ELSEVIER

Contents lists available at ScienceDirect

Materials and Design

journal homepage: www.elsevier.com/locate/matdes

Continuous nanobelts of nickel oxide–cobalt oxide hybrid with improved capacitive charge storage properties

Midhun Harilal ^a, Syam G. Krishnan ^a, Bincy Lathakumary Vijayan ^a, M. Venkatashamy Reddy ^b, Stefan Adams ^b, Andrew R. Barron ^c, Mashitah M. Yusoff ^a, Rajan Jose ^{a,*}

^a Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science & Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia

^b Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore

^c Energy Safety Research Institute, Swansea University, Bay Campus, Swansea, SA1 8QQ, Wales, UK

HIGHLIGHTS

GRAPHICAL ABSTRACT

- Continuous nanobelts of a material hybrid (HNBs) are prepared.
- Thickness of the HNBs is less than half of its pore diameter.
- Electrochemical properties of the HNBs are benchmarked with three other materials.
- HNBs showed superior charge storage properties.

 $\frac{1}{1000}$ $\frac{1$

ARTICLE INFO

Article history: Received 30 January 2017 Received in revised form 6 March 2017 Accepted 7 March 2017 Available online 08 March 2017

Keywords:

Nanocomposites Hybrid metal oxides Energy storage devices Renewable energy Electrochemical charge storage

ABSTRACT

This paper reports the synthesis of continuous nanobelts, whose thickness is less than half of its pore diameter, of a material hybrid composing of nanograins of nickel oxide and cobalt oxide by electrospinning technique and their capacitive charge storage properties. While the constituent binary metal oxides (NiO and Co₃O₄) formed solid cylindrical nanofibers the hybrid and a stoichiometric compound in the Ni-Co-O system, i.e., spinel-type NiCo₂O₄, formed as thin nanobelts due to the magnetic interaction between nickel and cobalt ions. The nanobelts showed six-fold larger surface area, wider pores, and impressive charge storage capabilities compared to the cylindrical fibres. The hybrid nanobelts showed high specific capacitance ($C_S \sim 1250 \text{ F g}^{-1}$ at 10 A g⁻¹ in 6 M KOH) with high capacity retention, which is appreciably larger than found for the stoichiometric compound (~970 F g⁻¹ at 10 A g⁻¹). It is shown that the hybrid nanobelts have lower internal resistance (1.3 Ω), higher diffusion coefficient (4.6 × 10⁻¹³ cm² s⁻¹) and smaller relaxation time (0.03 s) than the benchmark materials studied here.

© 2017 Elsevier Ltd. All rights reserved.