EFFECT OF DOUBLE LAYER STENT TO FLOW PHENOMENA IN CEREBRAL ANEURYSM

MUHAMMAD AIZAT ZUHAIR
BIN MOHD AZLY

BACHELOR OF MECHANICAL ENGINEERING
UNIVERSITI MALAYSIA PAHANG
EFFECT OF DOUBLE LAYER STENT TO FLOW PHENOMENA IN CEREBRAL ANEURYSM

MUHAMMAD AIZAT ZUHAIR BIN MOHD AZLY

Thesis submitted in fulfilment of the requirements
for the award of the degree of
Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering
UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2009
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical.

Signature
Name of Supervisor : MR. MOHAMAD MAZWAN BIN MAHAT
Position
Date
STUDENT’S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : MUHAMMAD AIZAT ZUHAIR BIN MOHD AZLY
I.D Number : MA06088
Date :
CHAPTER 1: INTRODUCTION

1.1 Objectives 1
1.2 Scopes 1
1.3 Stent 1
1.4 Aneurysm 6
1.5 Cerebral Aneurysm 7
1.6 Installation Method 11

CHAPTER 2: FLOW BEHAVIOR IN ANEURYSM

2.1 Flow Behavior in Aneurysm 13
2.2 Flow Behavior in Cerebral Aneurysm 15
2.3 Flows in Stented Aneurysm 20
CHAPTER 3 : METHODOLOGY

3.1 Geometry of Model 24
3.2 Governing Equation of Blood Flow 26
3.3 Assumptions, Parameter and Boundary Conditions 28
3.4 Boundary Condition
 3.4.1 Initial Velocity 28
 3.4.2 Peak Pressure Systole and Diastole 29

CHAPTER 4 : RESULT AND DISCUSSION

4.1 Introduction 31
4.2 Velocity Profile 32
4.3 Pressure Profile 42
4.4 Stent Properties 51

CHAPTER 5 : CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions 54
5.2 Recommendations 55

REFERENCES 56
APPENDICES 58
LIST OF TABLE

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Dimension and Material Used for a Stent Nowadays</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Types of Aneurysms</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Types of Stent</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameter Used in Simulation</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Min Velocity and Velocity Bandwidth for All Type of Stent</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of Min Velocity for All Stent Types</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Peak Pressure and Pressure Bandwidth for All Stent Type</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>Data for Two Point in Streamline</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Data for Surface Area and Volume for Different Stent</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Drug-Eluting Stent</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Graft Stent</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Area of Cerebral Aneurysm</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Stent Installation</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Geometrical Evolution Contour Due To the Young’s Modulus Elasticity I</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Geometrical Evolution Contour Due To the Young’s Modulus Elasticity II</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Circulation in Literal Aneurysm</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Flow Pattern According Different Velocity Reduction and Laminar Flow</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Complex Flow Structures Driven by Orifice Flow</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Geometry Model of Aneurysm</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Geometry Model of Stent</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Geometry Model of Stented Aneurysm</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Initial Condition</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Velocity Condition</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>Pressure Condition</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Velocity Profile for Non-Stented Aneurysm Region</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Velocity Profile for Stented Aneurysm for Stent Type 1</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Velocity Profile for Stented Aneurysm for Stent Type 2</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Velocity Profile for Stented Aneurysm for Stent Type 3</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>Percentage Velocity for 3 Types of Stent</td>
<td>38</td>
</tr>
</tbody>
</table>
4.6 Velocity Bandwidth for Each Types of Stent

4.7 Velocity Streamlines
 a) Non-Stented
 b) Type 1
 c) Type 2
 d) Type 3

4.8 Pressure Distribution for Non-Stented Aneurysm

4.9 Pressure Distribution for Stented Aneurysm for Stent Type 1

4.10 Pressure Distribution for Stented Aneurysm for Stent Type 2

4.11 Pressure Distribution for Stented Aneurysm for Stent Type 3

4.12 Correlation of Peak Pressure

4.13 Pressure Contour for
 a) Non-Stented
 b) Type 1
 c) Type 2
 d) Type 3

4.14 Surface Area for Different Type of Stent

4.15 Volume for Different Type of Stent
LIST OF SYMBOLS

u_i : velocity in the i-th direction

P : pressure

f_i : body force

ρ : density

μ_i : viscosity

δ_{ij} : Kronocker delta
LIST OF ABBREVIATIONS

CAD : Computer Aided Design

CAE : Computer Aided Engineering

CFD : Computational Fluid Dynamics

CSS : Computational Solid Stress

LBM : Lattice-Boltzmann Method

POBA : Plain Old Balloon Angioplasty

SAT : Sub-Acute Thrombosis

WSS : Wall shear stress

YME : Young’s Modulus Elasticity