••• ···1....__ _______ _..

r--------. £··········
L.........-C_ho_o_s_e_F_i_le__,~l ~ •.

·· ..
<E><te;d"~·······J Enter file path manually

Attempt to read MIDI
<Extend> ••• ••• type 2 •••••• <Include>

Filter
MIDI file

10

············
.----------. ,~;:···· <Extend>

Check ~

file ~ .. .
L.........-----' V:: ••••• <Extend>

······ ·············· ..

Attempt to read non-
MIDI file

········
.... ~lnelud~:···········~ ~h

········· ow ,:,...
. ~ error

Convert
MIDI

Attempt to read non- ········ ·········~Include>
<Extend>·· •• .. ··.

existent file

Attempt to read correct
MIDI file

Figure 2.1: MIDI Converter Using Case Diagram

Choose File

T
[Execute]

Read MIDI
Header

[Check type]

Read MIDI
Event

End

Show result

Create score

[Until]

no

Figure 2.2: MIDI Converter Activity Diagram

11

12

2.2.3 USB-MIDI Converter

USB MIDI Converter is used in providing the link between the host and USB­

MIDI interface. By interfacing with the USB hub, the MIDI data can be exchanged

between the host and the USB-MIDI endpoints of the device [Sl. The device main

function is to match clock speeds between the MIDI device and the computer. The

USB-MIDI Converter were typically contained more MIDI IN and/or MIDI out

endpoints. These endpoints use bulk transfer to exchange data with the host. That

means, large USB-MIDI data can be transferred simultaneously at the same time to

many devices without missing data.

Figure 2.3 shows the block diagram of USB-MIDI interfaces. The USB is

connected to the USB port from the computer. For receiving data from the MIDI

devices such as the keyboard, the data from the keyboard were transferred from the

MIDI OUT from the keyboard to the MIDI IN port of the cable. The data then sent to

the USB-MIDI Converter which the circuit is functioning to match the clock speed

between the MIDI devices and computer. Then, the data were transmitted to the

Receiver pin on the USB.

.. USB

USB Function

USB­
MIDI

Converter

MIDI

MIDI

External MIDI
IN

External MIDI
OUT

Figure 2.3: USB-MIDI Interfaces

13

For transmitting data from the computer, the process is backward processed of

the receiving data from MIDI devices. Beginning the process with the data transmit

from the computer to the transmitter pin on the USB then sent to the USB-MIDI

Converter. Then the data were sent to the MIDI OUT port of the cable which the port is

connected to the MIDI IN of the MIDI devices.

This device is used in the project to transfer the MIDI data from the USB port of

the computer to the microcontroller serial communication pin. The software will send

the MIDI data based on a musical note that played at that time to the corresponding

USB port that connects to the USB MIDI cable. Then the data will transmit to the

microcontroller.

2.3 Alto Saxophone

Alto saxophone is one of the members of the saxophone family and categorized

as woodwind instrument. The Alto saxophone was invented by Adolphe Sax of Belgian

in 1845 [61 . The invention of the alto saxophone by Adolphe Sax is to combine the tone

of the clarinet with the brassy, brighter sound of trumpet. The size of the Alto

saxophone is smaller than the Tenor saxophone but larger than Soprano saxophone [8].

Alto saxophone is the type most used in classical composition.

The first Alto saxophone was relatively simple compared to modem saxophone

nowadays. The Alto saxophones nowadays have the improvement in the key

mechanism. The original Alto saxophone had two to three octave keys compared to one

octave key associated with saxophone todays [61 . Usually, the saxophone note range has

been between B below the staff to the F fourth space above [81 . The modem Alto

saxophone now has keys added to make the high F# note. The range of the Alto

saxophone is from concert C#3 to concert G#s [?J.

The Alto Saxophone consists of several parts [91. Referring to the Figure 2.4, the

figure shows the structure of the Alto Saxophone. From the top of the saxophone is the

mouthpiece. the mouthpiece is connected to the neck of the saxophone. This is where

the musician place lips and blows air into the instrument to produce sound. The reed of

14

the saxophone is attached with the mouthpi c . h saxophone neck is a metal tube

attached to the body of the saxophone and r m vabl he octave vent is a single hole

that connects the neck and body of the saxoph n .

octave vent. The saxophone body is a con

the body and holds the rods keys and other p t . h

tube. The U-shape part is called bow. The nd f th

were octaves keys attach to the

tub that has plates attached to

traight part of the body is called

ph n dy is called bell.

Mouthpiece

Figure 2.4: Alto Saxophone Structure. Reprinted from How to

play the Alto Saxophone, in Instructable .Retrieved on

December 15, 2012 from

http://www.instructables.com/id/How-to-play-the­

Alto Saxophone.Copyright by max596789.

ctave vent

Bell

Bow

15

2.3.1 Mechanic of the Saxophone

The Alto saxophone is one of the reed instruments [61. The reed is made from a

springy piece of cane and has vibrational tendency depending on the size and type of

reed. The reed is secured to the mouthpiece and forced to vibrate when the musician

started to blow the saxophone. The air vibrations within the instrument make the

saxophone to resonate. Resonance refers to the creation of large amplitude vibrations as

a system which vibrates with a certain frequency is acted on by a periodic disturbance

with the same frequency.

The instrument vibrates at the same frequency as the air flowing through the

body. The tone produce by the saxophone is depending on the key combination as the

length of the instrument shortened or lengthened. The lower the length of the

saxophone, the longer the time take by the wave to travel through the saxophone body

and resulting low frequency.

2.3.2 Alto Saxophone Fingering Chart

In playing the Alto saxophone, to produce certain musical note it needs a

combination of saxophone keys while the air enters the saxophone body. The

combination of saxophone keys can refer to the saxophone fingering chart. The chart

will tell which combination of the keys will produce the right note.

Figure 2.5 shows the example of saxophone fingering chart. Each of the musical

notes has different of saxophone key combination. The pattern of the fingering chart

refers to the arrangement of the keys on the saxophone. The black mark keys are the

keys need to be pressed to play the corresponding musical note. The saxophone

fingering chart is used in the project to get the correct result of switching signal for each

key to the saxophone body. The switching signal is used to trigger which of the 18

servomotors will press the saxophone keys.

#4
0

ooo

~
u

§ #<1
til
ro co

0

eo
Figure 2.5: Saxophone Fingering Chart. Reprinted from Saxophone ing ring

Chart Demo, in Appszoom. Retrieved on December 15, 201 2, from

http:/ /www.appszoom.com/android _ applications/reference/saxopho

ne-fingering -chart -demo_ bzazn.html. Copyright by Appszoom.

2.4 Arduino Microcontroller Board

16

Arduino is a single board microcontroller designed to make the process of using

electronics in multidisciplinary project more accessible [IOJ . It is an open-source physical

computing platform based on a simple input output board and a development

environment that implements the open source programming language [IIJ .

The hardware part of the Arduino microcontroller board consist of 8 bits Atmel

A VR microcontroller that surrounded by a simple open source hardware. Figure 2.6

shows the example of Atmel A VR microcontroller which is the ATmega328 that used

in the Arduino UNO board. The software part consists of a standard programming

language compiler which is C Programming and a boot loader that used to execute the

program to the processor of the Arduino board. It can be used to develop stand alone

interactive project or communicate with the software in the computer.

Figure 2.6: Exampl o M L V micr c ntr ller.

Reprinted from Atmel A VR in Wikipedia.

Retrieved on December 19, 2012, from

http:/ /en.wikipedia.org/wiki/ Atmel_ A VR.

2.4.1 Arduino MEGA 2560 Microcontroller Board

17

The Arduino Mega 2560 is a microcontroller board that based on the

ATMega2560 processor. It has 54 digital 1/0 pins on the board which 14 of them can be

used as Pulse Width Modulation (PWM) signal output [121
. It also has 16 analog input

pins and 4 UART (Universal Asynchronous Receiver Transmitter) which consist of

receiver and transmitter pins for 4 different serial communication. Referring to the

Figure 2.7 that show the appearance of the Arduino Mega 2560, all the pins are

numbered and shows on the board.

The microcontroller board is compatible with the most of the shields that

designed for the other Arduino boards such as Arduino UNO and Arduino Due. The

board is powered by the USB cable that connect to the computer or ACto DC adapter.

It has 16 MHz crystal oscillator.

Figure 2. 7: Arduin M g 2

Arduin M g 25

ard. R print d from

in Arduino. R tri v d n

December 19 2 12 fr m

http://arduino.cc/en/Main/arduinoBoardM g 25

0. Copyright by Arduino.

18

The Arduino Mega 2560 is suitable used in this project because the digital I/0

pins of the board is enough to be used for 19 switching signal and give out the PWM

signal compare to Arduino UNO that has only 13 digital 1/0 pins including the PWM

output pin.

2.4.2 Arduino Software

The Arduino integrated development environment (IDE) is a multi platform

application that is written in Java [IIJ. It includes a code editor with features such as

syntax highlighting and capable compiling and uploading the program to the board in a

single click. The program to write the code for the Arduino is called Sketch.

The program can write on the Arduino Sketch inC of C++ programming. It also

comes out with software library which make the user more easier and simplify the

program for the corresponding library used. To use the Sketch, user only needs to define

two functions to make the program run which is setup and loop function.

int led= 13;

void setup()

{

pinMode(led, OUTPUT);

}

void loop()

{

}

digitalWrite(led, HIGH);

delay(l 000);

digitalWrite(led, LOW);

delay(I 000);

Figure 2.8: Example of Arduino Sketch Program

19

Figure 2.8 shows the example of an Arduino Sketch program in the computer.

The sketch program is used in this project to write the MIDI decoder and controller

programming, compile and execute to the Arduino Mega 260 microcontroller board.

20

2.5 Universal Asynchronous Receiver Transmitter (UART)

UART is one of the type of data communication that used in transmission of

serial data either in transmitting or receiving. The UART is an integrated circuit consists

of transmitters which convert the parallel data to serial data and the receiver which

convert the serial data to parallel data [l3l. This device can transmit up from 9600 up to

38400 bits per second. The UART system is based on the principle of data conversion

in the shift register.

An asynchronous serial has advantage of less transmission line, high reliability,

and long transmission distance. This form of serial data is widely used in data exchange

between computer and peripheral. UART data transmissions have the protocol in

transmitting data. UART usually include with start bit, data bit, parity bit, stop bit and

idle state. The data arrangements are shown in Figure 2.2.

Figure 2.9 shows the data arrangement of UART. When a word is given to the

UART, a bit called start bit is added to the beginning of each word that is to be

transmitted. The start bit function is to alert the receiver that a word is about to be sent

and to trigger the clock in the receiver. Then, followed by data bits of the word by the

MSB come first into the synchronization with the clock in the transmitter.

Start Bit Parity Bit

ll l Ll J l if 2 3 4 5 6 7 8

v
Idle Bit Data Bits Stop Bit

Figure 2.9: UAR T Data Arrangement

21

After entire data bits has been sent, the transmitter may add a parity bit that the

transmitter generates. The parity bit can be used by the receiver to check the data error.

Then followed by stop bit which means the whole word data has been sent. If the

receiver detected an incorrect formatted data, the UART will signal a framing error. If

another data byte is received before the previous data is read, the UART will signal an

overrun error

CHAPTER3

THEORETICAL ANALYSIS

3.1 Introduction

This chapter will describe about the method used to decode the MIDI message

and send the signal to the actuators and pneumatic solenoid valve. The research

methodology is a set of procedures or methods used to conduct research. Methodology

is needed for a guideline in order to ensure the result is accurate based on the objective.

There are several steps need to be followed to ensure the objective of the research can

be achieved starting from finding literatures until submitting the final report.

3.2 Process Flow of Project

Flowchart is a type of diagram that represents an algorithm or process, showing

the steps as boxes of various kinds, and their order by connecting them with arrows.

Flowchart is one of the step need project to make sure the flow of the project is in

sequence and help the viewer to understand the flow of the process. Flow chart

methodologies were constructed related to the scope of product as a guided principal to

formulate this research successfully, in order to achieve the objectives of the project

research (refer Appendix A).

23

3.3 Block Diagram of Complete System

In the MIDI Auto Sax project, all the elements involved in playing saxophone including

saxophone keys control, blow and controlling the reed will be conducted at the same

time. The system is divided into 3 major parts which is the opto coupler circuit, MIDI

decoder and controller program.

The block diagram of the complete system is shown in FigW'e 3.1. The MIDI IN

means the MIDI data are sent from the computer through the USB-MIDI cable to the

opto coupler circuit. The opto circuit as the coupler between two different circuits in

which this case is between the data flow from the computer and the data to be

transmitted to the Arduino.

After the Arduino receives the data, a program call MIDI decoder is used to read

the MIDI data receive. The data are read in sequence based on the MIDI protocol which

is three data byte flows starting from status byte followed by note byte ad velocity byte.

Then the program will repeat again to read the data sequence. The MIDI decoder also

takes the value of the data read and send them to the controller program to do the

controlling job. The process flow of the MIDI decoder program will be explained more

in the MIDI Decoder Program section.

The controller program is used to control all the mechanical and electronic on

the alto saxophone including pressing the saxophone keys and blow the mouthpiece.

The controller program takes the data from the MIDI decoder to indicate the status of

the data which is on or off and to indicate which musical notes data are sent. Before

doing the reading job, the controller will send the off state PWM which is to set the

servomotors to the not pressed condition. The controller stores the array program call

saxophone fingering program that use to indicate which trigger signal need to be turned

on when the specific notes data are coming based on the saxophone fingering chart. The

blower program is used to control the mouthpiece blower. The trigger signal of blower

program also included in the array program. Each time the trigger signal is sent, the on

state PWM also sent to turn the servomotors to the press condition. All the output of the

controller program is sent to the controlling circuit.

Opto
Coupler
Circuit

t
MIDI IN

24

~~
MIDI DECODER

""''l

I PROGRAM
Read Data

Repeating

IIIIo.

r

"'

• Read Data Send Data o f
e
e

one complet
sequenc

[J;J .. o;J .. Velocity
II

~ Byte Byte

~~ v
CONTROLLER PROGRAM

Saxophone
Fingering Program

I I'
18 9PWM

Trigger
Signal

Signal

18 Saxophone Keys
Controlling Circuit

Blower Program

Off State PWM

'I 1-
1 Trigger 1PWM

Signal Signal

Blower Controlling
Circuit

Figure 3.1: Block Diagram of Complete System

..)

25

3.4 MIDI Decoder Program to Extract MIDI Data

The MIDI decoder program is purpose in read and extracting the MIDI data sent

by the computer and sent the data to the controller program. The MIDI decoder are

stored in the Arduino Mega 2560 Micro controller board. Figure 3.2 shows the

flowchart of the MIDI decoder program. First, the program executes the initial PWM

pulse. Then the program starts to receive and read a data byte coming. Then the data are

categorized into 3 data type which is data type 0 for the status byte, data type 1 is for the

notes byte and the data type 2 is for the velocity byte. If the first byte coming is higher

than 128 in decimal value, it will indicate as status byte. Then the data receive is read in

the data type 0 case and if the data byte is equal to 144 in decimal, the key press is

indicated as high and change the data type into 1. If the value not equal to 144, the data

will read as 128 and then the keypress are indicated as low and the data type still change

into 1 because the next coming byte is the notes byte.

Then the data type case is closed and the program loop again to receive the next

data byte. Now the coming byte is the notes byte. The data type was changed in the data

type 0 case. So this time, the data byte is entering the data type 1 case. The byte must be

lower than 128 values in decimal (refer to chapter 2.2.1) because the notes byte must be

lower than 128. If yes, the key press is indicated as high and change the data type into

data type 2. If no, the data type will change into 0 because not following the MIDI

protocol. Then the data type case is closed and loop back to receive the coming data

byte.

Then, the coming byte is the velocity byte. The data are entered into the case

data type 2 because it was changed in the data type 1 case. Then, if the data read is

lower than 128, it will proceed to the. If not, it will not proceed to the controller

controller program and run the program program. Then the data type are changing back

into 0 because the sequence of 3 data byte of MIDI is complete and ready to read again

the incoming data byte.

Send Initial PWM pulse

Receive data from MIDI IN

KeyPress = LOW
DataType = 1

KeyPress = HIGH
DataType = 2

Figure 3.2: MIDI Decoder Program Flowchart

26

27

3.5 Controller Program to Control Saxophone Keys

The Alto saxophone has 23 keys. Each note played have different keys need to

be pushed. In this project, the keys will be controlled by the servo motors that will tum

and push the saxophone keys when the signal are sent. Each of the keys will attach to a

servo motor. In the controller programming, each of the notes will be assigned to the

key output signal according the saxophone fingering chart. For example, the C# note

will be assigned to the servo motors that control the C# note keys on the saxophone

based on the saxophone fingering chart. The saxophone has 2 and a half octave. It

means the total keys can be played by saxophone is 30 notes. The 30 notes will have

different saxophone keys pushed when the notes come in.

Figure 3.3 (a) show the saxophone fingering chart. The number to each of the

keys is referred to the output pin number on the Arduino Mega 2560 board. The black

mark keys refer to the keys that called as alternative keys. The alternative keys in

saxophone are the shortcut keys that represent the combination of other keys. In this

project, the alternative keys are not used. The Figure 3.3 (b) shows the example of key

combinations for note C4. The black mark shows the keys that need to be pressed and

the blank refer to keys not to be pressed.

(a) (b)

Figure 3.3: Saxophone Fingering Chart

28

3.5.1 Controller Programming Flowchart

The Arduino Mega 2560 board is used to store and run the controller program.

There were two types of output need to be sent out from the Arduino which is the

switching signal and the PWM pulse. The data read by the MIDI decoder program is the

use of the controller program because the value of the data indicates there are key was

pressed and to indicate what musical notes are read. Figure 3.4 shows the flow chart of

the controller program.

First, the program starts with comparing the key press and the velocity value. If

the key press read in the MIDI decoder program is high and the velocity is equal to 0,

the keypress is assigned as low because zero velocity means there were no key press. If

no, the program proceeds to the next step which is indicates the key press status again.

If the key press is high, then the program will proceed to read the notes data value. If

no, the program will proceed to call the array of note low which means the data read are

not be able to call any notes array.

Then the process to read the notes data. The note data value must be in range of

base note and 3 0 above. If value not in the range, the program straight forward go to

end. If the data value in the range, the data will calculate which note case should be

proceed to call the notes array. The calculation is calculated by minus the value of Note

data read with the base note value. If the calculation gets the value of zero, the program

will go to the end. If not, it will enter the note case. The note case is selected using the

value get from the calculation. After selecting the right case, the program proceeds to

call the switching array. Each note array where store different data because to indicate

which saxophone keys need to be pressed. After that, the switching signal is sent out to

the assigned pin on the Arduino.

Then the program will again indicate the key press for the data in pin on pin 13

on the Arduino board. If key press is high. Then the pin will signal as on. Then the

program will send the on state PWM pulse. Then the end of the program and continue to

the MIDI decoder program.

Note=NoteArray[NoteData-baseNote]

Digital Write
Array 1

NoteA#l

DigitalWrite DigitalWrite
Array 2 Array 30
Note B 1 Note D#3

Send Press
PWM pulse

Figure 3.4: Controller Program Flowchart

29

30

3.6 Opto Coupler Circuit for MIDI Shield

The opto coupler is used in between the tw i 1 t r circuit. In this project, the

opto coupler is used in between the MID I ut P rt

the Arduino which is the Serial data rec iv r p in .

circuit of the opto coupler.

nd the communication pin on

ur .5 b low show the propose

vee

R1
OPTOCOUPLER

R2
~IDIIN (pin4) + 2

220 co
('..J _,.
I'-- ~

o:;;t

z
~101 IN (pin5) 3

_pUT PUT
6N138

GND

Figure 3.5: Opto Coupler Circuit

CHAPTER4

RESULT AND DISCUSSION

4.1 Introduction

This chapter will discuss the result obtain from the project and discuss the

related result of the project. The result of this project will include the result of the

program, output signal that needs to come out and the calculation of the Pulse Width

Modulation duty cycle.

4.2 Propagation Delay Time in Arduino Programming

The Arduino Mega 2560 is used as the microcontroller to read data, control the servo

movement and switching the pneumatic valve. The programming include in the

microcontroller is the MIDI decoder program and controller program. But, there were a

problem occur which is the propagation delay time between the beginning of the

programming and the end of the programming.

The delay time of the programming is affected by the clocking speed. The higher

the clocking speed of the microcontroller the less the delay time of the programming.

The clock speed of the Arduino Mega 2560 is 16 MHz. Figure 4.4 shows the delay time

in the programming.

32

Figure 4.1: Propagation Delay Tim in Arduin M ga 25 0 Pr gramming

In Figure 4.1 , the top signal capture is the result of the off state PWM while the

bottom is resulting from the on state PWM. Refer to the Figure 3.6 and Figure 3.7 in

Chapter 3, at the beginning of the programming is to send the off state PWM and the

end of the program loop sends the on state PWM. So, the delay capture is the

propagation delay time of a loop of the programming. This means from the beginning of

the program till the end of the program.

The propagation delay time in the programming is about 12.13ms. The value is

too high for a microcontroller because the human can detect the delay of the result of

the program which is the movement of the servo. For example, when a MIDI data send

out from the computer, we can detect the delay time from when the notes come in

(piano keys pressed in the computer application) and the servo starts to move to the on

state (saxophone keys pressed). But, the propagation delay time of the program were not

multiply and not resulting the increasing of the delay time over the real time pass.

33

4.3 Pulse Width Modulation Duty Cycle

The Pulse Width Modulation (PWM) is used in this project to control the movement

and position of the servo motors. The percentage of the duty cycle of the PWM defmes

how much the angular movement of the servo motors. For example, for a 0° position of

the servo motors, the percentage of duty cycle needed is 2.5% and for 180° position, the

percentage of duty cycle needed is 12.5%.

On the Alto saxophone, all the keys of the saxophone have a different distance

to travel to the completely pressed state. So, the servo need to be defined how much it

need to rotate from the initial position to the completely pressed position. All the servo

is set to 0° for the initial state (off state), then the servo will move to the key press

position (on state) according to the distance need to travel for the completely saxophone

key press. The on state PWM needs to be calculated according to the distance of the

servo hand need to travel. The calculation involve in this section is the Pythagoras

Theorem and trigonometry of the sine function.

Pythagoras Theorem, h= ..Jx2+[2

Sine Function,

Figure 4.2 shows the diagram of servo motor and the variable involve in

calculating the angular distance of the servo motor's hand need to travel to press the

saxophone keys. The length of the servo motors fixes to 20mm. The distance of key

press is the height between the initial points of the key (not press) and the completely

press point (press). The hypotenuse and theta value can be calculated using the

Pythagorean Theorem and Sine Function Formula respectively.

I - length of servo hand
x - distance of key press
h - hypotenuse value

X

ON State Point of saxo keys

Figure 4.2: Angular Distance of Hand of Servo Motor Need to Travel

Take x = 2mm for the first calculation. Find the hypotenuse value.

Using Pythagoras Theorem Formula,

h = .Jx2 + [2

h= .Jz2 +20 2

h = 20.09

; x = 2mm, != 20mm

Then find the theta, e value using the Sine Function Formula,

8 = sin-1 ~
h

8 . -1 2
= szn --

20.09

8 = 5.7134°

34

Calculate the percentage of the duty cycle,

0° = 2.5%, 180° = 12.5%

(} Duty Cycle

180 = (12.5 - 2.5)

5. 7134 Duty Cycle ----- = --~~--
180 10.5

Duty Cycle
0.03174 = 10.5

Duty Cycle = 0.33327o/o

35

The duty cycle value gets above is the increase of duty cycle. To get the actual value,

the value must be plus with 2.5 (the initial point).

Duty Cycle + 2.5% = 2.83327o/o

The percentage of duty cycle for x = 2mm is 2.83%

From the result in Table 4.1, the value of the approximate duty cycle can be

rounded off to the nearest digit because the value only has small difference. The duty

cycle of the distance travelled between 2mm to 6mm, duty cycle value can round off to

3%. The duty cycle of the distance travelled between 7mm to IOmm, the duty cycle

value can be rounded off to 4%.

Table 4.1: Result of Calculation of Servo Duty Cycle

X h

(mm) (mm)
8(0)

2 20.09 5.71

3 20.22 8.53

4 20.39 11.31

5 20.62 14.03

6 20.88 16.69

7 21.19 19.28

8 21.54 21.80

9 21.93 24.23

10 22.36 26.57

x - Distance between open and close keys
h - Hypotenuse value
(}-Angle of movement

Approximate Duty cycle

(o/o)

2.83

3.00

3.16

3.32

3.47

3.62

3.77

3.91

4.05

36

37

4.4 Result of Controller Program Output

The controller program is used to give the instruction for the switching signals

and create on state PWM. The controller will call the array that store in the

programming to indicate which 19 switches (18 for saxophone keys and 1 for reed) will

be turned on in on state (when there is data coming). Figure 4.3 shows the programming

of the controller program. The programming of the controller program is referring to the

flow chart in in Figure 3.6 in Chapter 3. The program starts to indicate the key press is

on or off (line 3 to 7). If the key press is on, the program will proceed to define what the

musical notes coming. First, the rule set to the value of note byte read must be between

the value of the base note and 30 notes above the base note (line 9) because the alto

saxophone only can play 30 musical notes. The base note is stated to a value of 58

because the first note on the alto saxophone can play is A#3 which the value of the note

in decimal is 58 (refer Table 2.1).

If the note data value read is correct, the program start to calculate which case

should be chosen (line 11). Take the example of note C4, which the value in decimal is

60.

NoteArray [NoteData-baseNote];

NoteArray [60-58];

NoteArray [2];

Then the program will find the note case number 2 which then recall the

switching signal for note C4 that store in the array. Then the program will send the

switching signal to the 19 pin of the Arduino (including servo controlling the reed).

There were 30 note case in the programming and each one will recall the notes that store

the switching signal in array form. Then the program will send out the on state PWM to

move the servo motor from the initial position to the key press position.

38

1 void Controller (byte NoteData, byte Velocity, int KeyPress)
2 {
3 if((KeyPress ==HIGH) && (Velocity== 0))
4 {
5 KeyPress= LOW;
6 }
7 if(KeyPress =HIGH)
8 {
9 if (NoteData>=baseNote && NoteData<(baseNote + 30))
10 {
11 byte Note= NoteArray [NoteData-baseNote];
12 if (Note != 0)
13 {
14 switch (Note)
15 {
16 case 1:
17 for (i=30; i<50; i++)
18 {
19 digitalWrite (i, as1 [i]);
20 }
21 break;
22 }
23 if (KeyPress =HIGH) digital Write (LED, HIGH);
24 }
25 digitalWrite (PWMPin , 7);
26 digital Write (PWMPin2, 1 0);
27 digital Write (PWMReed, 1 00);
28 }
29 }
30 else
31 {
32 for (i=30; i<50; i++)
33 {
34 digitalWrite (i, low [i]);
35 }
36 }
37 }

Figure 4.3: Programming of Controller Program

If there is no data coming and read by the MIDI decoder program, the controller

program were kept recalling the low array which stores the off switch for all saxophone

keys and reed.

39

Figure 4.4 shows the example of the note witching. The LED is used as the

indicator. Figure 4.4 (A) shows the off state wher th re is no data read. Figure 4.4 (B)

shows the on state for the note A#3 and Figur 4.4) hows the on state for the note

C4.

(A) (B)

(C)

Figure 4.4: Example of Notes Switching

40

Figure 4.5 shows the MIDI shield board. Th board can be attached to the

Arduino Mega 2560 board. The board called MIDI hield is attached to the Arduino

Mega 2560 Micro controller board. The board con i t of the opto coupler circuit and

LED indicator. There were also the pin port r jump r r transferring the signal and

PWM to the controlling circuit.

Figure 4.5: MID I Shield Board

41

4.5 Propagation Delay Time at Opto-Coupler Circuit

The opto coupler is functioning to transfer the electrical signals between two

isolated circuits by using light. It used the same concept with the relay but more

efficient in high speed in transferring the signal. But, there were also a problem occur in

the operation of the opto coupler which is the propagation delay time. The delay time

can be checked in between the input and output of the opto coupler using oscilloscope.

Figure 4.6 shows the opto coupler circuit with the oscilloscope attaches to the

input and output of the circuit. The oscilloscope use is the Agilent USB Modular

Oscilloscope U270 1 a. The input of the opto coupler which is on the pin 2 was attached

to the probe 1 and the output of the opto coupler circuit was attached to the. probe which

is on the pin 6.

.pscilloscope (INPUT) vee

+vliDI IN (pin4)

.,MIDI IN (pin5)

GND

Figure 4.6: Opto Coupler Circuit Attach to Oscilloscope

Figure 4.7 shows the example data capture by the oscilloscope which is the C4

notes pressed. The top data in the figure is the result from the probe 1 and bottom data is

the result from probe 2.

Figure 4.8 shows the propagation delay time at the beginning of the data. The

top data capture is from the probe 1 and the bottom data is from the probe 2. The

propagation delay time in the opto coupler circuit is about 2.652~s. From the data sheet

of the opto coupler (6N139), the typical propagation time is 2.0~s.

42

Figure 4.8: Propagation Delay between Input and Output of the Opto Coupler

The value of the propagation delay time at the opto coupler can be accepted

because the propagation delay time is too small and not affected the data transfer

between the MIDI output port and the Arduino receiver pin.

CHAPTERS

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This chapter will explain about the conclusion and recommendation of the whole

project paper. This chapter will discuss mainly about the conclusion of the whole

project. Other than that, this chapter also will briefly explain the recommendation for

the future development.

5.2 Conclusion

From the result and discussion obtain from the chapter 4, as the conclusion, the

MIDI decoder program was able to read and extract the MIDI data transfer from the

computer through the USB-MIDI cable. The opto coupler circuit was able to deliver the

right message from the computer although there was a little propagation delay time. The

controller program also succeeds to deliver the right output of switching signal and

pulse width modulation. The LED that use as the indicator on the MIDI shield board

indicates that the switching signal outputs was correct according to the data store in the

array in the programming. Although the result of the delay time in the overall

programming was quite large, but the delay can be ignored because not cause the

multiple delay time.

44

5.3 Recommendation

For the recommendation, the programming in the Arduino Mega 2560 can be

minimized by using the parallel programming technique which is more efficient and

reduce the delay time in the programming. The other option is more advanced which

building the operating system program for the MIDI decoder and the controller

program.

Another suggestion is using the electronic actuator such as plunger because the

device only used a switching signal rather than servo motors that need the switching

signal and the pulse width modulation signal. This way can reduce the overall project

delay time.

45

REFERENCES

[1] Jerry, W. (1999). U.S. Patent No. 6,121,536. Armonk, NY: U.S.

[2] D. M. Huber, The MIDI Manual, Third Edition: A Guide To MIDI in the Project

Studio, ISBN 0240807987, Focal Press, 2007.

[3] Kai Y, Xi Z, (2012). MIDI-Lab, a Powerful Visual Basic Programfor Creating

MIDI Music,Vol. 3, No.4.

[4] Rikip G, Ivan I, (2011). MIDI Conversion to Musical Notation, pp 97-99.

[5] Mike K, Geert K, (1999).USB MIDI Converter. Universal Serial Bus Device

Class DefinitionforMIDI Devices (pp.12).

[6] Ben M, Craig R, (2012). Acoustical Properties of the Alto Saxophone.

[7] Alto Saxophone. Retrieved December 16, 2012 from Wikipedia site:

http:/ I en. wikipedia.org/wiki/ Alto_ saxophone

[8] Larry T. The Instrument. In The Art of Saxophone Playing (page 13). Summy­

Birchard Music in New Jersey, US.

[9] Parts of the Saxophone. Retrieved December 16, 2012 from About. com site:

http://musiced.about.com/od/lessonsandtips/a/saxparts.htm

[10] Arduino. Retrieved December 19, 2012 from Wikipedia site:

http:/ I en. wikipedia.org/wiki/ Arduino

[11] Arduino Mega 2560. Retrieved December 19, 2012 from Seed Studio site:

http:/ /www.seeedstudio.com/wiki/ Arduino _Mega_ 2560

[12] Arduino Mega 2560. Retrieved December 19, 2012 from Arduino site:

http://arduino.cc/en/Main/ArduinoBoardMega2560

[13] Amanpreet K, Amandeep K, (2012). An Approach for Designing A Universal

Asynchronous Receiver Trasmitter (UART). Vol. 2 (Issue 3), pp.2305-2311.

APPENDIX A

Project Flowchart

Chapter 1 : Introduction

Chapter 2: Literature Review

Chapter 3: Methodology

MIDI
Decoder

Controller
Programming

Device under
Test

Device under
Test

No

Chapter 4: Result and Discussion

Chapter 5: Conclusion and
Recommendation

No

46

o~~ o~lo
~ o® 6 ~®

Ulf. og Do
8 eP

4 ,, .,

·I~
6.®
De

0 s•

4 p II

•j!o •jeo
~ .® 6 .®
~ ·~

'114~ 80 80

-·
fp ho

II

APPENDIXB

Saxophone Fingering Chart

o~lo o~eo o~Ho
Do® 6 o® H o®
Do o8 og

f 80 c 80 80

p II ••

•!io •iNn
o•® ~·@ IJ. • 0:

0#1£~ e• E 80

fe •a· II II

•jlo •jlo
Do® 0 ·~ Do og
80 0

4 C,VA~ 8

II g II fa~ ..

47

o~o\
60®

c~
a8
80

II ,,. te II

•!io
o•®
0~

F 80

II e II

·~~
Do®
Do

• 80

I = 11

48

ojlo ojlo oj~ oj~
u·~ 0 .i} ~.® ~ .ri o• i D al D~ CliO~

De
• c ...

~
li ;I

II I I II
fiji .. fi5" 'D"

oj~ oj~ oj~o oj~

~.® D.® ~ .® 0 .®
D• 0~ De ow De • , a• ~·

E 80 F 80

4 ; I

'"~"
II i I i; II

oj~ ojeo ojlo oj~ o~~
o•® o·® o•® o•m ~o®
D~ ~ og

QJIA~
o8 Do

Fl/o}
8
0 80 Q 80 80 ' 80

4 p 1144 II fe lin II '! II

APPENDIX C

P B Drawing of the MIDI hield Board

C"

~­
::l.LU (\)::s:
mo cgi
s:..o
oO
3.~
z::::ro
C"
...10
~-I
5!!.C v..c)>

:..,.z::::-
00

:::l(.)­o,c
-·o-F'"""
N-
U)..C
~_p

49

APPENDIXD

ATmega2560 Microcontroller Pin Configuration

(OCO~ I'QS I'Jl3 (AD3)

(RlOCI'I'CII>m) PID PM (mi)

crn:qPiil AI.S~

~)Pii2 4 w~

(CC3AIANI) PIO:l "'-7 (AD?)

(~N'III) Pli4 P02(AI.Ii)

(CCX/NT&) PIZI PJ6(1'CNT'I8)

(T3/N15) PIZI PJ5(PCNTI4)

PU<OICIQINTI) Pli7 PJ4 (PCNTI3)

VCC PJ3(PCNTI~

(RXD2) FHO

(OO~I'HI I

(~PH2 I

(0::4AJ I'H3 I

(CColg)I'H4

(CD'C) PHS I

(CC:Ig)I'H6 I

($S.>PCN10) FllO I

(SCK/I'CNTI) PSI

(t.OSPI'CN12) 1'92 I

(h1ISCI'I'CNT.l)I'S3

(CC2.QJI'CN'Il)I'S4

(CC IP.II'CN15) 1'95

(CCIQ'I'CN15) Fll6

AVR. PJ2(XI:IO'I'CNTII)

PJ I (003/I'CNTIO)

PJO (RXD3/I'CNr.1}

GilD

1 vee
I'C7(AIS)

I'C6(AI4)

I'C5(AI3)

I'C4(AI2)

I'C3(AII)

I'C2(AIO)

I'CI (A9)

I'CO(AS)

PGI~

I PGO('Wf(.

50

#include <Servo.h>

Servo myservo;
Servo myservo 1;
Servo myservoReed;

byte DataRead;
byte NoteData;
byte Velocity;
inti;
int KeyPress= LOW;
int DataType=O;
int baseN ote = 58;
byte NoteArray[] =

APPENDIXE

Arduino Programming

{ 1,2,3,4,5,6,7,8,9, 10,11 '12,13,14, 15, 16, 17, 18,19,20,21 ,22,23,24,25,26,27,28,29,30};

byte as1[50] = {O,
0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,1,0,1, 1 };
byte b1 [50] = {O,
0, 1,1 '1 ,0,0,0,0,0, 1,0,0,0, 1,1 ,1 ,0, 1, 1};
byte c1 [50] = {O,
O,l,l,l,0,0,0,0,0,0,0,0,0,1,1,1,0,1, 1};
byte cs1[50] = {O,
0,1 '1,1 ,0,0,0,0, 1 ,0,0,0,0, 1 ,1, 1,1 ,0, 1};
byte dl [50] = {O,
0,1, 1,1 ,O,O,O,O,O,O,O,O,O, 1,1, 1 ,0,0, 1};
byte dsl[50] = {O,
0,1 '1 '1 ,o,o,o,o,o,o,o,o,o, 1' 1' 1' 1 ,0, 1};
byte e1 [50] = {O,
0,1' 1 '1 ,o,o,o,o,o,o,o,o,o, 1 '1 ,0,0,0, 1};
byte f1 [50] = {O,
O,l,l,l,O,O,O,O,O,O,O,O,O,l,O,O,O,O, 1};
byte fs1[50] = {O,
O,l,l,l,O,O,O,O,O,O,O,O,O,O,l,O,O,O, 1};
byte gl [50] = {O,
O,l,l,l,O,O,O,O,O,O,O,O,O,O,O,O,O,O, 1};
byte gs1[50] = {O,
O,l,l,l,O,O,O,l,O,O,O,O,O,O,O,O,O,O, 1};
byte al [50] = {O,
O,l,l,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O, 1};

byte as2[50] = {O,
O,l,O,O,O,O,O,O,O,O,O,O,O,l,O,O,O,O, 1};
byte b2 [50] = {O,
O,l,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O, 1};

51

byte c2 [50] = {O,
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1};
byte cs2[50] = {O,
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o, 1};
byte d2 [50]= {O,
1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0, 1};
byte ds2[50] = {O,
1,1, 1,1 ,O,O,O,O,O,O,O,O,O, 1,1, 1,1 ,0, 1};
byte e2 [50]= {O,
1,1, 1,1 ,O,O,O,O,O,O,O,O,O, 1,1 ,0,0,0, 1};
byte f2 [50] = {O,
1,1, 1,1 ,O,O,O,O,O,O,O,O,O, 1 ,0,0,0,0, 1};
byte fs2[50] = {O,
1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0, 1};
byte g2 [50]= {O,
1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1};
byte gs2[50] = {O,
1 '1 '1' 1 ,0,0,0, 1 ,o,o,o,o,o,o,o,o,o,o, 1};
byte a2 [50] = {O,
1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1};

byte as3[50] = {O,
1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 1};
byte b3 [50]= {O,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1};
byte c3 [50] = {O,
1 ,0, 1 ,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O, 1};
byte cs3[50] = {O,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1};
byte d3 [50] = {O,
1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 1};
byteds3[50] = {O,
1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0, 1};

byte low[50] = {O,
O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O, 0};

int LED= 13;
int channel= 0;

void setup()
{

pinMode(LED,OUTPUT);
pinMode(30,0UTPUT);
pinMode(31 ,OUTPUT);
pinMode(32,0UTPUT);
pinMode(33,0UTPUT);
pinMode(34,0UTPUT);
pinMode(35,0UTPUT);

52

}

pinMode(36,0UTPUT);
pinMode(3 7 ,OUTPUT);
pinMode(3 8, OUTPUT);
pinMode(39 ,OUTPUT);
pinMode(40,0UTPUT);
pinMode(41 ,OUTPUT);
pinMode(42,0UTPUT);
pinMode(43,0UTPUT);
pinMode(44,0UTPUT);
pinMode(45,0UTPUT);
pinMode(46,0UTPUT);
pinMode(4 7 ,OUTPUT);
pinMode(48,0UTPUT);

myservo.attach(2);
myservo l.attach(3);
myservoReed.attach(4);

DataType = 0;

Seriall.begin(31250);
digitalWrite(LED,LOW);

void loop()
{

myservo8.write(10);

if (Seriall.available() > 0)
{

DataRead = Seriall.read();
digitalWrite(LED,LOW);
switch (Data Type)
{

case 0:
if (DataRead == (144 I channel))
{

}

KeyPress = HIGH;
DataType = 1;

if (DataRead == (128 I channel))
{

}
break;

KeyPress= LOW;
Data Type = 1;

case 1:
if(DataRead < 128)

53

}
}

}

{

}
else
{

}
break;

case 2:

NoteData = DataRead;
DataType = 2;

Data Type = 0;

if(DataRead < 128)
{
Controller(NoteData, DataRead, KeyPress);
}
DataType = 0;

break;

void Controller(byte NoteData, byte Velocity, int KeyPress)
{

if((KeyPress ==HIGH) && (Velocity= 0))
{

KeyPress= LOW;
}
if(KeyPress ==HIGH)
{

if(NoteData>=baseNote && NoteData<(baseNote + 30))
{

byte Note= NoteArray[NoteData-baseNote];
if(Note != 0)
{

switch(N ote)
{

case 1:
for(i=30; i<50; i++)
{

}
break;

case 2:

digitalWrite(i, asl [i]);

for(i=30; i<50; i++)
{
digitalWrite(i, b 1 [i]);
}

54

break;

case 3:
for(i=30; i<50; i++)
{

digitalWrite(i, cl [i]);
}
break;

case 4:
for(i=30; i<SO; i++)
{

digitalWrite(i, csl [i]);
}
break;

case 5:
for(i=30; i<50; i++)
{

digitalWrite(i, dl [i]);
}
break;

case 6:
for(i=30; i<50; i++)
{

digitalWrite(i, dsl [i]);
}
break;

case 7:
for(i=30; i<50; i++)
{

digitalWrite(i, el [i]);
}
break;

case 8:
for(i=30; i<50; i++)
{

digitalWrite(i, fl [i]);
}
break;

case 9:
for(i=30; i<50; i++)
{

55

digitalWrite(i, fs1 [i]);
}
break;

case 10:
for(i=30; i<50; i++)
{

digitalWrite(i, gl [i]);
}
break;

case 11:
for(i=30; i<50; i++)
{

digitalWrite(i, gsl [i]);
}
break;

case 12:
for(i=30; i<50; i++)
{

digitalWrite(i, a1 [i]);
}
break;

case 13:
for(i=30; i<50; i++)
{

digitalWrite(i, as2 [i]);
}
break;

case 14:
for(i=30; i<50; i++)
{

}
break;

digitalWrite(i, b2 [i]);

case 15:
for(i=30; i<50; i++)
{

digitalWrite(i, c2 [i]);
}
break;

case 16:
for(i=30; i<50; i++)
{

56

}
break;

digitalWrite(i, cs2 [i]);

case 17:
for(i=30; i<SO; i++)
{

}
break;

digitalWrite(i, d2 [i]);

case 18:
for(i=30; i<50; i++)
{

digitalWrite(i, ds2 [i]);
}
break;

case 19:
for(i=30; i<50; i++)
{

digitalWrite(i, e2 [i]);
}
break;

case 20:
for(i=30; i<50; i++)
{

digitalWrite(i, f2 [i]);
}
break;

case 21:
for(i=30; i<50; i++)
{

digitalWrite(i, fs2 [i]);
}
break;

case 22:
for(i=30; i<50; i++)
{

digitalWrite(i, g2 [i]);
}
break;

case 23:
for(i=30; i<50; i++)
{

57

}
break;

digitalWrite(i, gs2 [i]);

case 24:
for(i:;:30; i<SO; i++)
{

}
break;

digitalWrite(i, a2 [i]);

case 25:
for(i=30; i<SO; i++)
{

digitalWrite(i, as3 [i]);
}
break;

case 26:
for(i=30; i<50; i++)
{

digitalWrite(i, b3 [i]);
}
break;

case 27:
for(i=30; i<50; i++)
{

digitalWrite(i, c3 [i]);
}
break;

case 28:
for(i=30; i<50; i++)
{

digitalWrite(i, cs3 [i]);
}
break;

case 29:
for(i=30; i<50; i++)
{

digitalWrite(i, d3 [i]);
}
break;

case 30:
for(i=30; i<50; i++)
{

58

}
else
{

}
}

}

}

}

}
break;

digitalWrite(i, ds3 [i]);

if(KeyPress =HIGH)
digitalWrite(LED, HIGH);

myservo. write(45);
myservo 1. write(45);
myservoReed. write(80);

for(i=30; i<50; i++)
{
digitalWrite(i, low [i]);
}

59

