

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

Catalytic pyrolysis of glycerol into syngas over ceria-promoted Ni/α -Al₂O₃ catalyst

Renewable Energy

売

Mohd Nasir Nor Shahirah ^{a, b}, Jolius Gimbun ^{a, b}, Asmida Ideris ^a, Maksudur R. Khan ^a, Chin Kui Cheng ^{a, b, c, *}

^a Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia ^b Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia

^c Rare Earth Research Centre (RERC), Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia

ARTICLE INFO

Article history: Received 1 September 2016 Received in revised form 1 January 2017 Accepted 2 February 2017 Available online 5 February 2017

Keywords: Alumina Ceria Glycerol Nickel Pyrolysis Syngas

ABSTRACT

This paper reports on the catalytic pyrolysis of glycerol into syngas over a 3 wt%Ce-20 wt%Ni/77 wt% α -Al₂O₃ catalyst and at reaction temperatures of 973 K, 1023 K and 1073 K. NH₃- and CO₂-TPD analyses have revealed that the as-synthesized catalyst was net acidic with acid-to-basic site ratio of 1.24. This provides ideal conditions for chemisorption of glycerol. In addition, the BET specific surface area was 2.89 m² g⁻¹. The small surface area can be attributed to the thermally stable α -Al₂O₃ support. In addition, the average crystallite size was 40.22 nm. The catalytic glycerol pyrolysis produced gaseous products that were comprised of H₂, CO, CO₂ and CH₄ only with H₂:CO ratios that were consistently less than 2.0. This ratio is suitable for Fischer-Tropsch synthesis. The yields of CO₂ and CH₄ were several folds lower than the yields of H₂ and CO, indicating that the latter were from primary reaction, viz. glycerol decomposition whilst the former were from secondary competing reactions. In addition, the activation energy obtained via Langmuir-Hinshelwood model was 25.34 kJ mol⁻¹. Used catalyst characterization showed that the carbonaceous deposit was in the forms of whisker-type. This type of carbon deposit would not physically deactivate the catalyst.

© 2017 Elsevier Ltd. All rights reserved.