Development of A Highly Sensitive AC/DC Magnetometer utilizing High-\(T_c\) SQUID for Characterization of Magnetic Mixture Materials

2015, September

Mohd Mawardi Bin Saari

Graduate School of
Natural Science and Technology
(Doctor’s Course)

OKAYAMA UNIVERSITY
Table of Contents

CHAPTER 1: INTRODUCTION

1.1 Overview
1.2 Research Aim
1.3 Thesis Organization

CHAPTER 2: SQUID SENSOR

2.1 Magnetism and Measurement Methods
2.2 Magnetic Sensors
2.3 SQUID Theory
2.4 SQUID Electronic
2.5 High-T_c SQUID

CHAPTER 3: DEVELOPMENT OF HIGH-T_c SQUID MAGNETOMETER

3.1 Detection Unit
3.2 Electromagnet
3.3 Moving Stage
3.4 Noise Characteristic and Sensitivity
3.5 Detection Frequency and Trigger Circuit
3.6 Dependence of Sample Position
3.7 Dependence of Sample Shape
3.8 System Evaluation

CHAPTER 4: OPTIMIZATION OF DETECTION TECHNIQUE

4.1 Overview
4.2 Magnetic Field Noise
4.3 Harmonic Detection Technique
4.4 Fabrication of First-order Differential Coils
4.5 Simulation on Harmonic Components
4.6 Measurement of Harmonic Components

CHAPTER 5: INTEGRATION OF AC/DC DETECTION COIL
5.1 Overview
5.2 Fabrication of AC Detection Coils
5.3 Characteristics of AC Detection Coils
5.4 Harmonics and Magnetization Curve of Ferromagnetic Test Sample

CHAPTER 6: EVALUATION OF MOISTURE CONTENT IN MORTAR
6.1 Overview
6.2 Preparation of Mortar Samples
6.3 Magnetization Curves of Mortar Samples

CHAPTER 7: CHARACTERIZATION OF MAGNETIC NANOPARTICLES IN LOW-CONCENTRATION SOLUTIONS
7.1 Magnetic Nanoparticles
7.2 Measurement of Magnetization Curves
7.3 Reconstruction Methods of Distribution of Magnetic Moments
 7.3.1 Singular Value Decomposition Method
 7.3.2 Non-Negative Non-Regularized Inversion Method
7.4 Reconstruction of Magnetization Curves
7.5 AC Response of Magnetic Nanoparticles in Solutions
7.6 Comparison of Magnetic Nanoparticles

CHAPTER 8: CONCLUSION

ACKNOWLEDGEMENTS