RESPONSE OF HUMAN BONE SYNTHETIC UNDER IMPACT LOADING USING EXPERIMENTAL METHOD

MOHD HAFEEZ BIN RUSLAN

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2009

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature: Name of supervisor: DR DAW THET THET MON Position: LECTURER Date:

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature: Name: MOHD HAFEEZ BIN RUSLAN ID Number: MA06094 Date:

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV

CHAPTER 1 INTRODUCTION

1.1	Overview	1
1.3	Problem Statement	2
1.3	Project Objectives	3
1.4	Project Scope	3
1.5	Organization of Thesis	3
1.6	Summary	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	5
2.2	Bone	6
2.3	Bone Synthetic	7
2.4	Impact Loading	8
2.5	Design of Experiment (DOE)	9
2.6	Previous Study of Bone Properties	9
2.7	Previous Study of Plastic and Metal Properties	11

CHAPTER 3 METHODOLOGY

3.1	Introduction	13
3.2	Flow chart diagram	14
3.3	Impact Loading Test	16
3.4	Specimen Preparation	17
3.4	Special Fixture	20
3.5	Experimental Work	23
3.6	DOE Analysis	25
3.7	Summary	25

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduct	Introduction	
4.2	Design of Experiment		27
4.3	Impact L	oading Test Experiment	29
4.4	Calculation	on of Dissipated Energy	30
4.5	Statistica	l Analysis	31
	4.5.1	Linear Model	31
		4.5.1.1 ANOVA	31
		4.5.1.2 Comparison between Prediction and Experiment	32
	4.5.2	Nonlinear Model	32
		4.5.2.1 ANOVA	33
		4.5.2.2 Normal Plot	33
		4.5.2.3 Comparison between Prediction and Experiment	34
		4.5.2.4 Regression Coefficient	35
		4.5.2.5 Surface Plot	36
4.6	Mathema	tical Model	37
4.7	Comparis	on between Theoretical and Experiment	38
4.8	Response	of Specimen After Impact Loading Test Experiment	39
4.9	Summary	,	42

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusions	43
5.2	Recommendations	
REFERENCES		46
APPENDICES		
А	Gantt chart FYP 1	48
В	Gantt chart FYP 2	49
С	Data from manual book	50
D	Response calculation	51

LIST OF TABLES

Table No	. Title	Page
4.1	Design of experiment by using STATISTICA	28
4.2	Experimental result	29
4.3	Experimental result with dissipated energy	30
4.4	ANOVA table for linear model	31
4.5	ANOVA table for nonlinear model	33
4.6	Regression table for nonlinear model	36
4.7	Comparison between theoretical and experiment	38
6.1	Data from manual book	50
6.2	Response calculation	51

LIST OF FIGURES

Figure No. Title		Page
1.1	General flowchart	2
2.1	Calcaneus cancellous bone microradiograph illustrating the heterogeneity in the degree of mineralization of different bsus	7
2.2	Illustration of impact loading	8
3.1	Flowchart for methodology of the project	14
3.2	The Zwick Roell impact pendulum tester	16
3.3	Bone synthetic specimen	17
3.4	Plastic specimen	18
3.5	Metal specimen	18
3.6	Bone specimen dimension in millimeter (mm)	19
3.7	Plastic specimen dimension in millimeter (mm)	19
3.8	Metal specimen dimension in millimeter (mm)	20
3.9	Special fixture for bone synthetic specimen(upper part 1)	21
3.10	Special fixture for bone synthetic specimen(lower part)	22
3.11	Special fixture for bone synthetic specimen(upper part 2)	22
3.12	Bone specimen set-up	23
3.13	Plastic specimen set-up	24
3.14	Metal specimen set-up	24
4.1	Comparison between prediction and experiment	32
4.2	Normal probability plot	34
4.3	Comparison between prediction and experiment	35
4.4	Surface plot	37
4.5	Response of bone specimen	39

4.6	Response of plastic specimen	40
4.7	Response of metal specimen	40
4.8	Bone synthetic specimen under optical microscope	41
4.9	Plastic specimen under optical microscope	41
6.1	Gantt chart FYP 1	48
6.2	Gantt chart FYP 2	49

LIST OF SYMBOLS

- *v*_o Initial velocity
- σ_m Maximum stress
- *T* Kinetic energy
- *U_m* Strain energy
- m Mass
- v Velocity

LIST OF ABBREVIATIONS

DOE	Design of experiment
RSM	Response surface methodology
Μ	Material
E	Pendulum energy
SS	Sum of square
р	p-value
F	F-distribution
L	Linear
Q	Quadratic

Q

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Bone is specialized tissue which, although apparently immobilized in a petrified state, has fundamental physiological functions. First, together with the intestine and kidney, it contributes to regulation calcemia. The mineral substance of bone is a calcium phosphate hydroxyapetite [Gary E. Wnek and Gary L. Bowlin, 2008]. The mechanical properties of the bone-implant interfaces as natural or synthetic are as important as their morphological and structural aspects. Mechanical testing of bone will help to assess the properties of bone.

Impact analysis is one of the Mechanical testing. Impact analysis is a technique that helps researchers to think through the full impacts of a proposed change. As such, it is a necessary part of the evaluation process for major decisions. It is very reliable to predict the damages that could occur [L. Jacques, 1993].

Design of experiment (DOE) is one of the methods to minimize possible errors during the experiment. Examples of DOE are Factorial Design, Taguchi and Response Surface Methodology (RSM). This project used Factorial Design as the design for the experiment based on the fact that number of factors less than 5, the factorial design is appropriate design to run the experiment systematically and for adequate analysis. The general procedure to run this project can be explained in the simple flowchart as in Figure 1.1.

Figure 1.1: General flowchart

1.2 PROBLEM STATEMENT

Commercial bone synthetic has been extensively used in curing human bone defect and injuries. However, its real strength to external load, particularly sudden load is unknown. The knowledge of such strength is useful to find out the bone instability in case of unexpected load, even in micro domain especially during bone grafting period.

1.3 PROJECT OBJECTIVE

The project objectives are:

- 1.3.1 To investigate the response of bone synthetic under impact load.
- 1.3.2 To determine the factor that influent response of the bone synthetic.
- 1.3.3 To derive a mathematical formula that explains response of bone synthetic subjected to impact load.

1.4 PROJECT SCOPE

The scopes of this project are:

- 1.4.1 Special fixture for bone synthetic specimen will be designed in Solidwork and fabricated using the laser machine.
- 1.4.2 Response of bone synthetic will be compared with that of plastic and metal
- 1.4.3 Experimental plan will be designed in Statistica
- 1.4.4 Impact experiment will be carried out on the Zwick Roell equipment according to Statistica design
- 1.4.5 Deformed specimens will be investigated with optical microscope.
- 1.4.6 Response curve will be developed based on a mathematical model

1.5 ORGANIZATION OF THESIS

This thesis consists of five chapters. Chapter 1 is the introduction of the project. Chapter 2 presents some related literature. Chapter 3 is the methodology of the project. Chapter 4 presents the result and discussion of the project. Chapter 5 is the conclusion and recommendation of the project.

ABSTRACT

In this report, a method of identifying the absorb energy of bone synthetic is introduced. The method that has been used is impact loading testing. This method provides the properties of bone synthetic in term of the energy that can be slimed in it when subjected to dynamic load. The objective of this project is to investigate the response of bone synthetic under impact load. Experimental design technique was applied in performing the test. 3^k full factorial design was used for DOE and DOE table was generated in STATISTICA. The Izod impact load was used to apply load on the specimens and the load range considered were 1 J, 2.75 J and 10.8 J. The additive materials, plastic and metal were included in DOE to identify the material effect on the impact response, so-called absorb energy. Experimental data were analyzed in STATISTICA to develop mathematical model. Deformed specimens were investigated under optical microscope. Statistical analysis shows that the non-linear model is more accurate to predict impact response of bone synthetic. Micrograph indicates that failure pattern of bone synthetic is clear to that of plastic.

ABSTRAK

Di dalam laporan ini, kaedah untuk mencari tenaga yang di serap oleh tulang tiruan telah di perkenalkan. Kaedah yang di gunakan ialah eksperimen bandul. Kaedah ini akan memberikan ciri-ciri tulang tiruan dalam bentuk tenaga yang di pindahkan ke bahan tersebut dalam beban yang bergerak. Objektif utama projek ini adalah untuk mengkaji ciri-ciri tulang tiruan menggunakan beban yang bergerak. Eksperimen ini di jalankan dengan menggunakan teknik reka eksperimen. 3^k reka eksperimen telah digunakan untuk mereka eksperimen dan daftar fakta telah di olah dalam STATISTICA perisian. Jenis eksperimen Izod telah digunakan sebagai tenaga yang di beri kepada bahan dan beban yang dipertimbangkan adalah 1 J, 2.75 J dan 10.8 J. Bahan-bahan tambahan seperti plastic dan besi telah di masukkan ke dalam daftar fakta reka eksperimen untuk mengenalpasti kesan bahan terhadap reaksi hentakan yang di panggil tenaga yang di serap. Data yang diperoleh dari eksperimen akan di analisis dalam STATISTICA perisian untuk membentuk formula. Bentuk bahan akan di kaji menggunakan optikal mikroskop. Statistik analisis menunjukkan bahawa model tidak datar lebih tepat untuk menjangkakan tindakbalas hentakan tulang tiruan. Graf mikro menunjukkan bahawa bentuk rekahan tulang tiruan sama dengan bentuk rekahan plastic

REFERENCES

Allan G. Bluman, *Elementary Statistic A step by Step Approach*, vol 6, pages 529-548

- Betz, Randal R., MD May 2002, *Limitations of Autograft and Allograft: New Synthetic Solutions*, Orthopedics Journal.
- Boulpaep, Emile L. Boron, and Walter F, 2005. *Medical physiology: A Cellular And Molecular Approach*, Philadelphia: Saunders. pp. p.1089–1091
- B. van Rietbergen, R. Huiskes, F. Eckstein, and P. Rueegsegger, 2003, *Trabecular Bone Tissue Strains in the Healthy and Osteoporotic Human Femur*
- Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ, 2000, Alendronate Increases Bone Strength By Increasing The Mean Degree Of Mineralization Of Bone Tissue In Osteoporotic Women Bone, 27:687–94.
- Choi, H. Y. and Chang F. K, 1992, A Model for Predicting Damage In Graphite/Epoxy Laminated Composite Resulting From Low-Velocity Impact, "J. Composite Matls", vol. 26, no. 14.
- D'Ambrosia, Robert D and MD, May 2002, Supplemental Introduction, "Scaffolds, Cells, and Signals: Advances in Synthetic Bone Graft Materials for Orthopedic Surgery", Orthopedics Journal.
- E. Panagiotopoulosa, V. Kostopoulosb, S. Tsantzalisb, A.P. Fortisc and A. Doulalasc, 2004, Impact energy absorption by specimens from the upper end of the human femur
- F. P. Beer, E. R. Johnston, JF, and J.T. Dewolf, 2006, *Mechanics of Materials*, 4th Ed., and McGraw Hill.
- Gary E. Wnek and Gary L. Bowlin, 2008, *Encyclopedia of Biomaterials and Biomedical* Engineering, Vol 2, pages 230
- Gupta et al., 2006, Proc. Natl. Acad. Sci. USA 103, 17741
- G. Gut and D. S´ Ladowski, 2007, Mechanical Properties of Bone Fixation Devices Prepared From a Human Allogenic Bone
- ISO Standard DIS 13802, 1995, *Plastics2 Pendulum Impact-Testing Machines2validation* of Charpy, Izod, And Tensile Impact-Testing Machines, available from the ISO secretariat AFNOR

Jacques L. goupy, 1993, Methods for Experimental Design, vol 12, pages 8

- Joseph D. Petruccelli, Balgobin Nandram, and Minghui Chen, 1999, *Applied Statistics for Engineers and Scientists*, vol 1, pages 631
- J.P Meyrueis, A. Sohier-Meyrueis, and M. Therin, October 1996, "*Etude Experimentale* D'une Ceramique Macrporeuse Biphaseen" Maltrise Orthopedique, pages 8-9
- Steele, D. Gentry, and Claud A. Bramblett 1988, *The Anatomy and Biology of the Human Skeleton*, Texas A&M University Press. p. 4.
- Tai et al, 2006 Nano Lett, USA 103, 17741
- T. A. Siewert, D. P. Vigliotti, L. B. Dirling, and C. N. McCowan, 1999, Performance Verification of Impact Machines for Testing Plastics, J. Res. Natl. Inst. Stand. Technol. 104, 557
- William F. Smith and Javad Hashemi, 2006, *Fundamental of Material Science and Enginering*, vol 4
- Yuehuei H. A, and Robert A Draughn, 2000, *Mechanical Testing of Bone and the Bone-Implant Interface*, pages 5
- Metals Handbook Ninth Edition, 1979, *Properties and Selection: Nonferrous Alloys and Pure Metals*, ASM International, Materials Park, Ohio, Vol. 2, p. 31.