RAJALETCHUMY VELOO KUTTY

(B. Eng., University of Malaysia Pahang, Malaysia)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2015
TABLE OF CONTENT

DECLARATION ... i

ACKNOWLEDGEMENT ... ii

TABLE OF CONTENT .. iii

SUMMARY ... x

LIST OF TABLES .. xiii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS ... xvii

Chapter 1 Introduction ... 1

1.1 Background ... 1

1.2 Hypothesis and objectives 4

Chapter 2 Literature Review ... 5

2.1 Cancer ... 5

2.1.1 Types of breast cancer ... 5

2.1.2 Triple negative breast cancer (TNBC) 6

2.2 Limitations in current cancer therapies for TNBC 7

2.2.1 Surgery ... 8
2.2.2 Radiotherapy ... 8
2.2.3 Chemotherapy .. 9
2.2.4 Lack of targeted therapy for TNBC 10

2.3 Factors influencing TNBC insensitivity to conventional chemotherapy .. 10

2.4 Nanomedicine: key advantages over conventional chemotherapy ... 12

2.5 Nanomedicine may improve the sensitivity of TNBC 12

2.6 Nanomedicine in TNBC treatment: the knowledge gap 14

2.7 Epidermal growth factor receptor (EGFR) as a potential therapeutic target for TNBC .. 14

2.7.1 Molecular mechanism of EGFR activation and response 15

2.7.2 Overexpression of EGFR in TNBC 16

2.8 Micelles based drug carriers for chemotherapeutic drugs 18

2.9 Factors that affect the stability of self-assembled polymeric micelles system for drug delivery ... 19

2.10 Paclitaxel and docetaxel, current clinically used anticancer drug. 21

2.11 Cetuximab as a targeting agent for EGFR 22

2.12 Vitamin E TPGS based nanocarrier and its advantages 23

2.13 Problem statement .. 25
Chapter 3

In vitro proofs of concept that cetuximab-conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer

3.1 Introduction

3.2 Materials & Methods

3.2.1 Materials

3.2.2 Synthesis of TPGS-NH₂

3.2.3 Preparation of docetaxel- or coumarin-6 loaded TPGS micelles

3.2.4 Cetuximab conjugation to the docetaxel-loaded micelles

3.2.5 Particle size and surface charge of micelles

3.2.6 Surface morphology of the micelles

3.2.7 Surface chemistry of the micelles

3.2.8 Docetaxel loading into micelles

3.2.9 Determination of cetuximab surface density on micelles

3.2.10 **In vitro** drug release of docetaxel from micelles in buffer solution

3.2.11 Cell culture

3.2.12 Flow cytometry analysis for EGFR expression of cell lines
3.2.13 In vitro quantitative study of cellular uptake of micelles by microplate reader ...33

3.2.14 In vitro qualitative study cellular uptake of micelles by confocal microscopy ...33

3.2.15 In vitro cytotoxicity ..34

3.3 Results & Discussion ..36

3.3.1 Characterization of docetaxel-loaded vitamin E TPGS micelles pre- and post-cetuximab conjugation ..36

3.3.2 Optimization of the cetuximab antibody conjugation on micelles ...38

3.3.3 Docetaxel drug loading to micelles ..42

3.3.4 Surface chemistry ..42

3.3.5 Flow cytometry analysis for EGFR expression of cell lines44

3.3.6 In vitro drug release ..45

3.3.7 In vitro cellular uptake ..46

3.3.8 In vitro cytotoxicity ..53

3.4 Summary ...60

Chapter 4 In vitro co-culture of cetuximab conjugated vitamin E TPGS against EGFR-overexpressing triple negative breast cancer cells61
5.2.3 Cell culture...70
5.2.4 Animal study...70
5.2.5 Statistical analysis..73
5.3 Results and discussion..74
 5.3.1 Characterization of docetaxel-loaded micelles and DiD-loaded
 micelles before and after cetuximab conjugation74
 5.3.2 In vivo biodistribution of micelles by fluorescence imaging.....75
 5.3.3 In vivo therapeutic effect of the micelles79
5.4 Summary..85

Chapter 6 Ex vivo proofs of concept that cetuximab-conjugated vitamin E
TPGS micelles increases efficacy of delivered docetaxel against triple
negative breast cancer..86
 6.1 Introduction..86
 6.2 Materials and methods..87
 6.2.1 Materials...87
 6.2.2 Tumour explant cell culture......................................87
 6.2.3 Tumour apoptotic assay..88
 6.2.4 Ex vivo scratch assay..88
 6.2.5 Cell migration using Transwell insert.......................89
LIST OF TABLES

Table 3.1 Characterization of the TPD and TPDC micelles. 37
Table 3.2 Characteristics of the TPDC micelles at various cetuximab feeding concentrations. ... 41
Table 3.3 The IC50 values of the docetaxel-loaded micelles. 59
Table 5.1 Characterization of micellar formulation used in in vivo study...... 75
Table 6.1 List of primers used in RT-PCR study.. 92

LIST OF FIGURES

Figure 2.1 The EGFR signalling network... 16
Figure 2.2 Chemical structure of Docetaxel. .. 21
Figure 2.3 EGFR and the mode of action of cetuximab 22
Figure 2.4 Molecular structure of D-α-tocopherol (Vitamin E) 24
Figure 2.5 Molecular structure and various segments of TPGS 25
Figure 3.1 Schematic illustration of the formulation of docetaxel-loaded vitamin E TPGS micelles (TPD) and Cetuximab-conjugated docetaxel-loaded vitamin E TPGS micelles (TPDC).. 35
Figure 3.2 Particle size and size distribution of the micelles..................... 37
Figure 3.3 Representative field emission transmission electron microscope (FETEM) images of the micelles... 38
Figure 3.4 Representative X-ray photoelectron spectroscopy (XPS) spectrum of wide scan spectrum and N 1s peaks (the inset) for the micelles.43

Figure 3.5 Representative flow cytometry for EGFR receptor expression of various breast cancer cell lines. ...45

Figure 3.6 In vitro accumulative drug release profile of TPD and TPDC micelles at pH=7.4. ...46

Figure 3.7 Representative confocal laser scanning microscopy (CLSM) images depict the cellular uptake of the coumarin 6-loaded vitamin E TPGS micelles (2 h incubation). ...48

Figure 3.8 Cellular uptake efficiency of the coumarin 6-loaded vitamin E TPGS micelles. ...50

Figure 3.9 Cellular uptake efficiency of the TPM and TPMC micelles on NIH3T3, SK-BR-3, MCF-, MDA-MB-468, MDA-MB-231 and HCC38......52

Figure 3.10 The diagram presents the cell viability of MCF-7, SK-BR-3, MDA-MB-231, HCC38 and MDA-MB-468 cells incubated with Dox, TPD and TPDC for 24 h...57

Figure 3.11 Cetuximab treatment did not elicit cytotoxicity on EGFR-overexpressed MDA-MB-468 cells. ...58

Figure 4.1: Schematic cartoon showing the co-culture experimental setup64

Figure 4.2 Cetuximab-conjugated DiD-loaded vitamin E TPGS micelles, (Targeted micelles, TPFC) shows a higher uptake on the EGFR-
overexpressing MDA-MB-231 cells in co-cultures of MCF-7 and MDA-MB-231 breast cancer cells. ...65

Figure 4.3 Quantitative analysis of micelles shows that MDA-MB-231 cells are more efficient in the uptake of TPFC micelles in co-culture.66

Figure 4.4 The cytotoxicity study shows higher killing effects on MDA-MB-231 cells after treated with 2.5 μg/mL cetuximab-conjugated docetaxel-loaded vitamin E TPGS micelles (TPDC) for 24 h. ..68

Figure 5.1 Schematic cartoon showing the in vivo experimental setup.74

Figure 5.2 Micelles TPFC facilitate the uptake of micelles into EGFR-overexpressing MDA-MB-231/Luc tumours-bearing SCID mice.77

Figure 5.3 Fluorescence imaging of excised tumours and organs indicated a strong intensity of TPFC at MDA-MB-231/Luc tumours.78

Figure 5.4 Quantitative analysis of fluorescence intensities of tumours and organs from sacrificed mice. ...79

Figure 5.5 In vivo study of anti-tumour efficacy evidently shows tumour growth inhibition by targeting micelles TPDC.81

Figure 5.6 The semi-quantitative bioluminescence analysis indicates that tumours in TPDC-treated mice were of a smaller size.82

Figure 5.7 Body weight of the tumour-bearing mice before and after the treatment shows no significant weight loss.83
Figure 5.8 Tumour weight from different treatment groups were measured after the mice were sacrificed on the 15th day. ... 84

Figure 5.9 Image of MDA-MB-231/Luc tumours excised from the respective treatment groups after the 15th day. ... 84

Figure 6.1 Schematic cartoon showing the experimental setup for *in vivo* and *ex vivo*. .. 93

Figure 6.2 Vitamin E TPGS micelles formulated docetaxel drug (TPD and TPDC) induced cell cycle arrest. ... 95

Figure 6.3 Vitamin E TPGS micelles formulated docetaxel drug (TPD and TPDC) inhibited Ki-67 expression in MDA-MB-231 cells............................ 97

Figure 6.4 Targeting micelles suppress CD31 expression in MDA-MB-231 tumours. .. 99

Figure 6.5 Targeting micelles induce anti-angiogenic effect in MDA-MB-231 tumours. ... 100

Figure 6.6 TPDC slows down MDA-MB-231 cells migration...................... 102

Figure 6.7 Migration index of TPDC-treated tumours shows significant inhibition of cell migration.. ... 102

Figure 6.8 Transwell insert migration study confirms that TPD and TPDC slow down tumour migration.. 103

Figure 6.9 qPCR analysis of tumour shows that TPDC-treated MDA-MB-231 tumours down-regulate the expression of migration genes. 104
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>Progesterone receptor</td>
</tr>
<tr>
<td>ER</td>
<td>Estrogen receptor</td>
</tr>
<tr>
<td>HER2</td>
<td>Epidermal growth factor receptor 2</td>
</tr>
<tr>
<td>TNBC</td>
<td>Triple negative breast cancers</td>
</tr>
<tr>
<td>MDR</td>
<td>Multi-drug resistance</td>
</tr>
<tr>
<td>TAs</td>
<td>Therapeutic agents</td>
</tr>
<tr>
<td>RME</td>
<td>Receptor-mediated endocytosis</td>
</tr>
<tr>
<td>P-gp</td>
<td>P-glycoproteins</td>
</tr>
<tr>
<td>vitamin E TPGS</td>
<td>D-α-tocopheryl polyethylene glycol succinate</td>
</tr>
<tr>
<td>CMC</td>
<td>Critical micelle concentration</td>
</tr>
<tr>
<td>PLGA</td>
<td>Poly(lactic-co-glycolic acid)</td>
</tr>
<tr>
<td>TPDC</td>
<td>Cetuximab-conjugated docetaxel-loaded vitamin E TPGS micelles</td>
</tr>
<tr>
<td>TPD</td>
<td>Docetaxel-loaded vitamin E TPGS micelles</td>
</tr>
<tr>
<td>TPM</td>
<td>Coumarin 6-loaded vitamin E TPGS micelles</td>
</tr>
<tr>
<td>TPMC</td>
<td>Cetuximab-conjugated coumarin 6-loaded vitamin E TPGS micelles</td>
</tr>
<tr>
<td>TPF</td>
<td>Did-loaded vitamin E TPGS micelles</td>
</tr>
<tr>
<td>TPFC</td>
<td>Cetuximab-conjugated did-loaded vitamin E TPGS micelles</td>
</tr>
<tr>
<td>TPMC</td>
<td>Cetuximab-conjugated coumarin 6-loaded vitamin E TPGS</td>
</tr>
<tr>
<td>F</td>
<td>Did dye</td>
</tr>
<tr>
<td>TP</td>
<td>TPGS micelles without drug</td>
</tr>
<tr>
<td>Dox</td>
<td>Taxotere®</td>
</tr>
<tr>
<td>pCR</td>
<td>Pathologic complete response</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>SRC</td>
<td>Proto-oncogene tyrosine-protein kinase src</td>
</tr>
<tr>
<td>MET</td>
<td>Met proto-oncogene, receptor tyrosine kinase</td>
</tr>
<tr>
<td>PARP1/2</td>
<td>Poly ADP ribose polymerase 1/2</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>RES</td>
<td>Reticuloendothelial system</td>
</tr>
<tr>
<td>EPR</td>
<td>Enhanced permeability and retention effect</td>
</tr>
<tr>
<td>NP</td>
<td>Polymeric nanoparticles</td>
</tr>
<tr>
<td>PLGA-PEG</td>
<td>Poly(d,l-lactic-co-glycolic acid)-block-poly(ethylene glycol)</td>
</tr>
</tbody>
</table>
PVA Poly(vinyl alcohol)
M-NP Mitaplatin nanoparticles
MAPK Mitogen-activated protein kinase
Akt Protein kinase b
c-kit Tyrosine-protein kinase kit
FAK Focal adhesion kinase
EGF Epidermal growth factor
TGF-α Transforming growth factor alpha
PI3K Phosphatidylinositol 3-kinase
PKC Protein kinase c
GPCRs G-protein-coupled receptors
NRG4 Neuregulin 4
KRAS GTPase KRas
FDA Food and drug administration
HLB Hydrophilic—lipophilic balance
CDI 1,10-carbonyldiimidazole
DMSO Dimethyl sulfoxide
DCM Dichloromethane
PBS Phosphate buffered saline
EDC N-(3-dimethylaminopropyl)-n-ethylcarbodiimide hydrochloride
NHS N-hydroxysuccinimide
TEA Triethylamine
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
EDTA Trypsin-ethylenediaminetetraacetic acid
PI Propidium iodide
FBS Fetal bovine serum
TPGS-CDI Imidazole carbamate intermediate
UP Ultrapure
MWCO Molecular weight cut-off
ATCC American type culture collection
DMEM Dulbecco’s modified eagle’s medium
RPMI Roswell park memorial institute
kcps Kilo counts per second
rpm Revolutions per minute
CO₂ Carbon dioxide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>FETEM</td>
<td>Field emission transmission electron microscope</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>CLSM</td>
<td>Confocal laser scanning microscopy</td>
</tr>
<tr>
<td>EPR</td>
<td>Enhance permeability and retention effect</td>
</tr>
<tr>
<td>PDI</td>
<td>Polydispersity</td>
</tr>
<tr>
<td>IC50</td>
<td>Drug concentration needed to kill 50% of the cells in a designated time period</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>HE</td>
<td>Hematoxylin and eosin stains</td>
</tr>
<tr>
<td>H2O2</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>CCNB1</td>
<td>G2/mitotic-specific cyclin-b1</td>
</tr>
<tr>
<td>CCNA2</td>
<td>Cyclin-A2</td>
</tr>
<tr>
<td>CDK2</td>
<td>Cyclin-dependent kinase 2</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>IL1β</td>
<td>Interleukin-1β</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth factor 1</td>
</tr>
<tr>
<td>TGFA</td>
<td>Transforming growth factor-alpha</td>
</tr>
<tr>
<td>TGFB1</td>
<td>Transforming growth factor beta 1</td>
</tr>
</tbody>
</table>