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Abstract 

Light Amplification Stimulation Emission of Radiation or the common name is Laser. The laser 
light differs from ordinary light due to it has the photons of same frequency, wavelength and 
phase. Advantages of using laser beam cutting (LBC) are materials with complex figures can 
easily be cut by incorporating computer numerical control (CNC) motion equipment, LBC has 
high cutting speed, Low distortion, very high edge quality and most important thing is LBC has 
a minimal heat affected zone (HAZ).This paper discussed the development of Radian Basis 
Function Network (RBFN) to predict surface roughness when laser cutting acrylic sheet. The 
main objectives of this paper are to find the optimum laser parameters (power, material 
thickness, tip distance and laser speed) and the effect of these parameters on surface roughness. 
The network was trained until it predict closer to the experimental values. It observed that some 
of good surface roughness specimen fail in terms of structure when investigate under 
microscope.   

KEYWORDS: laser beam cutting, Radian Basis Function Network (RBFN), surface roughness, 
Power requirement  
 
1. Introduction 
 
Unlike ordinary light laser beams are high directional, have high power density and better 
focusing characteristics [1, 2, 3]. These unique characteristics of laser beam are useful in 
processing of materials. The laser beams are widely used for machining and other manufacturing 
processes such as cutting, drilling, micromachining, marking, welding, sintering and heat 
treatment. Lear beam machining (LBM) is a thermal energy based advanced machining process 
in which the material is removed by melting, vaporization and chemical   degradation. When a 
high energy density laser beam is focused on work surface the thermal energy is absorbed which 
heats and transforms the work volume into a molten, vaporized and chemically changed state 
that can be easily be removed by flow of high pressure assist gas. LBM can be applied to a wide 
range of materials such as metals and non-metals. Several authors [4, 5, 6, 7, 8] reporting on 
laser cutting of polymeric materials, have shown that the processing parameters have an 
essential role on the quality of the surface obtained. Caiazzo et al. [9] investigated the CO2 laser 
cutting of polymeric materials, specifically applied to polyethylene (PE), polypropylene (PP) 
and polycarbonate (PC) in order to provide potential future industrial users of this technology 
with exhaustive information on optimum power levels and cutting velocities as well of the 
quality of the surfaces. According these authors the laser cutting workability of the three 
polymers under investigation is as follow: PC high, PP high/medium and PE lower. Devim et al. 
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[10] conclude that CO2 laser cutting of polymers/composites is widely used on industrial 
applications. 
 
Laser surface texturing may be an ideal technology for applications in mechanical face seal, as 
well as in various components in engine such as piston ring and cylinder and thrust bearings, 
involving creation of an array of micro dimples or channels artificially distributed on the mating 
surface with a pulsed laser beam [11,12]. The most widely used lasers for sheet cutting are 
continuous wave (CW), CO2 and pulsed Nd:YAG [5]. Pulsed Nd:YAG laser cutting becomes an 
excellent cutting process because of high laser beam intensity, low mean beam power, good 
focusing characteristics, and narrow heat affected zone (HAZ) [13, 14]. Lei et al. [15] have 
found that the laser-assisted turning (LAT) of silicon nitride ceramics economically reduces the 
surface roughness and tool wear in comparison to only conventional turning process. The study 
reveals that low pulse frequencies and high peak powers were found to be favourable for higher 
cutting speeds.  
 
In any manufacturing process it is always desired to know that the effect of variation of input 
parameters on process performance in order to achieve the goal of better product quality. LBM 
being a non-conventional machining process requires high intensity and offers poor efficiency. 
Therefore, high attention is required for better utilization of resources. The values of process 
parameters are determined to yield the desired product quality and also to maximize the process 
performance. In LBM, there are various variables including beam power, cutting speed and tip 
distance which affect the surface roughness.  Surface roughness value reduces on increasing 
cutting speed and frequency, and decreasing the laser power and gas pressure. Also nitrogen 
gives better surface finish than oxygen [16]. The laser power and cutting speed has a major 
effect on surface roughness as well as striation frequency [17]. The aim of this work is to present 
and discuss about the experimental investigations using response surface method and acrylic 
sheets in order to predict the significant factors and their effects on quality characteristics for 
better cutting performance and showing the effect relationship between process variables and 
performance characteristics. 
 
Recently, artificial neural networks and neuro-fuzzy techniques have been intensively studied 
and are the most frequently chosen methods of Artificial Intelligence (AI) for feature fusion [18 
- 21]. Artificial Neural Networks (ANNs) are excellent tools for complex manufacturing 
processes that have many variables and complex interactions. Neural networks have provided 
means of excellent controlling of complex processes [22]. In the past, many researchers have 
reported the application of neural network models in monitoring tool condition and predicting 
the tool wear and tool life. An exclusive review of the current literature has been presented by 
Dan and Mathew [23].  
 
A neural network is an adaptable system that can learn relationships through repeated 
presentation of data and is capable of creating a new, previously unseen data. Some networks are 
supervised, in that a human determines what the network must learn from the data. In this case, 
where the network is provided with a set of inputs and the corresponding desired outputs, the 
network tries to learn the input-output relationship by adapting its free parameters. Other 
networks are unsupervised, i.e. the information is hard-coded into their respective architectures 
[24]. 
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 Koren et al. [25] have proposed a model-based approach to sense tool wear and breakage. 
Algorithms and on-line training of the model-based approach by using artificial intelligence 
methods have been suggested by Koren et al. [25]. Tarng and Lee [26] have proposed the use of 
average and median force of each tooth in the milling operation. Measured by sensors, the 
average and median forces of each tooth have been used as input values. An appropriate 
threshold has been subsequently built to analyse information and detect the tool conditions.  
 
Ko et al. [27] have introduced an unsupervised, self-organised neural network combined with an 
adaptive time-series AR modelling algorithm to monitor tool breakage in milling operations. 
The machining parameters and average peak force have been used to build the AR model and 
neural network. Lee and Lee [28] have used a neural network-based approach to show that by 
using the force ratio, flank wear can be predicted within 8% to 11.9% error and by using force 
increment, the prediction error can be kept within 10.3% of the actual wear. Choudhury et al. 
[29] have used an optical fibre to sense the dimensional changes of the work-piece and 
correlated it to the tool wear using a neural network approach. Dimla and Lister [30] have 
acquired the data of cutting force, vibration and measured wear during turning and a neural 
network has been trained to distinguish the tool state.  
 
Tsai Yu-Hsuan et al. [31] have used neural networks to predict surface roughness in milling 
operations by including machining parameters such as spindle speed, feed, depth of cut, and 
vibration ‘‘intensity’’ per revolution. Their neural networks have been executed in real time. For 
the same purpose, hybrid techniques (neural networks combined with fuzzy logic) have been 
employed by the same authors [32]. Similarly, fuzzy Petri nets have been used in the same 
context [33]. Acoustic emission data during machining have been taken into account in [34] 
along with a self-organising network for real-time estimation of surface roughness. The dynamic 
characteristics and chattering have been considered to be the most important factor for poor 
surface quality and reduced tool life [35]. The effect of learning parameters and rules on a neural 
network’s ability to generalise has been examined in [36] in the context of milling 4140 steel 
and monitoring signals of spindle vibration, cutting force and machining. 
 
The focus of the paper is to develop surface roughness prediction model using RBFN when 
machining with CO2 laser beam.  
 
 
2. Response Surface Method and RBFN 
 
The Box-Behnken Design is normally used when performing non-sequential experiments. That 
is, performing the experiment only once. These designs allow efficient estimation of the first and 
second –order coefficients. Because Box-Behnken design has fewer design points, they are less 
expensive to run than central composite designs with the same number of factors. Box-Behnken 
Design do not have axial points, thus we can be sure that all design points fall within the safe 
operating. Box-Behnken Design also ensures that all factors are never set at their high levels 
simultaneously [37 - 39].  
 
Genetic Algorithm (GA) was used to find the optimum weight, momentum and step size to be 
used in RBFN. Later the optimum weight will be fed to the RBFN. Then, train the network until 
the R.M.S.E reaches a satisfactory value. The training data acquired from Response Surface 
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Table 1: Material properties of specimen 
Properties  Value Unit 
Density 1170 kg/m3 
Yield Tensile Strength  52.1 MPa 
Processing temperature 156 °C 
Modulus of elasticity  2.31 GPa 

 
Table 2: Level of design variables 

   Design Variables    Coding of levels  
   1(lowest) 0(middle) 1(highest) 
Power requirement (%)  90 92.5 95 
Cutting speed (pulse/s) 700 900 1100 
Tip distance (mm)   3 6 9 

 
 
Results and Discussion 
 
From the experiment result, the surface roughness readings are used to predict the parameters 
appear in the postulated first and second-order model, which is expressed as Eq. (1) and Eq. (2) 
respectively. In order to calculate these parameters, the least square method was used to 
determine these parameters with the help of statistical software. The first and second-order 
linear and quadratic equation used to predict the surface roughness, which is expressed as Eq. 
(1) and Eq. (2). 
 
                                                                                             (1) 
 
                                                    (2) 
 
 
where Ra is surface roughness, Pr is the power requirement, Cspeed is cutting speed and GD is the 
tip distance. 
 
From this linear equation, one can easily notice that the response surface roughness is affected 
significantly by the power requirement, followed by tip distance and cutting speed. Eq. (1) 
shows that combination of high power and tip distance produce a rough surface. On other hand, 
high cutting speed produces a very smooth surface. Similar to the first-order model, by 
examining the coefficients of the first-order terms, the tip distance (GD) has the most dominant 
effect on the surface roughness. The contribution of power requirement (Pr) is the least 
significant.  Also, owing to the P-value of interaction is 0.092 (>0.05), one can easily deduce 
that the interactions of distinct design variables are not significant. In other words, the most 
dominant design variables GD and Pr have the minimum interaction with others in the current 
context. As seen from Figure 3 and Table 3, the predicted surface roughness using the second 
order RSM model is able to produce values close to those with experimental, and, as it should be 
the case, it exhibits better agreement as compared to those from the first-order RSM model. The 
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