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ABSTRACT

                 The proportional-integral-derivative (PID) controllers are widely used in many 

industrial control systems for several decades since Ziegler and Nichols proposed their 

first PID tuning method. This is because the PID controller structure is simple and its 

principle is easier to understand than most other advanced controllers. On the other hand, 

the general performance of PID controller is satisfactory in many applications. For these 

reasons,  the  majority  of  the  controllers  used  in  industry  are  of  PI/PID  type.  PID 

controllers are widely used for process control applications requiring very precise and 

accurate  control.  The  purpose  of  the  motor  speed  controller  is  to  take  a  signal 

representing the demanded speed, and to drive a motor at that speed. The controller does 

not  actually measure the speed of the motor.  Thus,  it  is  called an Open Loop Speed 

Controller.  Motors come in a variety of forms, and the speed controller's motor drive 

output will be different dependent on these forms. The speed controller presented here is 

designed to drive special dc motor which is not easily available anywhere in store, thus it 

is a good example to be used due to the special characteristics and parameters. Matlab 

Simulink® is  an important  tool  used it  this  project,  from designing the mathematical 

model of the dc motor, obtaining the transfer function, and designing the PID controller 

using both model and programming using m-files. The transfer function will be linearized 

and used for tuning the gain of PID controller like KP, KI, and KD. Simulink is chosen to 

simulate the performance of the control system.



ABSTRAK

Sistem pengawal  PID digunakan dengan meluas  dalam jangka masa  beberapa 

puluh tahun kebelakangan ini,  semenjak Ziegler dan Nichols memperkenalkan kaedah 

PID  yang  pertama.  Ini  kerana  struktur  sistem  pengawal  PID  yang  senang  difahami 

berbanding dengan kaedah pengawalan yang lain. Banyak aplikasi menggunakan kaedah 

pengawalan  ini  kerana  kestabilan  system  yang  boleh  diaplikasikan  dalam  pelbagai 

system.  Pengawal  PID amat  berguna bagi  aplikasi  yang  memerlukan  sistem kawalan 

yang  tepat  dan stabil.  Tujuan utama  sistem pengawalan  kelajuan motor  adalah  untuk 

mendapatkan signal bagi kelajuan yang dikehendaki dan mengurangkan kesalahan untuk 

mendapatkan sistem yang tepat dan stabil.  Sistem kawalan yang akan dibuat ini tidak 

mengukur halaju motor tersebut, oleh itu ia dipanggil Sistem Kitaran Terbuka. Terdapat 

banyak  jenis  motor  di  dalam  pasaran,  di  mana  setiap  system  pengawalan  kelajuan 

berbeza bergantung kepada jenis  motor  yang digunakan.  Dari  model  yang dihasilkan, 

rangkap pindah boleh diperolehi.  Ragkap pindah ini  dilinearkan dan digunakan untuk 

talaan gandaan pengawal PID. Perisian Simulink dipilih untuk mengkaji prestasi Sistem 

Kawalan Kelajuan Motor ini. 
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The proportional-integral-derivative (PID) controllers are widely used in many 

industrial control systems for several decades since Ziegler and Nichols proposed their 

first PID tuning method. This is because the PID controller structure is simple and its 

principle  is  easier  to  understand than  most  other  advanced controllers.  On the other 

hand, the general performance of PID controller is satisfactory in many applications. For 

these reasons, the majority of the controllers used in industry are of PI/PID type. PID 

controllers are widely used for process control applications requiring very precise and 

accurate  control.  Unlike  on/off  controls,  the  smooth  and  steady  state  control  is 

achievable using these controllers. Various models are available featuring single loop 

with universal input, two to eight loop with eight independent inputs and sixteen control 

outputs. All types of digital and analog outputs are available to operate final controlling 

devices such as Solid State Relays, Contactors, Solenoid valves, Modulating motorized 

valves, thyristorized power packs etc.



The purpose  of  a  motor  speed  controller  is  to  take  a  signal  representing  the 

demanded speed, and to drive a motor at that  speed. The controller  may or may not 

actually  measure  the  speed  of  the  motor.  If  it  does,  it  is  called  a  Feedback  Speed 

Controller  or Closed Loop Speed Controller,  if  not it  is called an Open Loop Speed 

Controller.  Feedback speed control  is  better,  but more  complicated,  and may not be 

required for a simple robot design. Motors come in a variety of forms, and the speed 

controller's motor drive output will be different dependent on these forms. The speed 

controller presented here is designed to drive a special dc motor which is suitable for 

education purposes.

In  this  project,  Motorola  68HC11  processor  board  will  be  used  for  all 

decentralized  processing  duties.  This  Motorola  boards  provide  high-speed  analog  to 

digital conversion along with high reliability and robustness. This makes the 68HC11 is 

well suited for sensor translation as well as motor control.

Rapid progress in microelectronics and microcontrollers in recent years has made 

it  possible  to  apply  modern  control  technology  to  automobiles  that  need  real-time 

control. DC motors control, many of these operations and therefore there is a need for 

implementing effective control strategies for digital control of these motors.  Therefore, 

it  is quite important to develop real-time DC motor control strategies such that these 

devices are effectively integrated with their control electronics using the MC68HC11 

microcontroller. Realizing the fact that large number of motors are utilized in modern 

vehicles and there is especially a need to control these small motors using a common bus 

with interrupt priorities, such real-time control is extremely essential. 



1.2 Project Objective

The objectives of this PID Digital Controller for DC Motor Speed using MC68HC11 

microcontroller are to design a closed-loop controller, a very common means of keeping 

motor speed at the required “setpoint” under varying load conditions, to implement a 

PID controller system onto a MC68HC11 microcontroller and to designate in advance 

the mathematical model of the system to be controlled with the purpose of simulating its 

dynamic behavior in open-loop mode.

In general,  the main purpose of this project is to propose a DC motor control design 

approach  using  the  PID algorithm and MC68HC11 microcontroller  that  contains  an 

embedded closed loop digital controller for the motor speed correction.



1.3 Project Scopes

The scopes  of  this  project  include  deriving a  transfer  function  for  a  DC motor  and 

simulating the results in Simulink® MATLAB application. A model of a PID controller 

algorithm is then designed and simulated in Simulink® MATLAB application. The usge 

of the PID controller is then implemented based on the configuration of the MC68HC11 

microcontroller.



1.4 Thesis Outline

The thesis is orderly organized into 6 chapters and they are outlined as below:

Chapter  1  explains  the  proportional-integral-derivative  (PID)  controllers and 

essential concepts which guide to the development of the digital controller system. It 

also outlines objective and scope of this project.

Chapter 2 describes the overview of the project elaborately.  The literature review 

will be focused on hardware and software design.  Explanation will be based on theory 

and conceptual ideas.  Some practical approach in this project will also be discussed. 

Chapter 3 discusses the derivation of the transfer function and development of the 

mathematical model of the DC motor.

Chapter 4 provides description and discussion on the design of the PID Controller. It 

also indicates the development of the controller and system operation.

Chapter 5 presents various testing and results that are conducted. 

Lastly,  Chapter  6  summarizes  the  overall  conclusion  for  this  thesis  and  a  few 

suggestion and recommendation for future development.



CHAPTER 2

LITERATURE REVIEW

There  are  many  ways  to  control  DC motors.  Open-loop  current  control  acts 

directly on torque and thus protects the electronics, the motor and the load. Open-loop 

variable voltage control makes sense if the motor and electronics are not overloaded 

when the motor stalls. Open-loop variable voltage control with a current limiting circuit 

constitutes the simplest way of varying speed. However, a closed-loop system is needed 

if precision is called for in selecting speeds.  In order to be able to build a closed loop 

controller, we need some mean of gaining information about the rotation of the shaft like 

the number of revolutions executed per second, or even the precise angle of the shaft. 

This source of information about the shaft of the motor is called "feed-back" because it 

sends back information from the controlled actuator to the controller. 

In a closed loop speed controller, a signal proportional to the motor speed is fed 

back into the input where it is subtracted from the set point to produce an error signal. 

This error signal is then used to work out what the magnitude of controller output should 

be to make the motor run at the required set point speed. For example, if the error speed 

is positive, the motor is running too fast so that the controller output should be reduced 

and vice-versa. The clever part is how the output drive is worked out. [12] In a closed-

loop  configuration,  a  portion  of  the  information  is  fed  back  from  the  process  and 

subtracted from the reference signal in order to calculate the error signal. This error 

signal is used by the PID to adjust the control input such that the process output can 

reach the given reference. [15] In other words, a closed loop controller will regulate the 

power delivered to the motor to reach the required velocity or speed. If the motor is to 

turn faster than the required velocity, the controller will deliver less power to the motor. 

Controlling the electrical power delivered to the motor is usually done by Pulse Width 

Modulation.



The aim of a control circuit is to keep the permanent magnet dc motor running at 

a constant speed, set externally. To do this, the current through, and the voltage across, 

the brushes of the motor are monitored. The voltage consists of two components: First, a 

back-EMF generated by the windings of the armature moving through the magnetic field 

of the motor. Secondly, there’s a voltage caused by the current passing through the real 

resistance of the windings and the brushes. 

Most  of  real  plant  operates  in  a  wide  range  of  operating  conditions;  the 

robustness is then an important feature of the closed loop system. When this is the case, 

the controller has to be able to stabilize the system for all operating conditions. To this 

end,  it  is  possible  to  employ an internal-model-based PID tuning method [9 and 3]. 

However, this method gives very slow response to load disturbance for lag-dominant 

processes because of the pole-zero cancellations inherent in the design methodology [2]. 

Another popular approach with similar emphasis is the tuning of PI or PID controller by 

the gain and phase margin specifications [7 and 1]. Gain margin and phase margin have 

always served as important measures of robustness. It is well known that phase margin is 

related to the damping of the system, and can therefore also serve as a performance 

measure  [4].  In  this  way,  numerous  progresses  have  been  made  to  improve  the 

performances of the PID control [6]. In particular, tuning methods based on optimization 

approach have recently received more attention in the literature, with the aim of ensuring 

good  stability  robustness  of  the  controlled  system  [8  and  5].  However,  these  new 

methods are not easy to use for the operating engineer who is the main user of the PID 

controller.

PID controllers are widely used in the process-control industry, mainly because 

of  their  effectiveness  and  simple  structure.  A  feedback-control  scheme  can  be 

implemented in a simple 8-bit microcontroller (MCU). Despite the fact that the MCU is 

among the simpler ones available, the time it requires to compute the whole program and 

bring the motors to their maximum reference speed (9,100RPM) was only 866ms in the 

worst case. So it is believed that using the newer MCUs in a closed-loop configuration 

can improve the control of some electro-mechanical actuators such as valves or motors 

and improve the performance of some processes with slow dynamic behavior. [15]

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4N-4CF16Y5-1&_user=4406426&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000063100&_version=1&_urlVersion=0&_userid=4406426&md5=087e9fe1d5a03d794b832259d7cd8cd6#bib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4N-4CF16Y5-1&_user=4406426&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000063100&_version=1&_urlVersion=0&_userid=4406426&md5=087e9fe1d5a03d794b832259d7cd8cd6#bib2


The main PID controller routine was designed to be fairly general purpose and 

hence modular. Whilst here it is used to control a DC motor, it could be re-deployed to 

other situations where some parameter has to be controlled to a set value under varying 

conditions.  The actual  control  software is  located  in  a  single  function and its  major 

inputs  and output  are  held  in  a  structure.  Although it  was  designed originally  for  a 

specific job it is really only intended as an example of the basic techniques involved and 

to  allow those  with  no control  system knowledge to  experiment  with a  simple  PID 

system.

Currently, several manufacturers make 16- and 32-bit microcontrollers (MCUs) 

with features that  enable easy control of almost  any process of medium complexity. 

Eight-bit  microcontrollers  still  dominate  the market,  however,  because of their  small 

size, low cost, and simple programming. Because of these advantages, 8-bit MCUs are 

found  in  process  control,  automotive,  industrial,  and  appliance  applications,  among 

many others. Some of the newer MCUs provide clock speeds from 4 to 40MHz; 64KB 

of internal flash memory and 1KB of RAM in some models; on-chip analog-to-digital 

converters  (ADCs),  digital-to-analog  converters  (DACs),  or  pulse-width  modulator 

(PWM) outputs; a watchdog timer; 16-bits timers; and serial or USB ports.

Although the features of 8-bit MCUs are continually improving, in most cases 

these  new features  are  ignored  by designers  because  they're  using the  chips  for  the 

control of states, which don't require the newer features. [10 AND 11] Recently a novel 

method has been used to exploit these kinds of MCUs by using them in a closed-loop 

configuration aided with the well-known classical control theory. Examples of work on 

this topic are available in the literature. [12, 13, and 14] In such applications the authors 

demonstrated  that  feedback  control  improves  the  control  of  some  DC  motors.  It's 

important to mention that, in the examples, except in Johnston, [13] the realization of the 

PID (proportional-integral-derivative) controllers were implemented using 16-bit MCUs 

in Hitex's paper [12] or, as in Neary,[14] where an integrated data acquisition system 

particularly the model ADuC845 by Analog Devices, was used. 



Until few years ago, these kinds of tasks (micro-positioning or servo control) had 

been addressed using digital signal processors (DSPs), mainly because such devices are 

faster  and have higher  precision than the 8-bits  MCUs.  However,  some applications 

don't require high precision or the team simply can't justify the cost of a DSP. It's usually 

cheaper to use an 8- or 16-bit MCU without diminishing performance. 

Generator  represents  the  back  electromotive  force  (BEMF)  generated  by  the 

motor’s rotation and which opposes the electromotive force of the supply. The value of 

the BEMF is a function of the motor’s angular velocity. If the motor has no external load 

and its velocity is not limited, it will accelerate up to the velocity w such that V(w) 

equals the supply voltage Vs. [10] In this situation the two EMF’s cancel each other and 

thus  the  motor  torque  responsible  for  acceleration  will  go  away.  In  reality  V(w)  is 

always  slightly  less  than  Vs  in  which  case  a  small  motor  torque  is  necessary  to 

compensate resistive torque due to internal friction. Thus it can be seen that the motor’s 

BEMF can reach elevated values which in some cases can create application problems 

due to a certain type of stress. 

Driving DC motors with integrated circuits seems at first to be rather simple. Yet 

by analyzing the actual application it is possible to see if there exist conditions causing 

stresses to  the IC during operation which in  the end can cause failure.  With  proper 

design and analysis in critical applications it is possible to avoid conditions which lead 

to IC damage. A closed loop controller can be an analog circuit, a digital circuit made of 

logic gates, or a micro controller. Generally, a micro controller is the option that will 

provide more design flexibility. Recent microcontrollers running at very high clock rates 

can  completely  replace  similar  analog  controllers,  and  can  even  be  cheaper.

In a closed loop system, a microcontroller will have two main tasks:

• Constantly adjust the average power delivered to the motor to reach the required 

speed.

• Precisely calculate the position/angle of the motor's output shaft.



At first sight it might be imagined that something simple like "if the error speed is 

negative, multiply it by some scale factor (usually known as "gain") and set the output 

drive to this  level",  i.e.  the voltage applied to the motor  is  proportional  to the error 

speed. In practice, this approach is only partially successful for the following reason: if 

the motor is at the setpoint speed under no load there is no error speed so the motor free 

runs.  If  a  load  is  applied,  the  motor  slows  down so  that  a  positive  error  speed  is 

produced. The output increases by a proportional amount to try and restore the speed. 

However, as the motor speed recovers, the error reduces and so therefore does the drive 

level. The result is that the motor speed will stabilise at some speed below the setpoint at 

which the load is balanced by the error speed x the gain. If the gain is very high so that 

even the smallest change in motor speed causes a significant change in drive level, the 

motor  speed  may  oscillate  or  "hunt"  slightly  .  This  basic  strategy  is  known  as 

"proportional control" and on its own has only limited use as it can never force the motor 

to run exactly at the setpoint speed.

The next improvement is to introduce a correction to the output which will keep 

adding or subtracting a small amount to the output until the motor reaches the setpoint, 

at  which point  no further  changes  are  made.  In  fact  a  similar  effect  can be had  by 

keeping a running total of the error speed speeds observed for instance, every 25ms and 

multiplying  this  by another  gain  before adding the result  the proportional  correction 

found above.  This new term is based on what is effectively the integral  of the error 

speed.

Thus far we have a scheme where there are two mechanisms trying to correct the 

motor speed which constitutes a PI (proportional-integral) controller. The proportional 

term is a fast-acting correction which will make a change in the output as quickly as the 

error arises. The integral takes a finite time to act but has the ability to remove all the 

steady-state speed error.

A further refinement uses the rate of change of error speed to apply an additional 

correction  to the output drive.  This means  that  a rapid motor  deceleration would be 



counteracted by an increase in drive level for as long as the fall in speed continues. This 

final component is the "derivative" term and it is a useful means of increasing the short-

term stability of the motor speed. A controller incorporating all three strategies is the 

well-known Proportional-Integral-Derivative, or "PID" controller.

For best performance,  the proportional and integral  gains need careful tuning. 

For example, too much integral gain and the control will tend to over-correct for any 

speed  error  resulting  in  oscillation  about  the  setpoint  speed.  Several  well-known 

mathematical techniques are available to calculate optimal gain values, given knowledge 

of  the  combined  characteristics  of  the  motor  and  load,  i.e.  the  "transfer  function". 

However, some simple rules of thumb and a little experimentation can yield satisfactory 

results in practical applications.



CHAPTER 3

METHODOLOGY

(TRANSFER FUNCTION DERIVATION AND MATHEMATICAL MODEL 

DEVELOPMENT)

3.1 Introduction

The mathematical model for the transfer function of the DC motor is derived and 

simulated in the Simulink® MATLAB application to observe its dynamic behavior. The 

transfer function model of the motor is then used to design the digital controller.



3.2 Proportional-Integral-Derivative Controller

Figure 3.1: DC Motor PID Controller Model

The controller model shows a closed-loop controller, where the feedback from the 

output of the motor, which is speed, is analyzed again at the set-point. This ensures that 

the error is reduced from time-to-time, reducing the error each time.

Figure 3.2: DC Motor PID Controller Model 2

A more detailed model is shown in Figure 3.2. The error signal calculates the current 

process variable, deducting it from the set point value to obtain the value of the error 

signal.

desired sp V
Motor



actual speed

- compute V using   
PID feedback

sp  pv

Error signal e



3.2.1 Derivation of the Transfer Function

The transfer function of the DC motor (CLIFTON 2250 SERVO

MOTOR) is derived by using the values obtained from the datasheet of the motor and 

can be proved by using MATLAB SIMULINK® application.

The first step of this project is modeling the DC servo motor. Motor modeling is 

required in order to obtain the transfer function of the motor which is providing the open 

loop system of this project. Then PID controller is added to change the system to closed 

loop system. Below is the step of the motor modeling. 

DC Servo Motor Parameters:

Electric Resistance, R = 2.7 Ω

Electric inductance, L =  0.004 H

Electromotive force constant (K = Ke = Kt = 0.105 Vs rad-1 )

Moment of inertia of the rotor, J = 0.0001 Kg m2

Damping ration, B =  0.0000093 Nms rad-1



3.2.1.1    Manual Calculation of the Transfer Function
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Thus, the transfer function of the DC Motor, TF =   262500

          s2 + 675.093s + 27625.275



3.2.2 Mathematical Model of the DC Motor 

      Figure 3.3: Linear Model of the DC motor built in MATLAB

This system is modeled by summing the torque acting on the rotor inertia and 

integrating the acceleration to give the velocity. Kirchoff’s law is applied to the armature 

circuit. First, the integrals of the rotational acceleration and the rate of change of the 

arm,ature current is modeled.

An Integrator block (from the Linear block library) is inserted and lines are 

drawn to and from its input and output terminals. The input line "d2/dt2(theta)" and the 

output line "d/dt(theta)" are labeled as shown above. Another Integrator block is inserted 

above the previous one and lines are drawn to and from its input and output terminals. 

The input is "d/dt(i)" and the output line "i" are labeled. 

The angular acceleration is equal to 1/J multiplied by the sum of two terms (one 

pos., one neg.). Similarly, the derivative of current is equal to 1/L multiplied by the sum 



of three terms (one pos., two neg.). Insert two Gain blocks, (from the Linear block 

library) one attached to each of the integrators. The gain block corresponding to angular 

acceleration is edited by double-clicking it and changing its value to "1/J". The label of 

this Gain block is changed to "inertia" by clicking on the word "Gain" underneath the 

block. Similarly, the other Gain's value is edited to "1/L" and it's label is changed to 

Inductance. Two Sum blocks (from the Linear block library) were then inserted, one 

attached by a line to each of the Gain blocks. The signs of the Sum block corresponding 

to rotation to "+-"  is changed since one term is positive and one is negative. The signs 

of the other Sum block is also changed, to "-+-" to represent the signs of the terms in 

Kirchoff's equation.  

The torqueses which are represented in Newton's equation are then added. First, 

the damping torque is added. A gain block is inserted below the inertia block, selected 

by single-clicking on it, flipping it left-to-right. The gain value is then set to "b" and 

renamed to "damping". A line (hold Ctrl while drawing) is tapped off the rotational 

integrator's output and connected it to the input of the damping gain block. A line is 

drawn from the damping gain output to the negative input of the rotational Sum block. 

The torque from the armature is added by inserting a gain block attached to the 

positive input of the rotational Sum block with a line. It's value is then edited to "K" to 

represent the motor constant and it is labeled with "Kt". The line leading from the 

current integrator is drawn and connected to the Kt gain block. 

The voltage terms which are represented in Kirchoff's equation is then added. 

First, the voltage drop across the coil resistance is added in. A gain block above the 

inductance block is added and flipped left-to-right. The gain value is set to "R". A line 

(hold Ctrl while drawing) is then tapped off the current integrator's output and connected 

to the input of the resistance gain block. A line is drawn from the resistance gain output 

to the upper negative input of the current equation Sum block. 

The back emf from the motor is added by inserting a gain block which is 

attached to the other negative input of the current Sum block with a line. It's value to 



"K" to represent the motor constant and labeled with "Ke". A line is tapped off the 

rotational integrator output and connected to the Ke gain block. 

The third voltage term in the Kirchoff equation is the control input, V. A step 

input is applied into the model. A Step block (from the Sources block library) is inserted 

and connected with a line to the positive input of the current Sum block. 

To view the output speed, a Scope (from the Sinks block library) is inserted anc 

connected to the output of the rotational integrator. 

To provide an appropriate unit step input at t=0, the Step block double-clicked 

and the Step Time is set to "0". 

The output response:-

Figure 3.4:  Open-loop step response of the extracted transfer function





CHAPTER 4

CONTROLLER DEVELOPMENT AND SYSTEM OPERATION

4.1 Microcontroller System Board Module

Figure 4.1 : Microcontroller System Board Module

Clock Circuit

Power Circuit

Reset Circuit

EIA233 
Circuit

MC68HC11



MC68HC11  is  chosen  to  be  implemented  in  this  project  due  to  its  high 

performance,  high  speed,  low  power  consumption,  various  function  and  features. 

Bootstrap mode is chosen to operate in this project because its does not require extra 

input and output ports. Bootstrap mode allows special purpose programs to be loaded into 

internal RAM. The system board consists of power circuit, reset circuit, clock circuit and 

EIA233 module. Power circuit is needed to provide constant 5V voltage to the system. 

Reset circuit is used to reset microcontroller process. Clock circuit is required to supply 

constant 2MHz clock speed. EIA 233 module is important to transfer program between 

PC and micro controller .

One of the advantages of the system is that the MC68HC11 Development Board offers 

user to use the system in various ways.  One of them is to use only system board as 

shown in Figure 3.7.  The user can also use the system board and interface with its own 

application as shown in Figure 3.8 or to the some extent, user can use both application 

board and system board to interface with its own application..

Figure 4.2: System Board
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4.2 Direct Current Motor

The model  of  the  DC motor  used  in  this  project  is  CLIFTON PRECISION SERVO 

MOTOR  MODEL JDH-2250-HF-2C-E.  Various  types  of  motor  are  available  in  the 

market now, such as DC motor, stepper motor and servo motor. In this project, the speed 

of  DC  servo  motor  is  an  importance.  The  speed  of  a  DC  servo  motor  is  directly 

proportional to the supply voltage. The speed controller works by varying the average 

voltage sent to the motor. Therefore the DC servo motor (Clifton Precision JDH 2250-

HF-2C-E) was selected because servo motors have low-inertia  armatures that  respond 

quickly to excitation-voltage changes. Servomotors have three wires; usually red, black 

and white. The red wire is for +VDC, the black for ground and the white is for position 

control.

Figure 4.3: The DC Motor



4.3   The PID Controller

The derivation of the transfer function of the PID controller looks like the following:

Kp + Ki  + Kds  =  Kds  2   + K  ps + Ki

                                  s                                s (4.1)

Kp = Proportional gain

Ki = Integral gain

Kd = Derivative gain

The  PID  controller  routine  is  designed  by  simulating  the  parameters  in  the 

Simulink® MATLAB software.

C++ language MC68HC11 is used to program the MC68HC11 microcontroller. 

Bootstrap mode is used thus the address must in between $B600 and $B7FF. If there is 

more program to write and address must be added, then expanded mode will be used in 

which the address is from $E000 to $FFFF.



4.3.1 PID Routine in MC68HC11

Figure 4.4: PID Flow Diagram

There is a desired setpoint in our process (Gd) and a measurement of the actual value G(t) 

in time. 

Error is: e(t) = Gd - G(t)  ; as e = sp – pv (4.2)

Output correction x(t) for the PID controller is: 

x(t) = KP e(t) +  KI ∫e(t) + KD de(t) | t = T
                dt (4.3)

where KP, KI, and KD are constants.



Now, rewriting the integral:  
       t

x(t) = KP e(t) + KI ∫ [Gd - G(t)]dt + KD de(t) | t = T
      t=0                             dt  (4.4)

Let A0 = Kp + Ki Δt + Kd Δt  = sampling time interval

        Δt (4.5)

e = set point – process variable

 A1 = Kp + 2 Kd

           Δt (4.6)

A2 = Kd

          Δt 

Thus, cn = cn-1 + A0en – A1en-1 + A2en-2

(4.7)

From Equation

We get the PID Digital Equation;

C0 = C1 + A0E0 – A1E1 + A2E2 (4.8)

Where C0   =   present output (cn)

C1    =   previous output (cn-1)

E0    =   present error (en)

E1     =   previous error (en-1)

E2    =   error preceding previous error (en-2)



To introduce discrete time, let t = kT where k = 1,2,...,n and T = the sampling and control 

update period. Now, t0 = (k – 1)T. The integral evaluated from 

(k – 1)T to kT can be approximated using the trapezoidal integration rule. The derivative 

of the error term is simply the rate of change of error.

The form which can be executed directly on the microprocessor is:

x (t) = KP e(t ) + KI (Gdt - T (G(Kt ) +G[(k -1)T])) + K  D   ((e(kT ) - e(k - 3) +3(e(k - 1) - e (k - 2)))
            2                        6T

This term is added to the current output and put into the PWM control register at the 

beginning of the next calculation cycle. Substituting the microcode labels for constants 

and variables into the equation and using C language operator notation (refer appendix) 

gives:

NEWDTY = KP * (ERRX) + KI * PERDT * (CMNDX - (ADRCX + ADRCXM1) / 2) + 
        (KD / (6 * PERDT)) * ((ERRX - ERRM3X) + 3 * (ERRM1X - ERRM2X)) + 
        OLDDTY

(4.9)

The function of the proportional term is clear, but the derivative and integral terms may 

need  a  brief  explanation.  When  a  system  with  only  proportional  control  is  off  the 

specified setpoint, the controller will increase the control voltage until the error signal is 

zero,  and  the  system thus  returns  to  the  setpoint  with  more  applied  voltage  than  is 

required  for  maintaining  equilibrium.  This  causes  overshoot  and,  as  the  process 

continues, under-damped ringing. The derivative term contributes proportionally to the 

error rate of change, but with the opposite sign of the proportional term. If the proper 

constants are chosen, critical damping can be achieved. The role of the integral term is to 

eliminate  steady state  error.  A system that  has  a  steady  state  error  when tracking  a 

ramping input  function can use an integral  term to integrate  the error  over  time and 

compensate for it.



4.4  C Language Implementation (refer to Appendix B for a complete C listing).

The equation (C Language operator notation) :-

NEWDTY = KP * (ERRX) + KI * PERDT * (CMNDX - (ADRCX + ADRCXM1) / 2) + 
       (KD / (6 * PERDT)) * ((ERRX - ERRM3X) + 3 * (ERRM1X - ERRM2X)) + 
       OLDDTY

(4.10)

After  necessary files  are  included  and floating  point  variables  are  declared,  a 

prototype is given to define an assembly language function that is used later. The main 

program initializes constants and variables, sets up the required on-chip peripherals, and 

waits for interrupts to occur. The M68HC11 real-time interrupt (RTI) is used to establish 

a  precise  time  base  for  performing  PID compensation.  The  period  (T or  PERDT) is 

determined by the RTI rate. 

The  RTI_interrupt  function  does  the  PID loop  PWM duty  cycle  calculations, 

performs I/O using the DOIO assembly language function, and checks the results against 

the usable PWM output range of $00 to $FF. If a floating-point result is out of range, the 

closest limit is substituted. This “saturation arithmetic” prevents out-of-range results from 

causing sign-reversals in the PWM output.

When the RTI_interrupt function returns control to the C routine, the last task the 

routine must perform is preparation for the next period. A two-element pipeline of the A/



D reading and a four-element error pipeline are updated.  Finally the “old” duty cycle 

value is copied into OLDDTY.

4.5     Pseudocode for the PID Controller Algorithm

define constants A0, A1, A2

define SP

initialize E1, E2 = 0

input PV from A/D subsystem

C1 =  factor pv

sample-time delay

Loop

output C1 to D/A or PWM subsystem

input PV from A/D subsystem

; calculate PID sample output

E0 = SP – PV ; sample error

C0 = C1 + A0 E0 – A1 E1 + A2 E2

; now reassign variables in scratchpad RAM

C1 = C0

E2 = E1

E1 = E0

sample-time delay

repeat loop



Note that the time delay can be triggered using an output-compare interrupt or real-time 

interrupt. The service routine can include the rest of the loop. The pseudocode above does 

not take into account the bit size limits of the numbers. Controller output must fall 

between maximum and minimum limits to avoid overflow and underflow resulting from 

the calculations. In other words, the outputs are clamped. This is analogous to the 

analogue PID, whose outputs are naturally clamped due to the high and low limits of the 

power supply. The C code will include clamping. Refer to Appendix B for full program 

listing.



CHAPTER 5

RESULT AND TESTING

5.1 PID Tuning

 When  the  system  dynamics  are  not  precisely  known,  we  must  resort  to 

experimental approaches. Ziegler-Nichols Rules for Tuning PID Controller:

Using only Proportional control, the gain of the system is turned up until the system 

oscillates without dying down, i.e., is marginally stable. Assume that K and P are the 

resulting gain and oscillation period, respectively.



Then, use

Table 5.1: The PID tuning equation

Controller Type Kp Ki Kd

P 8 0 0
PI 7.2 400 0

PID 9.6 666.67 0.000375
Table 5.2: Ziegler-Nichols Tuned Parameter, Frequency Response.

A proportional controller (Kp) will have the effect of reducing the rise time and 

will reduce, but never eliminate, the steady-state error. An integral control (Ki) will have 

the effect of eliminating the steady-state error, but it may make the transient response 

worse. A derivative control (Kd) will have the effect of increasing the stability of the 

system,  reducing  the  overshoot,  and  improving  the  transient  response.  The  transient 

responses obtained are shown in this chapter.

for P control for PI control for PID control

Kp  =  0.5 K Kp  =  0.45 K

Ki   =  1.2 / P 

Ki   =  1.2 / P 

Kp  =  0.6 K

Ki   =  2.0 / P 

Kd  =  P / 8.0 



5.2 Model of the PID Controller

Figure 5.1:  Model of PID Controller in MATLAB

The model of the PID controller is design by using the transfer function obtained earlier. 

The PID controller block is available in the MATLAB library, and the values obtained 

from the PID tuning are inserted when the PID block is double-clicked.



5.3 The Transient Responses

5.3.1  Response of Speed without any Controller

(m/s)

(s)

Figure 5.2: Transient Response of DC Motor Speed without Controller

5.3.1.1  Graph Analysis:

Percentage of Overshoot, %OS  is  2%, which is obtained from the graph. Percentage of 

overshoot is the amount that the waveform overshoots the steady state, or final, value at 

the peak time, expressed as a percentage of the steady state value. The Peak Time, Tp is 



3.0075 seconds, which is the time required to reach the first, or maximum, peak. The 

Rise Time, Tr is  0.0040 seconds,  which is  the time required for the waveform to go 

from 0.1 of the final value to 0.9 of the final value. The Settling Time, Ts, is 3.0130 

seconds, which is the time required for the transient’s damped oscillation to reach and 

stay within 2% of the steady-state.

5.3.2 Response of Speed with a Proportional Controller

(m/s)

(s)

Figure 5.3: Transient Response of DC Motor Speed with a P Controller

5.3.2.1 Graph Analysis:

Percentage of Overshoot, %OS  is  47%, which is obtained from the graph. Percentage 

of overshoot is the amount that the waveform overshoots the steady state, or final, value 

at the peak time, expressed as a percentage of the steady state value. The Peak Time, Tp 

is 3.0025 seconds, which is the time required to reach the first, or maximum, peak. The 



Rise Time, Tr is  0.0010 seconds,  which is  the time required for the waveform to go 

from  0.1  of  the  final  value  to  0.9  of  the  final  value.  The  Settling  Time,  Ts,  is 

3.0135seconds, which is the time required for the transient’s damped oscillation to reach 

and stay within 2% of the steady-state.

5.3.3 Response of Speed with a Proportional-Integral Controller

(m/s)

(s)

Figure 5.4: Transient Response of DC Motor Speed with a PI Controller

5.3.3.1 Graph Analysis:

Percentage of Overshoot, %OS  is  46%, which is obtained from the graph. Percentage 

of overshoot is the amount that the waveform overshoots the steady state, or final, value 

at the peak time, expressed as a percentage of the steady state value. The Peak Time, Tp 



is 3.0030 seconds, which is the time required to reach the first, or maximum, peak. The 

Rise Time, Tr is  0.0009 seconds,  which is  the time required for the waveform to go 

from 0.1 of the final value to 0.9 of the final value. The Settling Time, Ts, is 3.0120 

seconds, which is the time required for the transient’s damped oscillation to reach and 

stay within 2% of the steady-state.

5.3.4 Response of Speed with a Proportional Integral Derivative Controller

(m/s)

(s)

Figure 5.5: Transient Response of DC Motor Speed with a PID Controller

5.3.4.1 Graph Analysis:

Percentage of Overshoot, %OS  is  48%, which is obtained from the graph. Percentage 

of overshoot is the amount that the waveform overshoots the steady state, or final, value 

at the peak time, expressed as a percentage of the steady state value. The Peak Time, Tp 



is 3.0025 seconds, which is the time required to reach the first, or maximum, peak. The 

Rise Time, Tr is  0.0007 seconds,  which is  the time required for the waveform to go 

from 0.1 of the final value to 0.9 of the final value. The Settling Time, Ts, is 3.0090 

seconds, which is the time required for the transient’s damped oscillation to reach and 

stay within 2% of the steady-state.

5.4 Discussion

In summary;

Type of 

Controller

%OS Peak Time, Tp Rise Time,

Tr

Settling Time,

Ts
Uncontrolled 2% 3.0075s 0.0040s 3.0130s

P 47% 3.0025s 0.0010s 3.0135s
PI 46% 3.0030s 0.0009s 3.0120s

PID 48% 3.0025s 0.0007s 0.0090s

Table 5.: Summation of Graph Analysis

PID is the best controller to be used for this system. The response shows a better 

performance where the rise time (Tr) and the settling time (Ts) are lower than other 

controllers. The %OS is a little bit higher than other controller, as the Ziegler-Nichols 

Method produce more overshoot compared to other methods.  





Chapter 6

CONCLUSION AND FUTURE RECOMMENDATION

6.1 Conclusion

The mathematical model of the DC Motor system to be controlled with the purpose of 

simulating its dynamic behavior in closed-loop mode can be developed in advanced 

using the Matlab Simulink®. 

A PID Controller algorithm has developed using the same method, by means of keeping 

the speed of DC motor under control, at the same time reducing the error that may occur.

 



6.2 Suggestion

6.2.1 Microcontroller

Microcontrollers that had full-duplex CAN communication capability may be chosen for 

real-time observation. The designed program used in this project is based on the 

functions and addresses of the K series. Thus, for real time observation, the K series of 

the MC68HC11 may be used, due to the PWM, and which has more than 1Mbyte 

memory space. Large memory size will assist in the programming of a better PID 

algorithm into the microcontroller.

6.2.2 Tuning Method

For future advancements of this project, other PID tuning methods may also be used, to 

compare the outcome of the controlled speed.



6.3 Costing and Commercialization

This project focused on designing the program for the PID Controller. Thus it 

does not involve any hardware, except for the DC motor,  as the parameter is 

needed for the derivation of the transfer function in the beginning of the project. 

The datasheet for the microcontroller is needed as well to know the configuration 

which is  used in  the program.  These datasheet  are available  online,  from the 

Motorola  official  online  resource.  Therefore,  there  is  no  cost  involve.  This 

project is considered an initial research, and it is recommended that any future 

project is based on this research, to apply it onto real observation. When applied 

onto real application, this project has a good potential to be commercialized in 

the future.
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APPENDIX A

Data Sheets













APPENDIX B

Program Listing



/*this program initializes constants and variables, 

  sets up required on-chip peripherals, and waits for interrupts to occur.*/

/*uses RTI to establish precise time base for performing the PID routine.*/

/*uses RTI to do PID loop PWM duty cycle calculations*/

/*uses RTI to to perform I/O using DOIO assembly language function*/

#include <stdio.h> /*Provides the core input and output capabilities of the C 

language*/

#include <io6811k4.h>

#include <int6811k.h>

#include <math.h> /*to add floating point math, when 

compiling in any C compilers*/

zpage unsigned int TOFCOUNT; /* declare variables */

zpage float CMNDVX;

zpage float ADRCX;

zpage float ADRCXM1;

zpage float ADRCXM2;

zpage float ADRCXM3;

zpage float ERRX;

zpage float ERRM1X;

zpage float ERRM2X;

zpage float ERRM3X;

zpage float PERDT;

zpage float NEWDTY;

zpage float OLDDTY;

zpage float KP;

zpage float KD;

zpage float KI;



extern int ASSEM (void); /* prototype for assembly routine.*/

/* any void statements indicate that no arguments 

are being

   passed to or from the interrupt routine.*/

/* declaration that are not definition. */

void main() /* main program. void means function do not 

return a value*/

{

CMNDVX = 1.5;

PERDT = 0.016383; /* RTI and therefore PID loop period = 16.383 ms.*/ 

/* value is different if being used in real 

applications,depends on performance. */

KP = 9.6;

KI = 666.67; 

KD = 0.000375;

OLDDTY = 1.9; /* start out with pwm set fairly high */

PORTA = 0x00; /* this will be used for a scope trigger */

DDRA = 0xFF; /* set PORTA as output */

PACTL = 0x03; /* Pulse Accumulator Control. set RTI to 16.383 ms  */

TMSK2 = 0x40; /* Timer Interrupt Mask. enable RTI interrupts */

OPTION = 0x90; /* System Configuration Option */

/* enable A/D charge pump.The (A/D) converter 

system uses an all-capacitive charge-redistribution technique to convert 

analog signals to digital values. */

PWPER1 = 0xFF; /* Pulse-Width Modulation Timer Period 1.Determines period of 

associated PWM channel. set up PWM channel 1 at 15.625 kHz */

PWDTY1 = 0xFF; /* Pulse-Width Modulation Timer Duty Cycle 1. Determines duty 

cycle of associated PWM channel.*/



PWPOL = 0x01; /* Pulse-Width Modulation Timer Polarity 

*/

DDRH = 0x00;

PWEN = 0x01; /* Pulse-Width Modulation Timer Enable 

*/

TFLG2 = 0x40; /* Timer Interrupt Flag */

enable_interrupt(); /* wait here for RTI to cause loop execution */

wait_for_interrupt();

for (;;) {

; }

}

interrupt void IRQ_interrupt(void) /* Interrupt Request.should initialize all 

interrupts...refer to either the act of interrupting the 

bus lines used to signal an interrupt */

{

PORTA = 0xFF;

PORTA = 0x00;

}

interrupt void TO_interrupt(void)

{

TOFCOUNT++ ;

}

interrupt void RTI_interrupt(void) /*PID LOOP/PWM routine. declare as an interrupt 

function istead of a normal subroutine. */

{

PORTA = 0xFF; /* scope strobe */

ASSEM (); /* read A to D and output the duty cycle calculated 

last period */

ADCTL = 0x10; /* begin new conversion cycle */

ERRX = (CMNDVX - ADRCX); /* calculate current error */



/* The statement below is the entire floating point PID loop */

NEWDTY = KP*(ERRX) + KI*PERDT*(CMNDVX - (ADRCX + ADRCXM1)/2) + 

(KD/(6*PERDT))*((ERRX - ERRM3X) + 3*(ERRM1X - ERRM2X)) + OLDDTY;

if (NEWDTY > 1.99609) /* test for result being in usable */

NEWDTY = 1.99609; /* limits and set PWM duty cycle if */

else if (NEWDTY < 1.0) /* beyond saturation */

NEWDTY = 1.0;

TFLG2 = 0x40; /* clear RTI flag */

ADRCXM1 = ADRCX; /* update A/D result for next cycle */

ERRM3X = ERRM2X; /* update error pipeline */

ERRM2X = ERRM1X;

ERRM1X = ERRX;

OLDDTY = NEWDTY; /* update old duty cycle for next calculation   period */

PORTA = 0x00; /* scope strobe. strobe is a spot of higher 

than normal intensity in the sweep of an indicator  on a 

scanning device (oscilloscope), as on a radar screen, used 

as a reference mark for determining the position or 

distance of the object scanned or detected. */

}



*********************************************************

* ASSEM assembly function *

* This routine handles the conversion between *

* 8 bit register values and the C float variables *

*********************************************************

MODULE ASSEM

PUBLIC ASSEM

P68H11

RSEG CODE

PWDTY1 set $006c REGISTER LOCATIONS

ADDR1 set $0031

EXTERN ADRCX:ZPAGE EXTERNAL  VARIABLE 

LOCATIONS

EXTERN NEWDTY:ZPAGE

ASSEM:

LDAA #$3F

CLRB

STD ADRCX INITIALIZE FLOAT LOCATION.

LDAA ADR1 GET CHANNEL 1 A/D RESULT.

LSRD SHIFT TO FLOAT MANTISSA POSITION.

ORAA #$80 OR IN LEAST SIGNIFICANT EXP BIT

STD ADRCX+1 AND STORE IT IN FLOAT VARIABLE.

CLRB CLEAR LEAST SIGNIFICANT

STAB ADRCX+3 FLOAT BYTE.

LDD NEWDTY+1 GET TWO BYTES OF FLOAT MANTISSA.

LSLD SHIFT TO CORRECT REGISTER

POSITION.

STAA PWDTY1 OUTPUT TO PWM DUTY

REGISTER.

RTS

END



NEWDTY = KP*(ERRX) + KI*PERDT*(CMNDVX - (ADRCX + ADRCXM1)/2)

+ (KD/(6*PERDT))*((ERRX - ERRM3X) + 3*(ERRM1X - ERRM2X))

+ OLDDTY
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