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 Wildfires increased hillslopes erosion and surface runoff. The effect increased by 

several magnitudes when subjected to high intensity of precipitation during prolonged 

rainy seasons. The changes in geotechnical properties of soils affected by wildfire may 
jeopardize the stability of the slopes. In this study, soil specimens containing thermal 

sensitive nesosilicate polymorphs undergone wildfire and non-exposed to fire were 

collected and tested in order to understand the changes to the geotechnical properties 
and water retention behavior. Similarly, the changes to the slope were monitored up to a 

period of 270 days. The suction-water content soil water characteristic curves (SWCCs) 

were established for the soils using a chilled mirror dew-point hygrometer. In addition, 
the changes in the mineral compositions were also evaluated using X-ray diffraction 

analysis. Test results indicated that, the plasticity characteristics of the soils decreased 

after being burned. Concurrent to the decreased in the plasticity, the suction-water 
content established for soil exposed to wildfire was found to be slightly lower than that 

of unburned soils for suction lower than 1.5 MPa. Nesosilicates was found to be 

completely altered and affected by fire, whereas quartz minerals were found to be 
unaffected. Erosion occurred on-site was found to be attributed to reduction in the 

plasticity characteristics and changes to the overall mineral structure of the soil. 

Furthermore, the removal of vegetation as affected by fire reduced the slope surface 
cover and caused erosion of the slope to occur.  

 

INTRODUCTION 

 

Global temperature has increased 0.6°C in the past three decades, but it increased to 0.8°C in the past 

century (Hansen et al., 2006). Global temperature will warm up by 1.5°C to 4.5°C if the carbon dioxide 

concentration reaches the predicted level of 600 parts per million by the year 2050 (Masih, 2010; Solomon et 

al., 2009). As anthropogenic warming continues, the characteristics of droughts and heat waves will also be 

altered (Tangang et al., 2012). Furthermore, due to climate change, the effect of global warming has become 

more prominent. The Malaysian Meteorological Department recorded an increase in the average temperature to 

about 0.5°C to 1.3°C, when comparing the long term means obtained for 1961-1990 and 1998-2007. Based on 

these records, it is anticipated that the projected temperature increase in the next 30 years is between 1.0°C to 

3.5°C. 

Prolonged heat wave such as El Nino effect lead to a much drier forest and make fire ignition occur easier 

(Wotton and Flannigan, 1993). The relationship between meteorological conditions and fire occurrence is well 

established. Forest fires tend to be more severe when temperature is high and air humidity and fuel moisture are 

low (Pinol et al., 1998). In Malaysia for instance, approximately 2,940 forest, bush fire outbreaks were recorded 
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within 10 days during dry season in April 2016 (Bernama, 2016). This event brought about severe depletion of 

vegetation (i.e. slope natural cover). Vegetation and trees on slope induced soil suction and absorb excess water 

during rainfall (Rees and Ali, 2006; 2012). A study conducted by Rees and Ali (2012) noted that, the presence 

of vegetation increased slope stability by about 8%. Thus, in absence of vegetation, direct contact of 

precipitation on burned or dried slopes lead to an increased in hillslopes erosion and surface runoff. Moreover, 

the amount of precipitation is expected to be greater and longer during the Monsoon season between August and 

November.  These two combination proves to be ideal yet devastating on the disintegration of slopes. 

Wildfires has led to the increase in landscape's vulnerability to extreme flooding and soil erosion (Stoof et 

al., 2010).  Fire is classified into three criteria according to its severity depending upon burned area affected 

(DeBano, 1999). During wildfires, maximum ground temperatures are typically in the range of 200°C to 300°C. 

In heavy fuels like slash, soil surface maximum temperatures are usually around 500°C to 700°C, but 

instantaneous temperatures in excess of 1500°C can also occur (Neary et al., 1999). According to Beyers et al. 

(2008), temperature in the forest floor can easily reach 600°C or higher during burning.  

Although contradictory, the effect of fire on soil properties has been reported in the literature (see Stoof et 

al., 2010; Bento-Gonçalves et al., 2012). In essence, fire and associated soil heating can destroy soil structure, 

affecting the physical, chemical, biological and mineralogical soil properties in the surface horizons of a soil 

(Certini, 2005; DeBano, 1999; Solera et al., 2011). Fires are also known to alter soil properties that influence 

soil-water retention (Stoof et al., 2010). Typically, soils exposed to fire developed lower water retention 

characteristics and higher water repellency. Others reported that burned soils have an increase in the water 

content (Mallik et al. 1984), whereas Are et al. (2009) reported that water content of burned soil remained 

unchanged. The differences in the findings of these studies could be due to the severity, duration and 

temperature of the fire. The magnitude of change occurring during a fire depends heavily upon the level of fire 

severity, combustion and heat transfer, magnitude and depth of soil heating, proximity of the soil property to the 

soil surface, and the threshold temperatures at which the different soil properties change (Beyers et al., 2008). In 

addition, these differences could also attributed to the changes in the physico-chemical and mineralogical 

properties of the soils.    

Most soil minerals are stable and unaffected at temperature below 100°C (Abu-Zreig, 2001). Alterations of 

the mineralogical characteristics would inevitably lead to a change in the water retention behavior.  For instance, 

clay soils having different minerals and physico-chemical properties show different water retention behaviors 

when subjected to similar drying conditions (Tripathy et al., 2014a). Similarly, changes in clay mineral structure 

show non-plastic behavior at temperature beyond 400°C, indicating that water retention ability of the soils were 

completely deteriorated at higher temperatures due to changes in the mineralogical characteristics (Grim, 1968; 

Tan et al., 2004). Apparently, some soils contained temperature sensitive nesosilicate minerals. Nesosilicates are 

silica-alumina oxide having the chemical formula of Al2SiO5 (Anthony et al., 1997). The occurrence of 

nesosilicates in Malaysia was first reported by MacDonald (1968). Nesosilicates may exist in three different 

phases (i.e. different mineralogical structure) depending upon surrounding temperature and pressure (Althaus, 

1967; Bohlen et al., 1991; Whitney, 2002) with mullite as the most stable form (Bradt, 2008).  Thus, in the 

event of wildfire, the changes in the mineral structure of nesosilicates are expected to occur given that wildfire 

could have a temperature exceeding 400°C.  It is anticipated that, these changes would resulted in increased soil 

erosion problems during heavy rainfall. 

In general, soil surface above the groundwater table are often unsaturated (Fredlund and Rahardjo, 1993). 

Soil suction plays an important role in determining the soil behavior within this region. The behavior of 

unsaturated soil is strongly dependent on the physical, chemical and mineralogical properties (Fredlund and 

Rahardjo, 1993; Lu and Likos, 2004; Mitchell and Soga 2005). Determination of soil-water characteristic curve 

(SWCC) is prerequisite in the understanding of unsaturated soil behavior functions. Similarly, the SWCCs of 

soils exposed to fire are often established to determine the changes occurred to the soil engineering behaviors 

(Stoof et al., 2010). The suction-water content during wetting and drying are commonly established in the 

laboratory using axis-translation, osmotic and vapor equilibrium techniques (Fredlund and Rahardjo, 1993; 

Fleureau et al., 1993; Ng and Menzies, 2007; Delage et al., 2008; Tripathy et al., 2014a; Mohd Tadza et al., 

2016b). In recent years, the development of chilled-mirror dew-point hygrometer has gained widespread 

acceptance as a fast and reliable method for establishing suction-water content SWCCs (ASTM D6836-02, 

2003; Rorke et al., 2016; Mohd Yuhyi et al., 2016a). To date, the water retention characteristics of soil 

containing nesosilicate polymorphs and the effect of fire remains unexplored. Additionally, the changes in the 

geotechnical properties and water retention behavior of such soil has not been investigated and well understood. 

This paper aims to provide insight within this context. The work in this article consists of laboratory 

experiments that were conducted to study the effect of wildfire on the properties and the mineralogical changes 

of slope containing nesosilicate minerals. 
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Experimental Approach: 

Sampling of soil samples were carried out at a site affected by wildfire. Burned and unburned soil sampling 

was obtained from natural slope at Jalan Gambang in Kuantan (N 3º 42’ 45.124’’, E 103º 7’ 44.221’’). The 

slope is located in the Eastern Belt where andalusite deposits can abundantly be found. According to Hutchison 

(1983), andalusite deposits in the area extend approximately 50 km radius from Gambang to Sungai Lembing. 

The slope considered in this study was 315 m in length and a portion of the slope (about 131 m) was affected by 

wildfire. Burned samples were obtained directly from the fire affected area, whereas unburned samples were 

collected on unaffected area about 1.8 m from the burned soils. Using a hand auger, disturbed soil samples were 

collected at burned site to a depth of about 20 cm below the ground surface. The samples were then crushed and 

sieved passing 425 µm before being placed in sealed bags prior to being tested in the laboratory. The burned site 

was then monitored and observed for any changes up to a period of 270 days. 

The geotechnical properties namely, specific gravity, liquid and plastic limits burned and unburned soils 

were determined according to BS1377 standard laboratory procedures. Determination of the shrinkage limit and 

organic matter of the soils were carried out following ASTM D4943–08 and ASTM D4829-11, respectively. An 

X-ray diffraction (XRD) device was employed to investigate the changes in the mineralogical compositions of 

the soil samples. A Rigaku Miniflex II was employed for this propose. Additionally, the changes in the specific 

surface area of the soil samples were determined using an Accelerated Surface Analyzer ASAP 2020 from 

Micromeritics.  

In establishing the suction-water content relationships, a chilled-mirror dew-point hygrometer was used. A 

Decagon WP4C chilled-mirror dew-point hygrometer was used for this purpose. Soil-water mixtures were 

initially prepared by mixing soil powder specimens with deionized water at increments of about 2%. The soil-

water mixtures were then allowed to cure for 7 days before being tested. All suction measurements in this study 

were carried out at 25ºC using the “precise mode”. During measurements, the specimen holder was filled with 

approximately 5 g of soil-water mixtures, less than half of the volume (6 cm3). This step was taken to minimize 

contamination to the testing chamber. Initially, all specimens were thermally pre-conditioned to meet the device 

inner block’s temperature before being tested (Tripathy and Rees, 2013; Mohd Yuhyi et al., 2016b).   

 

RESULTS AND DISCUSSION 

 

The changes on the wildfire affected site in this study is presented in Figure 1. Upon inspection of the site, 

it was observed that the slope was completely charred. The fire had destroyed most of the vegetation on the 

slope. The surface of the slope was grey to black in color and covered with ash derived from burning of the 

vegetation. Samples excavated from the burned area revealed that the depth of charred soil was extended to 

about 7 cm from the surface. The change in the color along with depth was noticeable (i.e. greyish black to 

brown). It could be attributed to charred soil or penetration of ash into the soil mass (Stoof et al., 2010).  

 

 
Fig. 1: Changes on the slope affected by wildfire in this study, a) after wildfire (i.e. 0 days), b) after 32 days, c) 

after 270 days  

 

Another image of the slope at the same location was taken after 32 days (see Fig. 1b). Heavy precipitation 

occurred the night before the image was captured. Thinning of the slope was observed and the top part of the 

slope (i.e. blackened layer) was washed out. The eroded material was found to be deposited at the toe of the 

slope. The amount of eroded material was not measured in this study, thus the magnitude of erosion was 

unknown. Surprisingly, after 32 days, some sign of growth vegetation was observed. Figure 1c shows the image 

of the same location after a period of 270 days. Increased in number of plant growth were observed in the slope. 

Interestingly, rampant growth of vegetation was more prominent on the toe of the slope (i.e. deposition of 

eroded material). In response to the increase and availability of organic carbon, lusher growth of vegetation was 

observed. Similar observation was made on the application of charred material on growth of plants (Atkinson et 

al., 2010)   

The geotechnical and mineralogical properties of the burned and unburned soils used in this study are 

presented in Table 1. Some differences were noted between both unburned and burned soils. Decrease in the 

specific gravity, liquid limit, surface area and free swell parameters were observed. The test results were found 

to be in good agreement with the test results reported in the literature (Abu-Zreig, 2001; Tan et al. 2004; Young-
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Suk Song, 2007). In contrast, the fire increased the plastic limit, shrinkage limit and organic content of the 

burned soil.  Both increased in the plastic and shrinkage limit was noted may be due to infiltration of ash in the 

soil after being burned (Stoof et al., 2010). Carbon or ash content due to burned material may absorbed some 

water thus, lead to the increase in the plastic and shrinkage limit of the soil (Malusis et al., 2009; Stoof et al., 

2010).  

 
Table 1: Geotechnical and mineralogical properties of unburned and burned soils in this study. 

Geotechnical properties 
 
Unburned 

 
Burned 

Specific gravity, Gs 2.65 2.58 

Liquid limit, wl (%) 57 55 

Plastic limit, wp (%) 30 37 
Shrinkage limit, ws (%) 22 24 

Surface area, S  (m2/g) 20.6 11.9 

Organic content (%) 0.36 0.51 
Free swell (%)  5.4 4.6 

Color 

 
Mineralogical properties (%) 

Brown 

 

Greyish black 

 

Kyanite - 78.3 

Andalusite 78.6 - 

Quartz 21.4 21.7 

 

The mineral composition of both soil were found to be comparable although different. Comparable amounts 

of nesosilicates and other minerals were observed in both burned and unburned soil samples. Remarkably, 

comparison of XRD test results showed that, initially unburned soil samples predominantly consists of 

andalusite. However, mineralogical structure after exposed to wildfire was completely altered. In this case, 

rather than andalusite, the burned soil sample consists mainly of kyanite. Due to temperature sensitive in nature 

of nesosilicates, it is expected that the change in the mineralogical composition would occur. Generally, kyanite 

is stable in low temperature and low pressure environment. Increasing temperature would lead to the 

transformation of kyanite to andalusite and further change to silimanite (Whitney, 2002). At temperature 

exceeding 1100°C kyanite decomposed into mullite (Speyer, 1993). The findings of this study was found to be 

similar to that of Whitney (2002), where formation of andalusite to kyanite occurred in Turkish geological 

formation. Post wildfire revealed that all andalusite minerals in unburned soil sample were converted to kyanite 

minerals. Interestingly, it was noted that the fire did not affect the nesosilicates into its most stable form (i.e. 

mullite). Referring to Table 1, traces of quartz minerals were also present in both soils. In this study, fire was 

found to have no effect on this type of minerals.  

Figure 2 shows the water retention curves for both soils. Good agreements were noted between water 

retention behavior of the soil for burned and unburned conditions at measured suction of 2 to 10 MPa.  At 

suction lower than 1.5 MPa, however it was noted that the water contents of the burned soil was lower than the 

unburned counterpart. At higher suctions, the surface area plays a vital role in determining the water retention 

behavior of soils (Santamarina et al., 2002; Tripathy et al., 2014a). On the other hand, at lower suctions the 

physico-chemical forces are more dominant in governing the water retention behavior of soils (Tripathy et al., 

2004; Tripathy et al., 2014b). Concurrent with the decrease in surface area, the swelling potential, liquid limit 

and water retention of burned soil was found to be lower than the unburned soil (see Table 1 and Fig. 2). The 

differences in water retention behaviors of burned and unburned soil samples could also attributed to the change 

in the mineralogical characteristics of the soil.  

 
Fig. 2: Water retention behavior of burned and unburned soil in this study. 
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Based on the water retention curves, clearly that at low suction (i.e. high water content), the ability of the 

burned soil to absorbed water was limited. From engineering perspectives, a decrease in the plasticity 

characteristics and water retention behavior would lead to reduction in the shear strength (i.e. loss of cohesion) 

(Yilmaz, 2011; McCartney et al., 2014). Shear strength is a crucial parameter which governs the ability of soil 

to remain stable under shear stress. During prolonged or heavy rainfall, the critical shear stress increased with 

the increase in water flow on the burned slope and promotes erosion. Coupled with the absence of vegetation, 

erosion of the slope became more severe, explaining the reason for eroded material deposition at the slope’s toe 

(see Fig. 1b). Changes to the geotechnical properties due to fire should be taken into consideration for the design 

of the slope in order to maintain the long-term stability and integrity of the slope. The wildfire temperature was 

not measured and could not be precisely determined in this study. It was speculated that the temperature of the 

fire was within 200 to 800°C given that kyanite and andalusite are generally formed within this range of 

temperatures Hutchison (1971). Similarly, this range of temperature would not affect the mineralogical changes 

of quartz minerals (Liu et al., 2016). 

 

Conclusion: 

The effect of wildfire on slope containing sensitive nesosilicates were evaluated. Based on the findings of 

this study, the following conclusions were drawn.   

i. Wildfire affected the geotechnical properties of the soil. Basically, wildfire reduced the specific 

gravity, liquid limit, surface area and free swell parameters in this study. However increased in other parameters 

such as the plastic limit, shrinkage limit and organic content of the soil studied were noted. Ash content slightly 

increase the plasticity and shrinkage limits of the burned soil. 

ii. A complete change in the mineralogical characteristics of nesosilicates was observed. Andalusite 

minerals in this study were converted to Kyanite after exposed to wildfire. Quartz minerals on the other hand, 

was found to be unaffected by the fire. 

iii. Similar water retention curves were obtained for both soils at higher suctions, however at suctions 

lower than 1.5 MPa, a much lower water retention characteristic was observed for burned soil. Concurrent with 

the decrease in surface area and the change in the mineral compositions, the water contents of burned soil was 

found to be limited. The reduction in the plasticity characteristics and water retention behavior may led to 

decrease in the shear strength due to loss of cohesion. This reduction resulted in soil erosion of the slope.  

iv. Slope erosion was observed and top soil and ash were washed along with runoff during heavy rainfall. 

The eroded material deposited at the slope’s toe. Lack of vegetation to induced suction in soil contributed to the 

erosion of the slope. First sight of vegetation was observed after a period of 32 days. Increased in the amount of 

ash or carbon content in the eroded material led to a much lusher growth of vegetation after a period of 270 

days. 

v. The changes to the overall geotechnical properties should be taken into consideration in the design of 

fire affected slopes to ensure long-term stability of the slopes. 

vi. The wildfire in this study could have occurred at a temperature of about 200 to 800°C, given that 

kyanite and andalusite are commonly formed within this range of temperatures.  
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