Ignition Mechanism Analyzed through Transient Species Measurements and its Correlation with 0-D and 3-D Simulations for PRF and Toluene/n-Heptane Mixture

 Mohd Adnin Bin Hamidi

平成 25年度入学

氏名 Mohd Adnin Bin Hamidi

指導教員 手崎 衆 教授

平成 28年 01月 08日 提出
Contents

Chapter 1 Introduction
1.1 Research Background
 1.1.1 Heat Engine
 1.1.2 History of Internal Combustion Engine
 1.1.3 HCCI Engine
1.2 Process of compression ignition in hydrocarbon fuels
 1.2.1 Reaction mechanism of compression ignition
 1.2.2 Research on Cool Flame inside HCCI Engine
 1.2.3 Modeling Low Temperature Oxidation
1.3 Research Objectives

Chapter 2 Methodologies
2.1 Experimental Apparatus
 2.1.1 Engine System
 2.1.2 Intake Air System
 2.1.3 Fuel Supply
2.2 Experimental Procedure
 2.2.1 Engine system
 2.2.2 Sample Line System
 2.2.3 Digital pressure diagram measurements procedure
 2.2.4 Adjusting the optical path of the gas cell
2.3 Maintenance and Precautions
 2.3.1 VARICOMP Engine
 2.3.2 FT-IR
 2.3.3 Sample Line
2.4 Specific parts of the experimental apparatus
2.5 Initial Calculation Conditions in Engine Calculation
2.6 3-Dimensional Simulation Methods
 2.6.1 FORTE Simulate
 2.6.2 FORTE Visualizer
Chapter 3 Measurements Principles and Theory

3.1 Measurements Principles 46
3.2 Infrared absorption 46
3.3 FT-IR Principles 48
3.4 Resolutions 50
3.5 Quantification by the method of least squares 54
 3.5.1 The principle of quantification by FT-IR 54
 3.5.2 The principle of quantification by the method of least squares 54

Chapter 4 0-Dimensional Reaction Simulation

4.1 Reaction dynamics calculations with CHEMKIN 62
4.2 Calculation Principles 64
4.3 Internal Combustion Engine (IC Engine) model 69
4.4 Detailed reaction mechanism, for PRF and NTF 70

Chapter 5 3-Dimensional Reaction Simulation

5.1 3-Dimensional reaction dynamics calculations with FORTÉ 72
 5.1.1 Conservation Equations for Turbulent Reacting Flow 72
 5.1.2 Species Conservation Equation 73
 5.1.3 Fluid Continuity Equation 73
 5.1.4 Energy Conservation Equation 73
5.2 Turbulence Model 74
5.3 Boundary Condition 76
 5.3.1 Wall Boundaries 76
 5.3.2 Wall Conditions for the Energy Equation 77
 5.3.3 Turbulence Model Wall Conditions 79
 5.3.4 Initial Conditions 79
 5.3.5 Initialization of the Fluid Properties 80
 5.3.6 Swirl Profiles 81
Chapter 6 Study on Low Temperature Oxidation of PRF / NTF

6.1 The Importance of Low Temperature Oxidation 83
6.2 Exhaust Gas Analysis by FT-IR of Least Square Method 84
 6.2.1 Detection of Special Intermediate Species in PRF (Isobutene) 85
 6.2.2 Detection of Special Intermediate Product in NTF (Benzaldehyde) 87
6.3 Exhaust Analysis towards Fuel Dependency 89
6.4 0-Dimensional (CHEMKIN PRO) Simulations Data 93
 6.4.1 IC Engine Model Study 93
6.5 Analysis of 3-Dimensional Simulation 97
 6.5.1 Temperature and Ignition Timing Dependency 99
 6.5.2 Rate of Heat Release Study in Various Dimensionalities 101
 6.5.3 Temperature Distribution inside Cylinder 103
 6.5.4 Species Distribution inside Low Temperature Oxidation 104
 6.5.5 Flow Effect towards Low Temperature Oxidation 108
6.6 Review on LTO between LLNL and SAKAI Model 110
6.7 Model Calculation 111
 6.7.1 Discussion with Simplified Model 111
6.8 Activation of H₂O₂ Loop Reaction in LTO 119
 6.8.1 Experimental and Simulation Result with Two Stage of Low Temperature Oxidation 119
 6.8.2 Chemical Reaction Pathway Analysis 123
 6.8.3 Formaldehyde as the Key Species in LTO 124

Chapter 7 Conclusions 127

References 130

Appendix 134

Acknowledgement 136