Reforming of glycerol for hydrogen production over Ni based catalysts: Effect of support type

Nur Nabillah Mohd Arifa, Norazimah Haruna, Nursofia Mohd Yunusa, Dai-Viet N. Voa, Mohammad Tazli Azizanb, and Sumaiya Zainal Abidinc

aFaculty of Chemical Engineering & Natural Resources, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia; bDepartment of Chemical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; cCentre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Gambang, Pahang, Malaysia

ABSTRACT
This current work focuses on hydrogen production that is a component in syngas by glycerol dry reforming over 15% nickel (Ni) loading supported on different oxides, namely CaO, ZrO2, and La2O3. The screening process was conducted in a fixed-bed reactor at 700°C under atmospheric pressure. It was found that 15% Ni/CaO showed the best performance in screening studies. The effect of temperature and the carbon to glycerol ratio (CGR) was then analyzed for this catalyst. From the analysis, it was seen that 15% Ni/CaO has its optimum condition at 800°C and CGR = 1, where it gives the highest glycerol conversion ($X_G = 37.66\%$) and hydrogen yield ($Y_H = 32.45\%$).

KEYWORDS
Dry reforming; glycerol; hydrogen; Ni; oxides

CONTACT
Sumaiya Zainal Abidin
sumaiya@ump.edu.my
Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia.

© 2017 Taylor & Francis Group, LLC