MOLD DESIGN FOR PLASTICS INJECTION MOLDING PROCESSES (TWO COLORS) AND ANALYSIS OF GATES LOCATION

AHMAD ZULHELMI BIN MUHAMAD

A report submitted in partial fulfillment of
The requirements for the award of the degree of
Bachelor of Mechanical Engineering
With Manufacturing Engineering

Faculty of Mechanical Engineering
UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2009
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering with Manufacturing Engineering.

Signature : ..
Name of Supervisor : EN. ASNUL HADI AHMAD
Position : LECTURER OF FACULTY MECHANICAL ENGINEERING
Date : ..
STUDENT’S DECLARATION

I hereby declare that this thesis entitled “Mold design for plastic injection molding process and gate location analysis” is the result of my own research except as cited in the references. The thesis has not been accepted for my degree and is not concurrently candidature of any other degree.

Signature : ..
Name : AHMAD ZULHELMI BIN MUHAMAD
ID Number : ME 06011
Date : ..
TABLE OF CONTENTS

SUPervisor’s Declaration ii
Student’s Declaration iii
Acknowledgements v
Abstract vi
Abstrak vii
Table of Contents viii, ix, x, xi
List of Tables xii
List of Figures xiii, xiv, xv, xvi
List of Symbols xvii
List of Abbreviations xviii

Chapter 1 Introduction

1.1 Project Background 1
1.2 Problem Statement 2
1.3 Objectives of the Project 3
1.4 Scope of Study 3

Chapter 2 Literature Review

2.1 Injection Molding 4
2.1.1 Injection Molding Machine 5
2.1.1.1 Injection Molding Parts 7

2.2 Mold 7
CHAPTER 3 EXPERIMENT SETUP

3.1 Introduction 23
3.2 Project Flow Chart for FYP 1 23,24
3.3 Project Flow Chart for FYP 11 25
3.4 Determination of design factor 26
 3.4.1 CAD Data development 28
3.5 Moldflow Analysis 29
 3.5.1 Moldflow analysis step framework 29
 3.5.1.1 The whole process 39
 3.5.1.2 Optimizing fill 39
 3.5.1.3 Balance and sizes the runner 39
 3.5.1.4 Optimizing cooling 39
 3.5.1.5 Optimize the packing profile 40
CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Introduction
 4.1.1 3D Product Design

4.2 Analysis Result
 4.2.1 Gate Location Parts 1
 4.2.2 Fill Time
 4.2.3 Air Traps
 4.2.4 Weld lines
 4.2.5 Time to Freeze
 4.2.6 Volumetric Shrinkage
 4.2.7 Moldflow Analysis General Data
 4.2.8 Moldflow Analysis Runner System
 4.2.9 Gate Location Parts 2
 4.2.10 Fill Time
 4.2.11 Air Traps
 4.2.12 Weld lines
 4.2.13 Time to Freeze
 4.2.14 Volumetric Shrinkage
 4.2.15 Moldflow Analysis General Data
 4.2.16 Moldflow Analysis Runner System

4.3 Discussion about Gate Location Analysis
 4.3.1 Gate Location
4.4 Mold Design
 4.4.1 Mold Materials
 4.4.2 Design Mold for Two Colors
 4.4.2.1 Top Plate
 4.4.2.2 Stripper Plate
 4.4.2.3 Cavity Plate
 4.4.2.4 Insert Cavity Plate
 4.4.2.5 Core plate
 4.4.2.6 Insert Core Plate
 4.5 Mold design discussion

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion
5.2 Recommendation

REFERENCES
APPENDIX
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Advantages and disadvantages of Hot-runners</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Advantages and disadvantages of Hot-runners</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Type of gates and description</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Injector component in the mold system</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Mold flow concept</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Parameter for the gate location analysis</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of Gate Location of part 1</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Analysis of Gate Location of part 1</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Parameter that was used in the MoldFlow analysis.</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of Gate Location of part 2</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Analysis of Gate Location of part 2</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Parameter that be used for part 2</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>Guidelines for selecting mold material</td>
<td>60</td>
</tr>
<tr>
<td>D1</td>
<td>Gantt chart for FYP 1</td>
<td>80</td>
</tr>
<tr>
<td>D2</td>
<td>Gantt chart for FYP 2</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Injection Molding Machine for one color</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Injection Molding Machine for two colors</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Injection Molding Machine for two colors</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Injection Molding Machine</td>
<td>6</td>
</tr>
<tr>
<td>2.5</td>
<td>Type of mold</td>
<td>8</td>
</tr>
<tr>
<td>2.6</td>
<td>Two Plate Mold</td>
<td>9</td>
</tr>
<tr>
<td>2.7</td>
<td>Three Plate Mold</td>
<td>9</td>
</tr>
<tr>
<td>2.8</td>
<td>Example of Spider Runner</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>Example of Balance Cross Runner System</td>
<td>12</td>
</tr>
<tr>
<td>2.10</td>
<td>Typical Runner Cross section</td>
<td>13</td>
</tr>
<tr>
<td>2.11</td>
<td>Example of picture for 2D</td>
<td>18</td>
</tr>
<tr>
<td>2.12</td>
<td>Example of picture for 3D</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Process for injection molding two color</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart for FYP 1</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart for FYP 11</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Side View</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Top View</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>Front View</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>Bottom View</td>
<td>27</td>
</tr>
</tbody>
</table>
3.7 Example of picture for 2D dimension 28
3.8 Import File 29
3.9 Set as Fusion type 30
3.10 Set Part Name 30
3.11 3D Model 31
3.12 Duplicating the cavity 31
3.13 Cavity Duplication Wizard 32
3.14 Generating mesh 32
3.15 3D Meshing Model 33
3.16 Set Analysis Sequence 33
3.17 Select Analysis Sequence 34
3.18 Product Material Selection 34
3.19 Material For Product Part 1 35
3.20 Injection Location set up 35
3.21 Injection Location 36
3.22 Set the Runner System 36
3.23 Setting the Runner System page 1 37
3.24 Setting the Runner System page 2 37
3.25 Setting the Runner System page 3 38
3.26 Runner System on the Product Model 38
3.27 3D product designs 41
3.28 Gate Location For Part 1 42
3.29 Gate Location for Part 2 42
3.30 Air Traps and Weld Lines Stage for Part 1 43
3.31 Air Traps and Weld Lines Stage for Part 2 43
3.32 Work for PSM 1 and PSM 2 45
4.1 Bottom view 47
4.2 Top View 47
4.3 Bottom View 47
4.4 Side View 48
4.5 Fill time 49
4.6 Air Traps 41
4.7 Weld Lines 51
4.8 Times to freeze 51
4.9 Volumetric Shrinkage 52
4.10 Fill time 55
4.11 Air traps 55
4.12 Weld Lines 56
4.13 Times to freeze 56
4.14 Volumetric Shrinkage 57
4.15 Complete Mold Design for plastic Injection molding two colors 61
4.16 Top Plate with the Locating Ring and Sprue Bushing 62
4.17 Stripper plate 62
4.18 Cavity plate and Cavity Insert 63
4.19 Insert Cavity plate 64
4.20 Core plate 64
4.21 Insert Core plate 65
C1 2D Design for Top Plate 75
C2 2D Design for Locating Ring 76
C3 2D Design of Screw Bushing 76
C4 2D Drawing for Stripper plate 77
C5 2D design for Cavity plate (front). 77
C6 2D design for Cavity plate (back). 78
C7 2D Design for Insert Cavity plate 78
C8 2D Design for Core Plate 79
C9 2D Design for Insert Core Plate 79
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mpa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>Mm</td>
<td>Milimeters</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>° C</td>
<td>Degree of Celcius</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI</td>
<td>American Iron Steel Institute</td>
</tr>
<tr>
<td>ABS</td>
<td>Acrylonitrile Butadiene Styrene</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>2D</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
<tr>
<td>TPE</td>
<td>Thermoplastic Elastomers</td>
</tr>
<tr>
<td>PP</td>
<td>PolyPropylene</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
</tbody>
</table>