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Abstract 

This paper focuses on the modelling and control of a three-link lower limb exoskeleton for gait rehabilitation. The exoskeleton 
that is restricted to the sagittal plane is modelled together with a human lower limb model. In this case study, a harmonic 
disturbance is excited at the joints of the exoskeleton whilst it is carrying out a joint space trajectory tracking. The disturbance is 
introduced to examine the compensating efficacy of the proposed controller. A particle swarm optimised active force control 
strategy is proposed to augment the disturbance regulation of a conventional proportional-derivative (PD) control law. The 
simulation study suggests that the proposed control approach mitigates well the disturbance effect whilst maintaining its tracking 
performance which is seemingly in stark contrast with its traditional PD counterpart.  
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1. Introduction 

Approximately 8% of Malaysia's population is well over 60 years old.1,2 It has also been reported in the 
Malaysian Ministry of Health’s annual report 2011 that about 11% and 7.2% of children aged between 0 to 18 years 
were discovered with physical and cerebral palsy disabilities, respectively.2,3 The report further opines that there is 
an average of threefold increase in the number of stroke patients in addition to 1.2 million new diabetic cases 
recorded per annum. More often than not, gait disorders affect the abovementioned percentile.4 Gait is essentially 
the capability of a person in keeping balance and assume the upright position as well as one’s ability in starting and 
maintaining rhythmic stepping.5 This form of disorder may originate from cerebellar disease, stroke, neuromuscular 
disease, cardiac disease, cognitive impairment, spinal or brain injury amongst others.6,7

Due to the growing of ageing society worldwide aside from other contributing factors, the requirement for such 
rehabilitation services is on the rise.1–3,6,7 Traditional rehabilitation therapy often requires the support of at least two 
physical therapists, nevertheless, this form of therapy is deemed too laborious to the therapist as well as cost 
demanding.8 This scenario has led the research community as a whole to mitigate the shortcomings of traditional 
rehabilitation therapy in addition to the increasing demand for gait rehabilitation through robotics. The control 
strategies that have been reported in the literature may be demarcated into four main classes, namely, bio-signal 
based control, position tracking control, force and impedance control as well as adaptive control.9  

It is evident from the literature that the impaired limb’s mobility may be enhanced over continuous and repetitive 
training.10,11 This method of training is non-trivial in particular the early phase of rehabilitation through which 
passive mode is essential. This form of treatment may be accomplished through positional or joint based trajectory 
tracking control. This study intends to investigate the tracking performance of a simple yet robust control scheme 
viz. a hybrid proportional-derivative (PD) particle swarm optimised active force control (PSOAFC) of a three DOF 
lower limb exoskeleton system subjected to a form of disturbance. The system is aimed to rehabilitate the 
flexion/extension of the hip, knee, and ankle, respectively. The performance of the proposed control architecture 
shall then be compared to a standard PD controller by considering the same operating conditions of the former. 

2. Lower Limb Dynamics 

Fig. 1. Three link manipulator model resembling human lower limb (After12) 
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The lower limb dynamics of the human limb and exoskeleton are modelled as rigid links joined by joints (bones) 
as depicted in Fig. 1. The model is restricted to the sagittal plane whilst the human-machine interaction is assumed 
to be seamless and free from frictional elements. In Figure 1 the subscripts 1, 2 and 3 illustrates the parameters of 
the first link (thigh), second link (crus/shank) and third link (foot) respectively, as well as the position of the hip, 
knee and ankle joints respectively. L is the length segments of the limb; Lc is the length segments of the limb about 
its centroidal axis and  is the angular position of the links. The Euler-Lagrange formulation is used to derive the 

governing equations for the nonlinear dynamic system as below13  
       

( ) ( , )= + + ( ) + dD C G   (0)  

where  is the actuated torque vector, D is the 3 × 3 inertia matrix of the system, C is the centripetal and Coriolis 
torque vector, G is the gravitational torque vector, whilst d is the external disturbance torque vector. In the study, 
the mass, m and the mass moment of inertia, I of the exoskeleton as well as the limbs are coupled together, and the 
gravitational constant considered is 9.81 m/s2. The human lower limb parameters were obtained through the 
anthropometric parameter of human segments.12 The total mass is taken as 56.7 kg. Other relevant parameters are 
listed in section 5. 

3. Control Architecture 

The thesis of AFC was initially formulated by Hewit and Burdess.14 Mailah et al. have extended the efficacy of 
the control law through integrating intelligent methods in approximating the inertial matrix of the dynamic system 
that in turn triggers the disturbance rejection response of the controller.15–21 Moreover, the robustness of the method 
has been demonstrated in a number of different applications both numerically as well as experimentally.14-21 A 
schematic of the PSOAFC scheme with the PD component employed to the exoskeleton is shown in Fig. 2.  

Fig. 2.  PD with PSOAFC scheme for the control of the lower limb exoskeleton
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The torque generated is driven by the conventional PD control law; that may be expressed as17   

d d( ) ( )P Dτ θ θ θ θ= − + −     (2) 

where, dθ and θ  are the desired and current angular positions, respectively, dθ and θ  are the derivative (angular 
velocities) of the aforementioned parameters, respectively. P and D are the derivative and proportional gains, 
respectively. In this study, the aforementioned gains were properly tuned heuristically. In order to remove the actual 
disturbances d, the estimated disturbance torque d has to be computed and is expressed via  

dτ τ θ∗ = − IN    (3) 

where IN is the approximated inertial matrix, θ is the measured acceleration signal, whilst  is the measured 
applied control torque. IN may be represented through  

[ ] [ ]=IN D   (4) 

where only the diagonal terms of D are considered. The off-diagonal matrix terms may be ignored.14 The 
acceleration, as well as the actuated torque of the lower limbs,  were also assumed to be perfectly modelled (noise 
are ignored)  in the study. Nonetheless, it is important at this juncture to note that effective disturbance 
compensation effect of the AFC loop is only triggered if a judicious estimated inertia matrix is attained. In this 
study, the acquisition of the estimated inertial matrix is obtained through particle swarm optimisation (PSO).  
       PSO is a robust stochastic optimisation technique inspired by the behaviour of a bird flock by Kennedy and 
Eberhart.22 PSO has been employed over a wide range of applications, primarily due to its robustness and its limited 
number of parameters adjustments.23-27 Each particle in a swarm will include the position (s) as well as its velocity 
(v) of the particles.  

1 1k k k
i i is s v+ += +                        (5) 

( ) ( )1
1 1 2 2

k k k k
i i i i i iv v c r pbest s c r gbest s+ = + − + −  (6) 

Referring to (5) and (6), 1k
is + and 1k

iv + are the next particle position and velocity whilst k
iv and k

is  are the particle 

i’s velocity and position at the k-th generation. 1r  and 2r  are random numbers to induce the stochastic nature of the 

particles, whilst the cognitive and social coefficients viz. 1c and 2c that influences the velocity of the particles are 
both taken as 1.42 in this study. The personal best (pbest) is the best solution found by each particle in a swarm 
whilst the global best (gbest) is the best solution amongst the pbest. The gbest and pbest position updates the 
velocity of the particle through (6). There are various types of dynamic adjustment strategies for the inertia weight, 
however, in this study the linearly decreasing inertia weight,  is utilised 

max min
max

max

 = *k
k

−
−  (7) 

where the maximum and minimum value of the inertia weight i.e. max  and min  are selected as 0.9 and 0.4 
respectively as it has been reported in the literature that the adopted values are able to provide excellent results for a 
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myriad of real world applications. k and kmax are the particle at k-th generation and its maximum generation, 
respectively. The performance index employed in this study is the minimisation of the sum of the root mean square 
error (RMSE) in which PSO is implemented to judiciously approximate a set of suitable IN value governed by the 
track error information. 

4. Simulation   

The simulation study was performed by utilising MATLAB and Simulink software packages. The simulation 
parameters employed in the study are:  

Lower limb parameters (human combined with exoskeleton): 

Limb lengths: L1 = 0.314 m, L2 = 0.425 m, L3=0.425 m; 
Centre of mass:  
Lc1 = 0.1360 m, Lc2 = 0.1840 m, Lc3= 0.0244.m; 
Limb masses: m1 = 5.67 kg, m2 = 2.64 kg, m3 = 0.82 kg; 
Mass moment of inertia: 
I1 = 0.0583 kg.m2, I2 = 0.0434 kg.m2, I3=0.028 kg.m2; 

Controller parameters: 
Classical PD 
The proportional (P) and derivative (D) gains:  
P1 = 4 000, D1 = 200;  
P2 = 1 000, D2 = 100;  
P3 = 500, D3 = 1.5;  
Proposed PD-PSOAFC 
The controller gains employed in the PD-PSOAFC are the same as the classical PD 
PSO parameters: 
The diagonal elements of estimated inertia matrix range:  

0  IN1 0.5 kg.m2  0  IN2 0.05 kg.m2   0  IN3 0.005 kg.m2 

Swarm size: 20 
Number of iteration: 200 
Fitness function: 

2

1

1 N

i

RMSE e
N =

=  (8) 

The lower limb model is prescribed to accomplish a joint space trajectory tracking of a predefined maximum range 
of motion for 10 seconds at each joint i.e. hip, knee and ankle at 72.5 , 62.5 , and 32.5  respectively13.   

5. Results and Discussion 

To ensure the suitable IN values are attained, successive trials were executed by the PSO algorithm in 
minimising the fitness function defined.  The swarm size was varied from 5 to 20 with an accrual of 5 particles, 
whilst the number of iteration was increased from 50 to 200 with an increase of 50 iterations for each swarm size. 
The optimised values acquired for IN1, IN2 and IN3 are 0.1512 kg.m2, 0.0034 kg.m2 and 0.0029 kg.m2 respectively. 
Fig. 3 illustrates the convergence rate of the aforementioned optimised parameters.  
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Fig. 3.  The estimated inertial parameters of the respective actuated joints by the PSO algorithm. 

Figs. 4 (a) to 4 (c) depict the trajectory tracking performance of both the traditional PD as well as PD-
PSOAFC algorithms upon the excitation of a harmonic disturbance with an amplitude of 100 N.m. and a frequency 
of 50 rad/sec applied to each joint respectively (hip, knee, and ankle).  Table 1 lists the root mean square (RMS) 
tracking performance error of individual joint with and without the presence of the aforementioned form of 
disturbance. 

It is apparent that from Table 1, the accumulated RMS error of the PD-PSOAFC is 2.86 mrad whereas the 
PD scheme acquired an accumulated RMS error of 8.051 mrad.  It is also noticeable from Table 1 that the respective 
tracking error of the ankle and knee joints of the latter control scheme is more superior as compared to the former. 
However, it is worth to note that the error is somewhat allowable in view of the actual trajectory magnitude. Figs. 4 
(a) to 4 (c) depicts the performance of the both control scheme upon the introduction of a harmonic disturbance on 
the respective joints. It is evident that the PSOAFC-based scheme performs reasonably well in regulating the 
disturbance whilst preserving satisfactory tracking performance in comparison to the classical control law. The 
accumulated RMS error by the proposed scheme was found to be 2.59 mrad, whilst the RMS error sum of the PD 
scheme was found to be 191.783 mrad. Based on the simulation study presented, it is without doubt that the 
proposed control scheme is relatively robust. 

Table 1. Trajectory performance summary.

Hip joint, θ
1
 error

RMS
 (mrad) Knee  joint, θ

2
 error

RMS
 (mrad) Ankle joint, θ

3
 error

RMS
 (mrad)

Disturbance Type PD PD-PSOAFC PD PD-PSOAFC PD PD-PSOAFC

None 6.942 0.137 0.880 1.729 0.229 0.994

Harmonic 40.872 0.142 34.226 1.731 116.685 0.717
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Fig. 4 Trajectory tracking with the inclusion of a harmonic disturbance at the (a) hip joint; (b) knee joint and (c) ankle joint 

6. Conclusions 

The simulation study provided considerable insight on the effectiveness of the proposed control scheme i.e. PD-
PSOAFC in regulating disturbances as compared to the classical PD control scheme. Although the PD control 
scheme is able to deliver acceptable tracking performance, however, it was demonstrated that upon the introduction 
of disturbance, its efficacy deteriorates. The superior joint tracking performance accomplished by the PD-PSOAFC, 
further suggest its relevance in the initial phase of gait therapy. The study could be further extended by considering 
different types of disturbances as well as other operating conditions.  
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