
UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS♦

JUDUL: PID DIGITAL CONTROLLER FOR DC MOTOR SPEED USING

MC68HC11 MICROCONTROLLER

 SESI PENGAJIAN:________________

Saya __
(HURUF BESAR)

mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

(Mengandungi maklumat yang berdarjah keselamatan
SULIT atau kepentingan Malaysia seperti yang termaktub

di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

√ TIDAK TERHAD

 Disahkan oleh:

___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

NO. 17 REJANG 21 Puan Haszuraidah binti Ishak
JALAN SIBU, TAMAN TUNKU (Nama Penyelia)
98000 MIRI SARAWAK

Tarikh: 17 NOVEMBER 2007 Tarikh: 17 NOVEMBER 2007

CATATAN: * Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini
perlu dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana
secara

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2007/2008

SHARON PETERUS (861116-13-5148)

PID Digital Controller for DC Motor Speed

Using MC68HC11 Microcontroller

SHARON PETERUS

This thesis is submitted as partial fulfillment of the requirement

for the award of the

Bachelor Degree of Electrical Engineering

(Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER 2008

“I hereby acknowledge that the scope and quality of this thesis is qualified for the award

of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

 Name : MDM. HASZURAIDAH BINTI ISHAK

 Date : 17 NOVEMBER 2007

“All the trademark and copyrights use herein are property of their respective owner.
References of information from other sources are quoted accordingly; otherwise the
information presented in this report is solely work of the author.”

Signature : ____________________________

Author : SHARON PETERUS

Date : 17 NOVEMBER 2007

DEDICATION

To my beloved parents, sisters and brother.

 May God bless all of you, always.

ACKNOWLEDGEMENT

I would like to take this opportunity to express my deepest gratitude to my project

supervisor, Mdm. Haszuraidah Ishak who has persistently and determinedly assisted me

along the progress of the project. It would have been difficult to complete this project

without enthusiastic support, insight and advice given by her.

My outmost thanks to my family members, for their endless love, care and

support throughout my academic years in Universiti Malaysia Pahang.

Special thanks to FKEE lecturers and staffs, for the help and advises in order for

to complete my project. Suggestions and criticisms from my friends have always been

helpful as well in finding solutions to my problems. Thank you all.

Finally, I would like to express my thanks and gratitude to those who involves

directly or indirectly in the completion of my project. Unfortunately, it is not possible to

list all of them in this limited space.

Thank you so much. Your sincere help will be remembered for life.

ABSTRACT

 The proportional-integral-derivative (PID) controllers are widely used in many

industrial control systems for several decades since Ziegler and Nichols proposed their

first PID tuning method. This is because the PID controller structure is simple and its

principle is easier to understand than most other advanced controllers. On the other hand,

the general performance of PID controller is satisfactory in many applications. For these

reasons, the majority of the controllers used in industry are of PI/PID type. PID

controllers are widely used for process control applications requiring very precise and

accurate control. The purpose of the motor speed controller is to take a signal

representing the demanded speed, and to drive a motor at that speed. The controller does

not actually measure the speed of the motor. Thus, it is called an Open Loop Speed

Controller. Motors come in a variety of forms, and the speed controller's motor drive

output will be different dependent on these forms. The speed controller presented here is

designed to drive special dc motor which is not easily available anywhere in store, thus it

is a good example to be used due to the special characteristics and parameters. Matlab

Simulink® is an important tool used it this project, from designing the mathematical

model of the dc motor, obtaining the transfer function, and designing the PID controller

using both model and programming using m-files. The transfer function will be linearized

and used for tuning the gain of PID controller like KP, KI, and KD. Simulink is chosen to

simulate the performance of the control system.

ABSTRAK

Sistem pengawal PID digunakan dengan meluas dalam jangka masa beberapa

puluh tahun kebelakangan ini, semenjak Ziegler dan Nichols memperkenalkan kaedah

PID yang pertama. Ini kerana struktur sistem pengawal PID yang senang difahami

berbanding dengan kaedah pengawalan yang lain. Banyak aplikasi menggunakan kaedah

pengawalan ini kerana kestabilan system yang boleh diaplikasikan dalam pelbagai

system. Pengawal PID amat berguna bagi aplikasi yang memerlukan sistem kawalan

yang tepat dan stabil. Tujuan utama sistem pengawalan kelajuan motor adalah untuk

mendapatkan signal bagi kelajuan yang dikehendaki dan mengurangkan kesalahan untuk

mendapatkan sistem yang tepat dan stabil. Sistem kawalan yang akan dibuat ini tidak

mengukur halaju motor tersebut, oleh itu ia dipanggil Sistem Kitaran Terbuka. Terdapat

banyak jenis motor di dalam pasaran, di mana setiap system pengawalan kelajuan

berbeza bergantung kepada jenis motor yang digunakan. Dari model yang dihasilkan,

rangkap pindah boleh diperolehi. Ragkap pindah ini dilinearkan dan digunakan untuk

talaan gandaan pengawal PID. Perisian Simulink dipilih untuk mengkaji prestasi Sistem

Kawalan Kelajuan Motor ini.

TABLE OF CONTENTS

TITLE PAGE

TITLE PAGE i

DECLARATION ii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF FIGURES xii

LIST OF TABLES xiv

LIST OF ABBREVIATIONS xv

LIST OF APPENDIXES xvii

CHAPTER 1 : INTRODUCTION 1

1.1 : Introduction 1

1.2 : Project Objectives 3

1.3 : Project Scopes 4

1.4 : Thesis Outline 5

CHAPTER 2 : LITERATURE REVIEW 6

CHAPTER 3 :

TRANSFER FUNCTION DERIVATION AND MATHEMATICAL

MODEL DEVELOPMENT (METHODOLOGY) 12

3.1 : Introduction 12

3.2 : Proportional-Integral-Derivative Controller 13

3.2.1 : Derivation of the Transfer Function of the DC Motor 14

3.2.1.1: Manual Calculation of the Transfer Function 15

3.2.2 : Mathematical Model of the DC Motor 18

CHAPTER 4 :

CONTROLLER DEVELOPMENT AND SYSTEM OPERATION 21

4.1 : Microcontroller System Board Module 21

4.2 : Direct Current Motor 23

4.3 : The PID Controller 24

4.3.1: PID Routine in MC68HC11 25

4.4 : C Language Implementation 28

4.5 : Pseudocode for the PID Controller Algorithm 29

CHAPTER 5 : RESULT AND TESTING 31

5.1 : PID Tuning 31

5.2 : Model of the PID Controller 33

5.3 : The Transient Responses 34

5.3.1: Response of Speed without any Controller 34

5.3.1.1: Graph Analysis

5.3.2: Response of Speed with a Proportional Controller 35

5.3.2.1: Graph Analysis

5.3.3: Response of Speed with a Proportional-Integral Controller 36

5.3.3.1: Graph Analysis 34

5.3.4: Response of Speed with a Proportional-Integral-Derivative

 Controller 37

5.3.4.1: Graph Analysis 35

5.4 : Discussion 38

CHAPTER 6 :

CONCLUSION AND FUTURE RECOMMENDATION 39

6.1 : Conclusion 39

6.2 : Suggestion 40

6.1.1: Microcontroller 40

6.1.2: Tuning Method 40

6.3: Costing and Commercialization 41

REFERENCES 42

APPENDIX A 43

APPENDIX B 49

LIST OF FIGURES

FIGURE NO. TITLE PAGE

3.1 DC Motor PID Controller Model 13

3.2 DC Motor PID Controller Model 2 13

3.3 Linear Model of the DC motor built in MATLAB 18

3.4 Open-loop step response of the extracted transfer function 18

4.1 Microcontroller System Board Module 19

4.2 System Board 20

4.3 The DC Motor 21

4.4 PID Flow Diagram 23

5.1 Model of PID Controller in MATLAB 31

5.2 Transient Response of DC Motor Speed without Controller 32

5.3 Transient Response of DC Motor Speed with a

P Controller 33

5.4 Transient Response of DC Motor Speed with a

PI Controller 34

5.5 Transient Response of DC Motor Speed with a

PID Controller 35

LIST OF TABLES

TABLE NO. TITLE PAGE

5.1 The PID tuning equation 32

5.2 Ziegler-Nichols Tuned Parameter, Frequency Response 32

5.3 Summation of Graph Analysis 38

LIST OF ABBREVIATIONS

P Proportional

PI Proportional-Integral

PID Proportional-Integral-Derivative

DC Direct Current

DSP Digital Signal Processing

MCU Microcontroller

EMF Electromagnetic Field

PC Program Counter

RAM Random Access Memory

LIST OF APPENDIXES

APPENDIX NO. TITLE PAGE

A Data Sheets 43

B Program Listing 49

CHAPTER 1

INTRODUCTION

1.1 Introduction

The proportional-integral-derivative (PID) controllers are widely used in many

industrial control systems for several decades since Ziegler and Nichols proposed their

first PID tuning method. This is because the PID controller structure is simple and its

principle is easier to understand than most other advanced controllers. On the other

hand, the general performance of PID controller is satisfactory in many applications. For

these reasons, the majority of the controllers used in industry are of PI/PID type. PID

controllers are widely used for process control applications requiring very precise and

accurate control. Unlike on/off controls, the smooth and steady state control is

achievable using these controllers. Various models are available featuring single loop

with universal input, two to eight loop with eight independent inputs and sixteen control

outputs. All types of digital and analog outputs are available to operate final controlling

devices such as Solid State Relays, Contactors, Solenoid valves, Modulating motorized

valves, thyristorized power packs etc.

The purpose of a motor speed controller is to take a signal representing the

demanded speed, and to drive a motor at that speed. The controller may or may not

actually measure the speed of the motor. If it does, it is called a Feedback Speed

Controller or Closed Loop Speed Controller, if not it is called an Open Loop Speed

Controller. Feedback speed control is better, but more complicated, and may not be

required for a simple robot design. Motors come in a variety of forms, and the speed

controller's motor drive output will be different dependent on these forms. The speed

controller presented here is designed to drive a special dc motor which is suitable for

education purposes.

In this project, Motorola 68HC11 processor board will be used for all

decentralized processing duties. This Motorola boards provide high-speed analog to

digital conversion along with high reliability and robustness. This makes the 68HC11 is

well suited for sensor translation as well as motor control.

Rapid progress in microelectronics and microcontrollers in recent years has made

it possible to apply modern control technology to automobiles that need real-time

control. DC motors control, many of these operations and therefore there is a need for

implementing effective control strategies for digital control of these motors. Therefore,

it is quite important to develop real-time DC motor control strategies such that these

devices are effectively integrated with their control electronics using the MC68HC11

microcontroller. Realizing the fact that large number of motors are utilized in modern

vehicles and there is especially a need to control these small motors using a common bus

with interrupt priorities, such real-time control is extremely essential.

1.2 Project Objective

The objectives of this PID Digital Controller for DC Motor Speed using MC68HC11

microcontroller are to design a closed-loop controller, a very common means of keeping

motor speed at the required “setpoint” under varying load conditions, to implement a

PID controller system onto a MC68HC11 microcontroller and to designate in advance

the mathematical model of the system to be controlled with the purpose of simulating its

dynamic behavior in open-loop mode.

In general, the main purpose of this project is to propose a DC motor control design

approach using the PID algorithm and MC68HC11 microcontroller that contains an

embedded closed loop digital controller for the motor speed correction.

1.3 Project Scopes

The scopes of this project include deriving a transfer function for a DC motor and

simulating the results in Simulink® MATLAB application. A model of a PID controller

algorithm is then designed and simulated in Simulink® MATLAB application. The usge

of the PID controller is then implemented based on the configuration of the MC68HC11

microcontroller.

1.4 Thesis Outline

The thesis is orderly organized into 6 chapters and they are outlined as below:

Chapter 1 explains the proportional-integral-derivative (PID) controllers and

essential concepts which guide to the development of the digital controller system. It

also outlines objective and scope of this project.

Chapter 2 describes the overview of the project elaborately. The literature review

will be focused on hardware and software design. Explanation will be based on theory

and conceptual ideas. Some practical approach in this project will also be discussed.

Chapter 3 discusses the derivation of the transfer function and development of the

mathematical model of the DC motor.

Chapter 4 provides description and discussion on the design of the PID Controller. It

also indicates the development of the controller and system operation.

Chapter 5 presents various testing and results that are conducted.

Lastly, Chapter 6 summarizes the overall conclusion for this thesis and a few

suggestion and recommendation for future development.

CHAPTER 2

LITERATURE REVIEW

There are many ways to control DC motors. Open-loop current control acts

directly on torque and thus protects the electronics, the motor and the load. Open-loop

variable voltage control makes sense if the motor and electronics are not overloaded

when the motor stalls. Open-loop variable voltage control with a current limiting circuit

constitutes the simplest way of varying speed. However, a closed-loop system is needed

if precision is called for in selecting speeds. In order to be able to build a closed loop

controller, we need some mean of gaining information about the rotation of the shaft like

the number of revolutions executed per second, or even the precise angle of the shaft.

This source of information about the shaft of the motor is called "feed-back" because it

sends back information from the controlled actuator to the controller.

In a closed loop speed controller, a signal proportional to the motor speed is fed

back into the input where it is subtracted from the set point to produce an error signal.

This error signal is then used to work out what the magnitude of controller output should

be to make the motor run at the required set point speed. For example, if the error speed

is positive, the motor is running too fast so that the controller output should be reduced

and vice-versa. The clever part is how the output drive is worked out. [12] In a closed-

loop configuration, a portion of the information is fed back from the process and

subtracted from the reference signal in order to calculate the error signal. This error

signal is used by the PID to adjust the control input such that the process output can

reach the given reference. [15] In other words, a closed loop controller will regulate the

power delivered to the motor to reach the required velocity or speed. If the motor is to

turn faster than the required velocity, the controller will deliver less power to the motor.

Controlling the electrical power delivered to the motor is usually done by Pulse Width

Modulation.

The aim of a control circuit is to keep the permanent magnet dc motor running at

a constant speed, set externally. To do this, the current through, and the voltage across,

the brushes of the motor are monitored. The voltage consists of two components: First, a

back-EMF generated by the windings of the armature moving through the magnetic field

of the motor. Secondly, there’s a voltage caused by the current passing through the real

resistance of the windings and the brushes.

Most of real plant operates in a wide range of operating conditions; the

robustness is then an important feature of the closed loop system. When this is the case,

the controller has to be able to stabilize the system for all operating conditions. To this

end, it is possible to employ an internal-model-based PID tuning method [9 and 3].

However, this method gives very slow response to load disturbance for lag-dominant

processes because of the pole-zero cancellations inherent in the design methodology [2].

Another popular approach with similar emphasis is the tuning of PI or PID controller by

the gain and phase margin specifications [7 and 1]. Gain margin and phase margin have

always served as important measures of robustness. It is well known that phase margin is

related to the damping of the system, and can therefore also serve as a performance

measure [4]. In this way, numerous progresses have been made to improve the

performances of the PID control [6]. In particular, tuning methods based on optimization

approach have recently received more attention in the literature, with the aim of ensuring

good stability robustness of the controlled system [8 and 5]. However, these new

methods are not easy to use for the operating engineer who is the main user of the PID

controller.

PID controllers are widely used in the process-control industry, mainly because

of their effectiveness and simple structure. A feedback-control scheme can be

implemented in a simple 8-bit microcontroller (MCU). Despite the fact that the MCU is

among the simpler ones available, the time it requires to compute the whole program and

bring the motors to their maximum reference speed (9,100RPM) was only 866ms in the

worst case. So it is believed that using the newer MCUs in a closed-loop configuration

can improve the control of some electro-mechanical actuators such as valves or motors

and improve the performance of some processes with slow dynamic behavior. [15]

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4N-4CF16Y5-1&_user=4406426&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000063100&_version=1&_urlVersion=0&_userid=4406426&md5=087e9fe1d5a03d794b832259d7cd8cd6#bib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4N-4CF16Y5-1&_user=4406426&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000063100&_version=1&_urlVersion=0&_userid=4406426&md5=087e9fe1d5a03d794b832259d7cd8cd6#bib2

The main PID controller routine was designed to be fairly general purpose and

hence modular. Whilst here it is used to control a DC motor, it could be re-deployed to

other situations where some parameter has to be controlled to a set value under varying

conditions. The actual control software is located in a single function and its major

inputs and output are held in a structure. Although it was designed originally for a

specific job it is really only intended as an example of the basic techniques involved and

to allow those with no control system knowledge to experiment with a simple PID

system.

Currently, several manufacturers make 16- and 32-bit microcontrollers (MCUs)

with features that enable easy control of almost any process of medium complexity.

Eight-bit microcontrollers still dominate the market, however, because of their small

size, low cost, and simple programming. Because of these advantages, 8-bit MCUs are

found in process control, automotive, industrial, and appliance applications, among

many others. Some of the newer MCUs provide clock speeds from 4 to 40MHz; 64KB

of internal flash memory and 1KB of RAM in some models; on-chip analog-to-digital

converters (ADCs), digital-to-analog converters (DACs), or pulse-width modulator

(PWM) outputs; a watchdog timer; 16-bits timers; and serial or USB ports.

Although the features of 8-bit MCUs are continually improving, in most cases

these new features are ignored by designers because they're using the chips for the

control of states, which don't require the newer features. [10 AND 11] Recently a novel

method has been used to exploit these kinds of MCUs by using them in a closed-loop

configuration aided with the well-known classical control theory. Examples of work on

this topic are available in the literature. [12, 13, and 14] In such applications the authors

demonstrated that feedback control improves the control of some DC motors. It's

important to mention that, in the examples, except in Johnston, [13] the realization of the

PID (proportional-integral-derivative) controllers were implemented using 16-bit MCUs

in Hitex's paper [12] or, as in Neary,[14] where an integrated data acquisition system

particularly the model ADuC845 by Analog Devices, was used.

Until few years ago, these kinds of tasks (micro-positioning or servo control) had

been addressed using digital signal processors (DSPs), mainly because such devices are

faster and have higher precision than the 8-bits MCUs. However, some applications

don't require high precision or the team simply can't justify the cost of a DSP. It's usually

cheaper to use an 8- or 16-bit MCU without diminishing performance.

Generator represents the back electromotive force (BEMF) generated by the

motor’s rotation and which opposes the electromotive force of the supply. The value of

the BEMF is a function of the motor’s angular velocity. If the motor has no external load

and its velocity is not limited, it will accelerate up to the velocity w such that V(w)

equals the supply voltage Vs. [10] In this situation the two EMF’s cancel each other and

thus the motor torque responsible for acceleration will go away. In reality V(w) is

always slightly less than Vs in which case a small motor torque is necessary to

compensate resistive torque due to internal friction. Thus it can be seen that the motor’s

BEMF can reach elevated values which in some cases can create application problems

due to a certain type of stress.

Driving DC motors with integrated circuits seems at first to be rather simple. Yet

by analyzing the actual application it is possible to see if there exist conditions causing

stresses to the IC during operation which in the end can cause failure. With proper

design and analysis in critical applications it is possible to avoid conditions which lead

to IC damage. A closed loop controller can be an analog circuit, a digital circuit made of

logic gates, or a micro controller. Generally, a micro controller is the option that will

provide more design flexibility. Recent microcontrollers running at very high clock rates

can completely replace similar analog controllers, and can even be cheaper.

In a closed loop system, a microcontroller will have two main tasks:

• Constantly adjust the average power delivered to the motor to reach the required

speed.

• Precisely calculate the position/angle of the motor's output shaft.

At first sight it might be imagined that something simple like "if the error speed is

negative, multiply it by some scale factor (usually known as "gain") and set the output

drive to this level", i.e. the voltage applied to the motor is proportional to the error

speed. In practice, this approach is only partially successful for the following reason: if

the motor is at the setpoint speed under no load there is no error speed so the motor free

runs. If a load is applied, the motor slows down so that a positive error speed is

produced. The output increases by a proportional amount to try and restore the speed.

However, as the motor speed recovers, the error reduces and so therefore does the drive

level. The result is that the motor speed will stabilise at some speed below the setpoint at

which the load is balanced by the error speed x the gain. If the gain is very high so that

even the smallest change in motor speed causes a significant change in drive level, the

motor speed may oscillate or "hunt" slightly . This basic strategy is known as

"proportional control" and on its own has only limited use as it can never force the motor

to run exactly at the setpoint speed.

The next improvement is to introduce a correction to the output which will keep

adding or subtracting a small amount to the output until the motor reaches the setpoint,

at which point no further changes are made. In fact a similar effect can be had by

keeping a running total of the error speed speeds observed for instance, every 25ms and

multiplying this by another gain before adding the result the proportional correction

found above. This new term is based on what is effectively the integral of the error

speed.

Thus far we have a scheme where there are two mechanisms trying to correct the

motor speed which constitutes a PI (proportional-integral) controller. The proportional

term is a fast-acting correction which will make a change in the output as quickly as the

error arises. The integral takes a finite time to act but has the ability to remove all the

steady-state speed error.

A further refinement uses the rate of change of error speed to apply an additional

correction to the output drive. This means that a rapid motor deceleration would be

counteracted by an increase in drive level for as long as the fall in speed continues. This

final component is the "derivative" term and it is a useful means of increasing the short-

term stability of the motor speed. A controller incorporating all three strategies is the

well-known Proportional-Integral-Derivative, or "PID" controller.

For best performance, the proportional and integral gains need careful tuning.

For example, too much integral gain and the control will tend to over-correct for any

speed error resulting in oscillation about the setpoint speed. Several well-known

mathematical techniques are available to calculate optimal gain values, given knowledge

of the combined characteristics of the motor and load, i.e. the "transfer function".

However, some simple rules of thumb and a little experimentation can yield satisfactory

results in practical applications.

CHAPTER 3

METHODOLOGY

(TRANSFER FUNCTION DERIVATION AND MATHEMATICAL MODEL

DEVELOPMENT)

3.1 Introduction

The mathematical model for the transfer function of the DC motor is derived and

simulated in the Simulink® MATLAB application to observe its dynamic behavior. The

transfer function model of the motor is then used to design the digital controller.

3.2 Proportional-Integral-Derivative Controller

Figure 3.1: DC Motor PID Controller Model

The controller model shows a closed-loop controller, where the feedback from the

output of the motor, which is speed, is analyzed again at the set-point. This ensures that

the error is reduced from time-to-time, reducing the error each time.

Figure 3.2: DC Motor PID Controller Model 2

A more detailed model is shown in Figure 3.2. The error signal calculates the current

process variable, deducting it from the set point value to obtain the value of the error

signal.

desired sp V
Motor



actual speed

- compute V using
PID feedback

sp pv

Error signal e

3.2.1 Derivation of the Transfer Function

The transfer function of the DC motor (CLIFTON 2250 SERVO

MOTOR) is derived by using the values obtained from the datasheet of the motor and

can be proved by using MATLAB SIMULINK® application.

The first step of this project is modeling the DC servo motor. Motor modeling is

required in order to obtain the transfer function of the motor which is providing the open

loop system of this project. Then PID controller is added to change the system to closed

loop system. Below is the step of the motor modeling.

DC Servo Motor Parameters:

Electric Resistance, R = 2.7 Ω

Electric inductance, L = 0.004 H

Electromotive force constant (K = Ke = Kt = 0.105 Vs rad-1)

Moment of inertia of the rotor, J = 0.0001 Kg m2

Damping ration, B = 0.0000093 Nms rad-1

3.2.1.1 Manual Calculation of the Transfer Function

ara
a V

LL

K
i

L

R

dt

di 1
 

ra
r

J

B
i

J

K

dt

d



 (3.1)

a
r

a

r

a

VL
i

J

B

J

K
L

K

L

R

dt

d
dt

di

































































0

1


 (3.2)

    a
r

a V
i

y 010 










 (3.3)

a
r

a

r

a

V
i

dt

d
dt

di

































































0
004.0

1

0001.0

0000093.0

0001.0

105.0
004.0

105.0

004.0

7.2















093.01050

25.26675
A 










0

250
B

 10C  0D

  




















093.01050

25.26675

0

0

s

s
AsI (3.4)














093.01050

25.26675

s

s

From  
)(

)(1

AsIdef

AsIadj
AsI




 

(3.5)

If 






















ac

bd

bcad
A

dc

ba
A

1
1;

(3.6)

ad-bc = (s-675)(s+0.093)-(26.25)(1050)

 = s2 + 0.093s – 675s + 62.775 + 27562.5

 = s2 + 675.093s + 27625.275

   












 

6751050

25.26093.0

27625.275675.093ss

1
2

1

s

s
AsI

27625.275675.093ss

6751050

25.26093.0

2 














s

s

 (3.7)

We get,

 

   

27625.275675.093ss

262500

0
0

250

27625.275675.093ss

6751050

25.26093.0

10

)(

)(
)(

2

2

1




























 

s

s

DBAsIC
sU

sY
sT

27625.275675.093ss

262500

)(

)(
)(

2 


sU

sY
sT

Thus, the transfer function of the DC Motor, TF = 262500

 s2 + 675.093s + 27625.275

3.2.2 Mathematical Model of the DC Motor

 Figure 3.3: Linear Model of the DC motor built in MATLAB

This system is modeled by summing the torque acting on the rotor inertia and

integrating the acceleration to give the velocity. Kirchoff’s law is applied to the armature

circuit. First, the integrals of the rotational acceleration and the rate of change of the

arm,ature current is modeled.

An Integrator block (from the Linear block library) is inserted and lines are

drawn to and from its input and output terminals. The input line "d2/dt2(theta)" and the

output line "d/dt(theta)" are labeled as shown above. Another Integrator block is inserted

above the previous one and lines are drawn to and from its input and output terminals.

The input is "d/dt(i)" and the output line "i" are labeled.

The angular acceleration is equal to 1/J multiplied by the sum of two terms (one

pos., one neg.). Similarly, the derivative of current is equal to 1/L multiplied by the sum

of three terms (one pos., two neg.). Insert two Gain blocks, (from the Linear block

library) one attached to each of the integrators. The gain block corresponding to angular

acceleration is edited by double-clicking it and changing its value to "1/J". The label of

this Gain block is changed to "inertia" by clicking on the word "Gain" underneath the

block. Similarly, the other Gain's value is edited to "1/L" and it's label is changed to

Inductance. Two Sum blocks (from the Linear block library) were then inserted, one

attached by a line to each of the Gain blocks. The signs of the Sum block corresponding

to rotation to "+-" is changed since one term is positive and one is negative. The signs

of the other Sum block is also changed, to "-+-" to represent the signs of the terms in

Kirchoff's equation.

The torqueses which are represented in Newton's equation are then added. First,

the damping torque is added. A gain block is inserted below the inertia block, selected

by single-clicking on it, flipping it left-to-right. The gain value is then set to "b" and

renamed to "damping". A line (hold Ctrl while drawing) is tapped off the rotational

integrator's output and connected it to the input of the damping gain block. A line is

drawn from the damping gain output to the negative input of the rotational Sum block.

The torque from the armature is added by inserting a gain block attached to the

positive input of the rotational Sum block with a line. It's value is then edited to "K" to

represent the motor constant and it is labeled with "Kt". The line leading from the

current integrator is drawn and connected to the Kt gain block.

The voltage terms which are represented in Kirchoff's equation is then added.

First, the voltage drop across the coil resistance is added in. A gain block above the

inductance block is added and flipped left-to-right. The gain value is set to "R". A line

(hold Ctrl while drawing) is then tapped off the current integrator's output and connected

to the input of the resistance gain block. A line is drawn from the resistance gain output

to the upper negative input of the current equation Sum block.

The back emf from the motor is added by inserting a gain block which is

attached to the other negative input of the current Sum block with a line. It's value to

"K" to represent the motor constant and labeled with "Ke". A line is tapped off the

rotational integrator output and connected to the Ke gain block.

The third voltage term in the Kirchoff equation is the control input, V. A step

input is applied into the model. A Step block (from the Sources block library) is inserted

and connected with a line to the positive input of the current Sum block.

To view the output speed, a Scope (from the Sinks block library) is inserted anc

connected to the output of the rotational integrator.

To provide an appropriate unit step input at t=0, the Step block double-clicked

and the Step Time is set to "0".

The output response:-

Figure 3.4: Open-loop step response of the extracted transfer function

CHAPTER 4

CONTROLLER DEVELOPMENT AND SYSTEM OPERATION

4.1 Microcontroller System Board Module

Figure 4.1 : Microcontroller System Board Module

Clock Circuit

Power Circuit

Reset Circuit

EIA233
Circuit

MC68HC11

MC68HC11 is chosen to be implemented in this project due to its high

performance, high speed, low power consumption, various function and features.

Bootstrap mode is chosen to operate in this project because its does not require extra

input and output ports. Bootstrap mode allows special purpose programs to be loaded into

internal RAM. The system board consists of power circuit, reset circuit, clock circuit and

EIA233 module. Power circuit is needed to provide constant 5V voltage to the system.

Reset circuit is used to reset microcontroller process. Clock circuit is required to supply

constant 2MHz clock speed. EIA 233 module is important to transfer program between

PC and micro controller .

One of the advantages of the system is that the MC68HC11 Development Board offers

user to use the system in various ways. One of them is to use only system board as

shown in Figure 3.7. The user can also use the system board and interface with its own

application as shown in Figure 3.8 or to the some extent, user can use both application

board and system board to interface with its own application..

Figure 4.2: System Board

M
ic

ro
co

nt
ro

lle
r

(M
C

U
)

Bus Memory
RAM

ROM

RS23
3

To
MCU

To PC

4.2 Direct Current Motor

The model of the DC motor used in this project is CLIFTON PRECISION SERVO

MOTOR MODEL JDH-2250-HF-2C-E. Various types of motor are available in the

market now, such as DC motor, stepper motor and servo motor. In this project, the speed

of DC servo motor is an importance. The speed of a DC servo motor is directly

proportional to the supply voltage. The speed controller works by varying the average

voltage sent to the motor. Therefore the DC servo motor (Clifton Precision JDH 2250-

HF-2C-E) was selected because servo motors have low-inertia armatures that respond

quickly to excitation-voltage changes. Servomotors have three wires; usually red, black

and white. The red wire is for +VDC, the black for ground and the white is for position

control.

Figure 4.3: The DC Motor

4.3 The PID Controller

The derivation of the transfer function of the PID controller looks like the following:

Kp + Ki + Kds = Kds 2 + K ps + Ki

 s s (4.1)

Kp = Proportional gain

Ki = Integral gain

Kd = Derivative gain

The PID controller routine is designed by simulating the parameters in the

Simulink® MATLAB software.

C++ language MC68HC11 is used to program the MC68HC11 microcontroller.

Bootstrap mode is used thus the address must in between $B600 and $B7FF. If there is

more program to write and address must be added, then expanded mode will be used in

which the address is from $E000 to $FFFF.

4.3.1 PID Routine in MC68HC11

Figure 4.4: PID Flow Diagram

There is a desired setpoint in our process (Gd) and a measurement of the actual value G(t)

in time.

Error is: e(t) = Gd - G(t) ; as e = sp – pv (4.2)

Output correction x(t) for the PID controller is:

x(t) = KP e(t) + KI ∫e(t) + KD de(t) | t = T
 dt (4.3)

where KP, KI, and KD are constants.

Now, rewriting the integral:
 t

x(t) = KP e(t) + KI ∫ [Gd - G(t)]dt + KD de(t) | t = T
 t=0 dt (4.4)

Let A0 = Kp + Ki Δt + Kd Δt = sampling time interval

 Δt (4.5)

e = set point – process variable

 A1 = Kp + 2 Kd

 Δt (4.6)

A2 = Kd

 Δt

Thus, cn = cn-1 + A0en – A1en-1 + A2en-2

(4.7)

From Equation

We get the PID Digital Equation;

C0 = C1 + A0E0 – A1E1 + A2E2 (4.8)

Where C0 = present output (cn)

C1 = previous output (cn-1)

E0 = present error (en)

E1 = previous error (en-1)

E2 = error preceding previous error (en-2)

To introduce discrete time, let t = kT where k = 1,2,...,n and T = the sampling and control

update period. Now, t0 = (k – 1)T. The integral evaluated from

(k – 1)T to kT can be approximated using the trapezoidal integration rule. The derivative

of the error term is simply the rate of change of error.

The form which can be executed directly on the microprocessor is:

x (t) = KP e(t) + KI (Gdt - T (G(Kt) +G[(k -1)T])) + K D ((e(kT) - e(k - 3) +3(e(k - 1) - e (k - 2)))
 2 6T

This term is added to the current output and put into the PWM control register at the

beginning of the next calculation cycle. Substituting the microcode labels for constants

and variables into the equation and using C language operator notation (refer appendix)

gives:

NEWDTY = KP * (ERRX) + KI * PERDT * (CMNDX - (ADRCX + ADRCXM1) / 2) +
 (KD / (6 * PERDT)) * ((ERRX - ERRM3X) + 3 * (ERRM1X - ERRM2X)) +
 OLDDTY

(4.9)

The function of the proportional term is clear, but the derivative and integral terms may

need a brief explanation. When a system with only proportional control is off the

specified setpoint, the controller will increase the control voltage until the error signal is

zero, and the system thus returns to the setpoint with more applied voltage than is

required for maintaining equilibrium. This causes overshoot and, as the process

continues, under-damped ringing. The derivative term contributes proportionally to the

error rate of change, but with the opposite sign of the proportional term. If the proper

constants are chosen, critical damping can be achieved. The role of the integral term is to

eliminate steady state error. A system that has a steady state error when tracking a

ramping input function can use an integral term to integrate the error over time and

compensate for it.

4.4 C Language Implementation (refer to Appendix B for a complete C listing).

The equation (C Language operator notation) :-

NEWDTY = KP * (ERRX) + KI * PERDT * (CMNDX - (ADRCX + ADRCXM1) / 2) +
 (KD / (6 * PERDT)) * ((ERRX - ERRM3X) + 3 * (ERRM1X - ERRM2X)) +
 OLDDTY

(4.10)

After necessary files are included and floating point variables are declared, a

prototype is given to define an assembly language function that is used later. The main

program initializes constants and variables, sets up the required on-chip peripherals, and

waits for interrupts to occur. The M68HC11 real-time interrupt (RTI) is used to establish

a precise time base for performing PID compensation. The period (T or PERDT) is

determined by the RTI rate.

The RTI_interrupt function does the PID loop PWM duty cycle calculations,

performs I/O using the DOIO assembly language function, and checks the results against

the usable PWM output range of $00 to $FF. If a floating-point result is out of range, the

closest limit is substituted. This “saturation arithmetic” prevents out-of-range results from

causing sign-reversals in the PWM output.

When the RTI_interrupt function returns control to the C routine, the last task the

routine must perform is preparation for the next period. A two-element pipeline of the A/

D reading and a four-element error pipeline are updated. Finally the “old” duty cycle

value is copied into OLDDTY.

4.5 Pseudocode for the PID Controller Algorithm

define constants A0, A1, A2

define SP

initialize E1, E2 = 0

input PV from A/D subsystem

C1 = factor pv

sample-time delay

Loop

output C1 to D/A or PWM subsystem

input PV from A/D subsystem

; calculate PID sample output

E0 = SP – PV ; sample error

C0 = C1 + A0 E0 – A1 E1 + A2 E2

; now reassign variables in scratchpad RAM

C1 = C0

E2 = E1

E1 = E0

sample-time delay

repeat loop

Note that the time delay can be triggered using an output-compare interrupt or real-time

interrupt. The service routine can include the rest of the loop. The pseudocode above does

not take into account the bit size limits of the numbers. Controller output must fall

between maximum and minimum limits to avoid overflow and underflow resulting from

the calculations. In other words, the outputs are clamped. This is analogous to the

analogue PID, whose outputs are naturally clamped due to the high and low limits of the

power supply. The C code will include clamping. Refer to Appendix B for full program

listing.

CHAPTER 5

RESULT AND TESTING

5.1 PID Tuning

 When the system dynamics are not precisely known, we must resort to

experimental approaches. Ziegler-Nichols Rules for Tuning PID Controller:

Using only Proportional control, the gain of the system is turned up until the system

oscillates without dying down, i.e., is marginally stable. Assume that K and P are the

resulting gain and oscillation period, respectively.

Then, use

Table 5.1: The PID tuning equation

Controller Type Kp Ki Kd

P 8 0 0
PI 7.2 400 0

PID 9.6 666.67 0.000375
Table 5.2: Ziegler-Nichols Tuned Parameter, Frequency Response.

A proportional controller (Kp) will have the effect of reducing the rise time and

will reduce, but never eliminate, the steady-state error. An integral control (Ki) will have

the effect of eliminating the steady-state error, but it may make the transient response

worse. A derivative control (Kd) will have the effect of increasing the stability of the

system, reducing the overshoot, and improving the transient response. The transient

responses obtained are shown in this chapter.

for P control for PI control for PID control

Kp = 0.5 K Kp = 0.45 K

Ki = 1.2 / P

Ki = 1.2 / P

Kp = 0.6 K

Ki = 2.0 / P

Kd = P / 8.0

5.2 Model of the PID Controller

Figure 5.1: Model of PID Controller in MATLAB

The model of the PID controller is design by using the transfer function obtained earlier.

The PID controller block is available in the MATLAB library, and the values obtained

from the PID tuning are inserted when the PID block is double-clicked.

5.3 The Transient Responses

5.3.1 Response of Speed without any Controller

(m/s)

(s)

Figure 5.2: Transient Response of DC Motor Speed without Controller

5.3.1.1 Graph Analysis:

Percentage of Overshoot, %OS is 2%, which is obtained from the graph. Percentage of

overshoot is the amount that the waveform overshoots the steady state, or final, value at

the peak time, expressed as a percentage of the steady state value. The Peak Time, Tp is

3.0075 seconds, which is the time required to reach the first, or maximum, peak. The

Rise Time, Tr is 0.0040 seconds, which is the time required for the waveform to go

from 0.1 of the final value to 0.9 of the final value. The Settling Time, Ts, is 3.0130

seconds, which is the time required for the transient’s damped oscillation to reach and

stay within 2% of the steady-state.

5.3.2 Response of Speed with a Proportional Controller

(m/s)

(s)

Figure 5.3: Transient Response of DC Motor Speed with a P Controller

5.3.2.1 Graph Analysis:

Percentage of Overshoot, %OS is 47%, which is obtained from the graph. Percentage

of overshoot is the amount that the waveform overshoots the steady state, or final, value

at the peak time, expressed as a percentage of the steady state value. The Peak Time, Tp

is 3.0025 seconds, which is the time required to reach the first, or maximum, peak. The

Rise Time, Tr is 0.0010 seconds, which is the time required for the waveform to go

from 0.1 of the final value to 0.9 of the final value. The Settling Time, Ts, is

3.0135seconds, which is the time required for the transient’s damped oscillation to reach

and stay within 2% of the steady-state.

5.3.3 Response of Speed with a Proportional-Integral Controller

(m/s)

(s)

Figure 5.4: Transient Response of DC Motor Speed with a PI Controller

5.3.3.1 Graph Analysis:

Percentage of Overshoot, %OS is 46%, which is obtained from the graph. Percentage

of overshoot is the amount that the waveform overshoots the steady state, or final, value

at the peak time, expressed as a percentage of the steady state value. The Peak Time, Tp

is 3.0030 seconds, which is the time required to reach the first, or maximum, peak. The

Rise Time, Tr is 0.0009 seconds, which is the time required for the waveform to go

from 0.1 of the final value to 0.9 of the final value. The Settling Time, Ts, is 3.0120

seconds, which is the time required for the transient’s damped oscillation to reach and

stay within 2% of the steady-state.

5.3.4 Response of Speed with a Proportional Integral Derivative Controller

(m/s)

(s)

Figure 5.5: Transient Response of DC Motor Speed with a PID Controller

5.3.4.1 Graph Analysis:

Percentage of Overshoot, %OS is 48%, which is obtained from the graph. Percentage

of overshoot is the amount that the waveform overshoots the steady state, or final, value

at the peak time, expressed as a percentage of the steady state value. The Peak Time, Tp

is 3.0025 seconds, which is the time required to reach the first, or maximum, peak. The

Rise Time, Tr is 0.0007 seconds, which is the time required for the waveform to go

from 0.1 of the final value to 0.9 of the final value. The Settling Time, Ts, is 3.0090

seconds, which is the time required for the transient’s damped oscillation to reach and

stay within 2% of the steady-state.

5.4 Discussion

In summary;

Type of

Controller

%OS Peak Time, Tp Rise Time,

Tr

Settling Time,

Ts
Uncontrolled 2% 3.0075s 0.0040s 3.0130s

P 47% 3.0025s 0.0010s 3.0135s
PI 46% 3.0030s 0.0009s 3.0120s

PID 48% 3.0025s 0.0007s 0.0090s

Table 5.: Summation of Graph Analysis

PID is the best controller to be used for this system. The response shows a better

performance where the rise time (Tr) and the settling time (Ts) are lower than other

controllers. The %OS is a little bit higher than other controller, as the Ziegler-Nichols

Method produce more overshoot compared to other methods.

Chapter 6

CONCLUSION AND FUTURE RECOMMENDATION

6.1 Conclusion

The mathematical model of the DC Motor system to be controlled with the purpose of

simulating its dynamic behavior in closed-loop mode can be developed in advanced

using the Matlab Simulink®.

A PID Controller algorithm has developed using the same method, by means of keeping

the speed of DC motor under control, at the same time reducing the error that may occur.

6.2 Suggestion

6.2.1 Microcontroller

Microcontrollers that had full-duplex CAN communication capability may be chosen for

real-time observation. The designed program used in this project is based on the

functions and addresses of the K series. Thus, for real time observation, the K series of

the MC68HC11 may be used, due to the PWM, and which has more than 1Mbyte

memory space. Large memory size will assist in the programming of a better PID

algorithm into the microcontroller.

6.2.2 Tuning Method

For future advancements of this project, other PID tuning methods may also be used, to

compare the outcome of the controlled speed.

6.3 Costing and Commercialization

This project focused on designing the program for the PID Controller. Thus it

does not involve any hardware, except for the DC motor, as the parameter is

needed for the derivation of the transfer function in the beginning of the project.

The datasheet for the microcontroller is needed as well to know the configuration

which is used in the program. These datasheet are available online, from the

Motorola official online resource. Therefore, there is no cost involve. This

project is considered an initial research, and it is recommended that any future

project is based on this research, to apply it onto real observation. When applied

onto real application, this project has a good potential to be commercialized in

the future.

REFERENCES

[1] K.J. Astrom and T. Hagglünd, . (1988). Automatic tuning of simple regulators

with specification on phase and amplitude margin, pp. 645–651.

[2] K.J. Astrom and T. Hagglünd, (1995). PID Controller. (2nd ed.), Instrument of

Society of America, Research Triangle Park, NC

[3] I.-L. Chien and P.S. Fruehauf, (1990) Consider IMC Tuning to improve

controller performance. Chem. Eng. Progr. 86, pp. 33–41.

[4] G.F. Franklin, J.D. Powell and A.E. Naeini, (1986). Feedback Control of

Dynamic Systems. , Addison-Wesley, Reading, MA

[5] M. Ge, M.-S. Chiu and Q.-G. Wang, (2002). Robust PID controller design via

LMI approach. J. Process Contr. 1 12 , pp. 3–13

[6] C.C. Hang, K.J. Astrom and Q.G. Wang, (2002). Relay feedback auto-tuning of

process controllers-a tutorial review. J. Process Contr. 1 12, pp. 143–162

[7] W.K. Ho, C.C. Hang and L.S. Cao, (1995). Tuning of PID controller based on

gain and phase margin specification, pp. 497–502.

[8] C. Hwang and C.-Y. Hsiao, (2002). Solution of a non-convex optimization

arising in pi/pid control design. pp. 143–162.

[9] M. Morari and E. Zafirou, (1989). Robust Process Control. , Prentice-Hall,

Englewood Cliffs, NJ.

[10]Maurice, B. (1998)."ST62 microcontrollers drive home appliance motor

technology, AN885/1196," Application Note, ST Microelectronics, www.st.com.

[11]Katausky, J., I. Horder, and L. Smith. "Analog/Digital Processing with

Microcontrollers," AR-526 Applications Engineers, Intel Corporation,

www.intel.com.

[12]Hitex. "Basic DC Motor Speed Control With The Infineon C167 Family." Hitex:

UK. www.hitex.co.uk/c166/pidex.html.

http://www.hitex.co.uk/c166/pidex.html
http://www.intel.com/
http://www.st.com/

APPENDIX A

Data Sheets

APPENDIX B

Program Listing

/*this program initializes constants and variables,

 sets up required on-chip peripherals, and waits for interrupts to occur.*/

/*uses RTI to establish precise time base for performing the PID routine.*/

/*uses RTI to do PID loop PWM duty cycle calculations*/

/*uses RTI to to perform I/O using DOIO assembly language function*/

#include <stdio.h> /*Provides the core input and output capabilities of the C

language*/

#include <io6811k4.h>

#include <int6811k.h>

#include <math.h> /*to add floating point math, when

compiling in any C compilers*/

zpage unsigned int TOFCOUNT; /* declare variables */

zpage float CMNDVX;

zpage float ADRCX;

zpage float ADRCXM1;

zpage float ADRCXM2;

zpage float ADRCXM3;

zpage float ERRX;

zpage float ERRM1X;

zpage float ERRM2X;

zpage float ERRM3X;

zpage float PERDT;

zpage float NEWDTY;

zpage float OLDDTY;

zpage float KP;

zpage float KD;

zpage float KI;

extern int ASSEM (void); /* prototype for assembly routine.*/

/* any void statements indicate that no arguments

are being

 passed to or from the interrupt routine.*/

/* declaration that are not definition. */

void main() /* main program. void means function do not

return a value*/

{

CMNDVX = 1.5;

PERDT = 0.016383; /* RTI and therefore PID loop period = 16.383 ms.*/

/* value is different if being used in real

applications,depends on performance. */

KP = 9.6;

KI = 666.67;

KD = 0.000375;

OLDDTY = 1.9; /* start out with pwm set fairly high */

PORTA = 0x00; /* this will be used for a scope trigger */

DDRA = 0xFF; /* set PORTA as output */

PACTL = 0x03; /* Pulse Accumulator Control. set RTI to 16.383 ms */

TMSK2 = 0x40; /* Timer Interrupt Mask. enable RTI interrupts */

OPTION = 0x90; /* System Configuration Option */

/* enable A/D charge pump.The (A/D) converter

system uses an all-capacitive charge-redistribution technique to convert

analog signals to digital values. */

PWPER1 = 0xFF; /* Pulse-Width Modulation Timer Period 1.Determines period of

associated PWM channel. set up PWM channel 1 at 15.625 kHz */

PWDTY1 = 0xFF; /* Pulse-Width Modulation Timer Duty Cycle 1. Determines duty

cycle of associated PWM channel.*/

PWPOL = 0x01; /* Pulse-Width Modulation Timer Polarity

*/

DDRH = 0x00;

PWEN = 0x01; /* Pulse-Width Modulation Timer Enable

*/

TFLG2 = 0x40; /* Timer Interrupt Flag */

enable_interrupt(); /* wait here for RTI to cause loop execution */

wait_for_interrupt();

for (;;) {

; }

}

interrupt void IRQ_interrupt(void) /* Interrupt Request.should initialize all

interrupts...refer to either the act of interrupting the

bus lines used to signal an interrupt */

{

PORTA = 0xFF;

PORTA = 0x00;

}

interrupt void TO_interrupt(void)

{

TOFCOUNT++ ;

}

interrupt void RTI_interrupt(void) /*PID LOOP/PWM routine. declare as an interrupt

function istead of a normal subroutine. */

{

PORTA = 0xFF; /* scope strobe */

ASSEM (); /* read A to D and output the duty cycle calculated

last period */

ADCTL = 0x10; /* begin new conversion cycle */

ERRX = (CMNDVX - ADRCX); /* calculate current error */

/* The statement below is the entire floating point PID loop */

NEWDTY = KP*(ERRX) + KI*PERDT*(CMNDVX - (ADRCX + ADRCXM1)/2) +

(KD/(6*PERDT))*((ERRX - ERRM3X) + 3*(ERRM1X - ERRM2X)) + OLDDTY;

if (NEWDTY > 1.99609) /* test for result being in usable */

NEWDTY = 1.99609; /* limits and set PWM duty cycle if */

else if (NEWDTY < 1.0) /* beyond saturation */

NEWDTY = 1.0;

TFLG2 = 0x40; /* clear RTI flag */

ADRCXM1 = ADRCX; /* update A/D result for next cycle */

ERRM3X = ERRM2X; /* update error pipeline */

ERRM2X = ERRM1X;

ERRM1X = ERRX;

OLDDTY = NEWDTY; /* update old duty cycle for next calculation period */

PORTA = 0x00; /* scope strobe. strobe is a spot of higher

than normal intensity in the sweep of an indicator on a

scanning device (oscilloscope), as on a radar screen, used

as a reference mark for determining the position or

distance of the object scanned or detected. */

}

* ASSEM assembly function *

* This routine handles the conversion between *

* 8 bit register values and the C float variables *

MODULE ASSEM

PUBLIC ASSEM

P68H11

RSEG CODE

PWDTY1 set $006c REGISTER LOCATIONS

ADDR1 set $0031

EXTERN ADRCX:ZPAGE EXTERNAL VARIABLE

LOCATIONS

EXTERN NEWDTY:ZPAGE

ASSEM:

LDAA #$3F

CLRB

STD ADRCX INITIALIZE FLOAT LOCATION.

LDAA ADR1 GET CHANNEL 1 A/D RESULT.

LSRD SHIFT TO FLOAT MANTISSA POSITION.

ORAA #$80 OR IN LEAST SIGNIFICANT EXP BIT

STD ADRCX+1 AND STORE IT IN FLOAT VARIABLE.

CLRB CLEAR LEAST SIGNIFICANT

STAB ADRCX+3 FLOAT BYTE.

LDD NEWDTY+1 GET TWO BYTES OF FLOAT MANTISSA.

LSLD SHIFT TO CORRECT REGISTER

POSITION.

STAA PWDTY1 OUTPUT TO PWM DUTY

REGISTER.

RTS

END

NEWDTY = KP*(ERRX) + KI*PERDT*(CMNDVX - (ADRCX + ADRCXM1)/2)

+ (KD/(6*PERDT))*((ERRX - ERRM3X) + 3*(ERRM1X - ERRM2X))

+ OLDDTY

	document
	JUDUL: PID DIGITAL CONTROLLER FOR DC MOTOR SPEED USING MC68HC11 MICROCONTROLLER
	NO. 17 REJANG 21	 			Puan Haszuraidah binti Ishak

	CHAPTER1
	CHAPTER2
	CHAPTER3
	CHAPTER4
	CHAPTER5
	CHAPTER6
	REFERENCES
	APPENDIX

